U.P.B. Sci. Bull., Series A, Vol. 85, Iss. 3, 2023 ISSN 1223-7027

HEEGNER POINTS, FRICKE INVOLUTION AND ALGORITHMS
COMPLEXITY

Radu Gaba!, Vladimir Olteanu®

This paper deals with the development of faster computer programs by mean of
which the authors improve the complexity orders of the algorithms of [1] used by Canepa
and Gaba to classify the fixed points of the action of Fricke’s involution wy on the open
modular curves Yo(n) as well as a certain class of Heegner points: the pairs (E, E/C),
where E are complez elliptic curves for which there exist cyclic subgroups C < (E,+)
of order n such that the elliptic curves E and E/C are isomorphic. We compute the
complezity orders of the algorithms of [1] as well as the complexity orders of the new
algorithms. Moreover, we provide an exhaustive comparison of the results obtained upon
running the code on the same computer.

2000 Mathematics subject classification: Primary: 11G07,11G15,11Y16, Secondary:
14D22
Keywords: elliptic curve, Fricke involution, algorithm, cyclic subgroup

1. Introduction

Throughout this paper we will denote by H the upper half plane, H = {z €

C,Im(z) > 0} and by F := {z =xz+4+iy € C: -3 <z < i and either [z >

1if <0 or |2/ >1 if > O} the fundamental domain for the action of SL3(Z)

. . b
on K, action given by (CCL Z) ST = Z:IZJ e s, ¢ d

identified under this action with isomorphic classes of elliptic curves over C. Let E be
a complex elliptic curve given by the lattice L, E = C/L, and C a cyclic subgroup of
order n < oo of (E,+). That is, C is a subgroup of order n of the n-torsion subgroup
of E: Eln] == {P € E : [n]P = O} = ker([n] : E — E) = (:L)/L c C/L. The
group E/C has a structure of Riemann variety due to the fact that C' acts effectively and
properly discontinuous on E and this structure is compatible with the natural projection
denoted by 7 : E — E/C. It is known that the isogeny 7 is unramified of degree n:
degr = |771(0)| = |C| = n (see [7], Theorem 3.4). By Yy(n) one denotes the open mod-
ular curve defined as the quotient space I'g(n)/H, equivalently Yy(n) is the set of orbits
{To(n)r : 7 € H}, where I'y(n) is the ”Nebentypus” congruence subgroup of level n of
SLy(Z), which acts on H from the left:

To(n) = {(CCL Z) € SLy(Z)| ¢ = 0(modn)}.

An enhanced elliptic curve for I'g(n) is by definition an ordered pair (E,C) where E
is a complex elliptic curve and C is a cyclic subgroup of order n of E. Moreover, two pairs
(E,C) and (E',C") are equivalent if there is some isomorphism E = E’ taking C' to C’. The
set of such equivalence classes is denoted by:

Hnstitute of Mathematics ”Simion Stoilow” of the Romanian Academy, P.O. BOX 1-764 RO-014700
Bucharest e-mail: radu.gaba@imar.ro
2 e-mail: vladimir. olteanu@proton.me

29

30 Radu Gaba, Vladimir Olteanu

So(n) := {enhanced elliptic curves for To(n)}/ ~.

Moreover, an element of So(n) is an equivalence class [E, C| and Sp(n) is a moduli space of
isomorphism classes of complex elliptic curves and n-torsion data (see [4] for details).

Denote by A, the lattice Z 4+ Z7, 7 € H and by E; the elliptic curve C/A,. One has
the following bijection (see [4], Theorem 1.5.1 for details):

So(n) = Yo(n) given by [C/A,. {1/n + A,)] = To(n)r .

In this paper we develop faster algorithms than the ones previously developped by
Canepd and Gaba in [1] in order to classify on one hand the fixed points of the action of
Fricke’s involution on Yy (n) and a certain class of Heegner points namely: the pairs (E, E/C),
where F are complex elliptic curves for which there exist cyclic subgroups C' < (E,+) of
order n such that the elliptic curves E and E/C' are isomorphic. We compute the complexity
orders of the old as well as of the new algorithms and provide a thorough comparison of
the results obtained when running them on the same laptop. We point out that in [3] one
improved the noncyclic case algorithm whereas in this paper we analyze the complexity and
improve the algorithm used to classify the fixed points of the action of Fricke’s involution
wy, on Yp(n) as well as the cyclic case algorithm since it is natural to cover these remaining
and different cases as well. As expected, the complexity order of the cyclic case algorithm
is different than the complexity order of the noncyclic case algorithm.

The improved versions of those algorithms, developped in this paper, work correctly
and faster in finding the fixed points of the action of the Fricke involution on Yy(n), points
which though known, weren’t studied in the above specified manner (see |1]). Note that
this number of fixed points was previously computed by Ogg (see [§], Proposition 3) and
Kenku (see [6], Theorem 2) and, for n > 3, it is v(n) = h(—n)+ h(—4n) if n = 3(mod4) and
v(n) = h(—4n) otherwise, where h(—n) is the class number of primitive quadratic forms of
discriminant —n and v(2) = v(3) = 2.

2. Preliminaries

In [1], one provided a new method of classifying the fixed points of the action of the
Fricke involution

w, = (2 ‘01) € GLy(Q%)

on the open modular curves Yp(n). One firstly characterized the pairs (E, E/C), where
E are complex elliptic curves for which there exist cyclic subgroups C' < (E,+) of order
n such that the elliptic curves E and E/C are isomorphic in Theorem [2.1] Next, upon
imposing certain conditions (Theorem 2.3 of [1]), one also answered the question: ”given a
complex elliptic curve E, when can one find a cyclic subgroup of order n of E such that
(E,C)~ (E/C,E[n]/C).

More precisely, in [1] Canepa and Gaba proved the following theorems:

Theorem 2.1. ((1], Theorem 1.1)

Let E be a complex elliptic curve determined by the lattice (1,7), T € H. Then:

i) 3C < (E,+) finite cyclic subgroup such that g ~ F & Ju,v € Q such that
72 =ur +v with A = u? + 4v < 0 (i.e. E admits complex multiplication);

it) If T satisfies the conditions of i) and u = Z—;,v = Z—;,ug #0,v0 # 0,uy,us,v1,vg €
Z,Ged(uq, ug) = Ged(vy, v2) = 1,dy = Ged(ug, va), then:

3C < (E,+) cyclic subgroup of order n which satisfies % ~ F <= 3(a, V') € Z* with
Ged(a,b') =1 such that n = detM, where M is the matrix

w3)

Heegner points, Fricke involution and algorithms complexity 31

and (a, A, b, B) = (ugouly w2y g “;l—gzb'),-
i11) The subgroup C from i) is C= <M>, where uy1,uz1 are obtained in the

following way: since det M = n and Ged(a, A,b, B) = 1 (one deduces easily this), the matriz
M is arithmetically equivalent with the matriz:

10
(o)

U,V € GLy(Z) such that MU~<1 2>V

hence

The elements ui1,u21 are the first column of the matriz
U— W v
U21 U22 '

Theorem 2.2. ((1], Theorem 2.3) Let E be an elliptic curve defined over C satisfying the
conditions of i). Then the following are equivalent:

{3C < (B, +) cyclic subgroup of order n of E such that (E,C) ~ (&, %)} =

{3(a, V') € Z? with gcd(a,b’) =1 such that det(M) =n and n|Tr()
{I(a, V') € Z2, with ged(a,b’) = 1 such that det(M) = n and M? = Oqf
where M is the matriz from[2.1) ii) and Tr(M) the trace of M.

} =
modn)},

This number of fixed points of the action of Fricke’s involution w,, on Yy(n) is v(n) =
h(—n)+h(—4n) if n = 3(mod4) for n > 3 and v(n) = h(—4n) otherwise. One can also obtain
this number by using the second algorithm of [1]. In [1] Cénepa and Gaba also developped
the algorithms classifying these points and implemented them in Magma. The non-cyclic
case has been studied by them in [2].

We briefly recall now this algorithm developed in [1] for the classification of the fixed
points of the Fricke’s involution action.

The complete details can be found in 1] (pages 496-498). Note that we keep the same
notations. Moreovever, we provide here sufficient details to make the exposure clear enough
while following [1]. It is known that the complex elliptic curves are of the form % for some

L:Z+Z7C(there7€?:{zza:+iy€@:—%§x<% and either |z|>1 if z <

0 or |z|>1 if $>O}.
If E is an elliptic curve satisfying the condition i) of Theorem one can assume (up to
isomorphism) that E is of the form % with L=Z+Zr CCand €. lf 72 —ur —v =

0,u,v € Q,A =u?>+4v < 0and 7 € F, then one further obtains 7 = %7 -1<u<l1
and |A] > 3.

Since A = u? + 4v < 0, one has that v < 0. Moreover, one can assume without loss of
generality that vo > 0,v; < 0 and ug > 0. Theorem ii) leads to:

B _ ’U,1U2 u2112A "
n=aB-bA=(a+ b’) " V) (1)
Furthermore d = Ged(ug, v2), A = Z% + 4% and let u) := uy/d and v} := vy/d. Let also
v := —v; and remark that us,vo,v1 > 0 and also that A < —3. One multiplies (x) by 4

and hence obtain:

4n = (2a + uvhd')? 4+ V42 (4vydulf — vhu?) (2)
This leads to the inequality 4n > vhb2 - dvydulf hence n > vhb'? - v1dul?. Next denote
2
by £ := 4v1du2 —112u1 and note that A < —3is equivalent to d2 ,2 —4 d”Jé < —3 and moreover

32 Radu Gaba, Vladimir Olteanu

to uvh — ddviuf < —3d?ulfvh that is —€ < —3d%uPvl, ie. € > 3d?uvl (). From (sx)
and (2) one gets that 4n > vhb'? - 3d?uZvh hence 4n/3 > vi2b'? - d?u?. Let k := y/4n/3. One
obtains next that u}, runs from 1 to the integer part of k, [k], v} from 1 to [k/ub], b’ from 1
to [k/ub/vh] and d from 1 to [k/ub/vh/b']. Moreover, —1/2 < Re(7) < 1/2 is equivalent to
—1/2 <wuy/(2ug) < 1/2 that is —ug < uy < ug. Consequently u; runs from —dul to dufy — 1.
Let m := (2a +uyv4b’)2. From (2) one obtains now that 4n + v2b"?u? = m + 4vhb?vidul >

4ohb"? v dut? and hence v; < %. %]

Finally, one has to make sure that the condition 7 € & is entirely fulfilled by setting:
(up > 0 or v1 > vg) and (u; < 0 or v; > v2). The cyclic case algorithm of [1] is therefore
Algorithm 1 (see [1], page 498). Throughout the code, the substitutions made are b := V',
ug := ug/d and vy := vy /d, where d = Ged(ug, ve) and b, ug, vo are defined in Theorem [2.1

In Algorithm 1, one made the substitutions b := b, ug := us/d and vy := vo/d, where
d = Ged(ug,va) and b, ug, vy are defined in Theorem After modifying the previous
code one computes the fixed points of the Fricke involution by adding a few conditions.
That is, by using Theorem one has that det(M) = n and n|Tr(M) or equivalently:
a? + auyveb + ugvad - bugvib = n and n|(2a + uveb). Algorithm 2 (fixed points of Fricke’s
involution) is obtained by inserting these two conditions in the cyclic case algorithm.

After modifying the first code by using the notations of Theorem [1] obtained the
second agorithm namely Algorithm 2 (see [1], page 499). Throughout the next section we
will also compute their order of complexity and improve the algorithms.

Consequently, v; will run from 1 to |

3. Main Results

Note that the isomorphism (% ~ F) can only occur for non-singular projective curves
of genus 1 (see for example [3|, Lemma 1).
We are ready to compute now the complexity orders of the algorithms of [1].

Theorem 3.1. The order of complexity of Algorithm 1 (C cyclic) is O(n® - log’n).

Proof. Line 2 is O(k) time. One has that O(Floor(k)) = O(k), hence line 3 is O(k) iterations.
However, since 252:1(k/u2) — k- In(k), we obtain that lines 3 and 4 combined are O(k -
log(k)) iterations (for this, note that Zﬁzl(l/u) —1In(k) — v & 0.57 hence O(Zﬁzl(l/u)) =
O(In(k))). Since Ged is O(log(k)) time, one obtains that line 5 is O(log(k)) time. Since
(k/u2/v2)max = k, it follows that Line 6 is O(k) time (note that k/ug/vy = ujm). Remark

that ZIZZI (k/b) — kin(k), hence lines 6 and 7 combined are O(k-log(k)) iterations. Note that
dmax = k for ug =1 hence line 8 is O(2 - k) iterations, which is O(k) iterations. Recall now
that n = 3k%/4. Line 9 is O(log(k?)) = O(2 - log(k)) = O(log(k)) iterations. Observe that
(V1) max = (4 n+v3-ut-b?)/(4-v2-b%-d-u3) = 3k?/(4-va-b*-d-ud)+v3-u3-b?/(4-vy-b2-d-u3) =
3k%/(4 vy - b?-d-u3) +vy-u}/(4-d-u3). Consequently line 10 is O(k?) iterations. Line 11
is O(log(k?)) = O(2-log(k)) = O(log(k)) iterations. Remark that O(if ¢; then cj else c3) is
O(c1)+Max(O(cz), O(cs3)), which is Max(O(c1), O(cz2), O(cs)). It follows that line 12 is O(1),
line 13 is O(1). IsSquare function is O(sqrt) and since from line 13 one has that m < 3k?
it follows that line 14 is O(sqrt(k?)) = O(k). Line 15 is O(1). Line 16 is O(1) since IsEven
is O(1). Line 17 is O(1). Remark that from line 17 one obtains a < k -sqrt(3)/2 < k. Since
b < k? one obtains that Ged(a,b) < k. Consequently one obtains that line 18 is O(log(k)).
The remaining lines of the algorithm are O(1). Using now the above, the order of complexity
of the algorithm is O(k+k-log(k)(log(k) + (k-log(k) - k- (log(k) + k% - (log(k) + k +1log(k))))) =
O(k + k - log(k)(log(k) + (k*log(k) - (k + log(k)))) = O(k + klog?(k) - (k + log(k)))) =
Ok + K%log?(i)) = O(®log?(K)) = O(n - log?(yi)) = O(n® - log™n), o

Theorem 3.2. The order of complexity of the Algorithm 2 (fixed points of Fricke’s involu-
tion) is O(n® - log®n).

Heegner points, Fricke involution and algorithms complexity 33

Proof. We compare it to the first algorithm and remark that the difference is given by Line
20 in which one imposes two extra conditions both being in O(1). Consequently Line 20 is
still O(1) iterations.

|

We are ready to improve the two algorithms. For this, we introduce two helper classes
and reimplement the algorithms in C++ . The source code is available upon request. The
first class is called GCDs. It computes Geds using dynamic programming. It holds a
(k+ 1) x (n + 1) matrix which stores all Geds once they are computed. Computing the
Geds for all pairs (4,) with ¢ < k and j < n is done in O(k * n) time. Moreover the lookup
cost is O(1) once a Ged has been already computed. Consequently, the amortized cost of
all GCDs :: ged calls is O(k * n) = O(k®). The second class is called Squares. This class
features a single method called sqrtl f Per fectSq, which returns the square root of a number
if the respective number is a perfect square and —1 otherwise. This class holds a 4+xn+1 size
vector, initialized with —1; Next, for each i such that i> < 4 *n + 1, we populate the vector
at index i2 with i’s. The instantiation of the Squares class is done in O(4 * n + 1) = O(k?)
time. The calls to sqrtlfPerfectSq are vector lookups, and hence in O(1). We obtain
below:

Theorem 3.3. The order of complexity of the improved version of Algorithm 1 (case C
cyclic) is O(n?y/n - log’n).

Proof. In the improved version of Algorithm 1 the Ged and IsSquare are replaced by the
classes GCDs :: ged and Squares :: sqrtl f Per fectSq respectively as oposed to the non-
optimized version. The key point is that in this manner we front-load the costs, and then
treat all subsequent calls as being O(1). The operations concerning GC Ds are in O(k?), and
the operations concerning Squares are in O(k?). Analysing now the improved algorithm:
line 2 is in O(k) as in Algorithm 1. Lines 3 and 4 are O(k - log(k)) iterations. Lines 6 and 7
are also O(k-log(k)) iterations. Line 8 is O(k) iterations. Line 9 is O(1) as subsequent call of
GOD. Line 10 is O(k?) iterations. The remaining lines are O(1) . We obtain that the order
of complexity is O(k?) + O(k?) + O(k) + O(k - log(k)) - O(k - log(k)) - O(k)(O(1) + O(k?)) =
O(k®) + O(k® - log?k) = O(k® - log?k) = O(n?y/n - log?n)).

O

Similarly we obtain Theorem [3.4] below:

Theorem 3.4. The order of complexity of the improved version of Algorithm 2 (fized points
of the Fricke involution) is O(n?y/n - log?n).

Proof. The Algorithm 2 is derived from Algorithm 1 by restricting solutions to the case
when a? + aujvab + ugvad - bugvib = n and n|(2a + uyveb) in the innermost loop. This
check is however in O(1). Consequently, the order of complexity will be the same as the one
obtained for the optimized version of Algorithm 1. This ends the proof.

|

The main function of the second improved algorithm namely Algorithm 2 (Fricke’s
involution fixed points) will contain the code below (the complete C++ code is available
upon request). Deleting the lines 33 and 34 will give us Algorithm 1 (cyclic case).

4. Examples

We provide now several examples of the fixed points of the Fricke’s involution as well
as the numbers of classes of CM elliptic curves E which admit cyclic subgroups C' of order n
such that £ = E/C. The examples are gathered in Table 1 and Table 2. The extended set
of values also contains the set provided in [1]. However, the runs were made on a different

34 Radu Gaba, Vladimir Olteanu

Algorithm 3.1 Fricke’s involution fixed points in C++ Input: any random integer number;
Output: wuy /uz,v1/vs.

1: list(pair(double, double)) fricke(int n)
2: {
3: list(pair(double, double)) result;
4: int k = sqrtInt(4 * n/3);
5: GCDs geds(k+ 1, n+ 1);
6: Squares squares(4 *n + 1);
7: for(int u2 = 1;u2 <=k;u2 ++) {
8: for(int v2 = 1;v2 <= k/u2; v2++) {
9: if (geds.ged(u2,v2)! =1)
10: continue;
11: for(int b = 1;u2 <=k/u2/v2; b++) {
12: for(int d = 1;u2 <=k/u2/v2/b; d+ +) {
13: for(int ul = —d*u2;ul <=d*u2—1L;ul ++) {
14: if (geds.ged(ul,d xu2)! =1)
15: continue;
16: int vimax = (4 * n 4 sq(v2) * sq(ul) x sq(b))/(4 % v2 x sq(b) * d * sq(u2));
17: for(int vl = 1;vl <= vlmax; vl + +) {
18: if (geds.ged(vl,d «v2)! =1)
19: continue;
20: if (sq(ul)/sq(d)/(u2 *u2) —4xv1/d/v2 > —3);
21: continue;
22: int m=4#*n—v2xsq(b) % (4x vl *d=xsq(u2) — v2 xsq(ul));
23: int y = squares.sqrtIfPerfectSq(m);
24: if (y==-1)
25: continue;
26: if ((y —ul*v2x*b)%2! =0)
27: continue;
28: int a=(y—ul xv2xb)/2;
29: gcdAB = geds.ged(a, b);
30: if (gcdAB!'=1)
31: continue;
32: if ((ul > 0[]vl >=d *v2)&&(ul <= 0||vl > d % v2))
33: if (axa4+a*xul*v2xb+u2*xv2+dsxb*xu2xvlxb)==n)
34: &&((2*x a+ ul *v2 x b)%n == 0)))
35: result.push_back({1.0 * ul/d/u2, —1.0 * v1/d/v2});
36: }
37: }
38: }
39: }
40: }
41: }

42: return result;
43: }

Heegner points, Fricke involution and algorithms complexity

35

n the cyclic case | old CPU time | new CPU time
2 3 0.001s 0.001s
39 54 0.016s 0.001s
101 108 0.016s 0.002s
1457 1498 0.811s 0.036s
2012 3039 1.326s 0.042s
2022 4055 3.167s 0.047s
2023 2425 2.995s 0.052s
5772 12558 6.755s 0.251s
12383 14856 21.403s 0.724s
124071 165782 804.918s 20.993s
253124 443302 2134.828s 38.011s

TABLE 1. Number of classes of complex elliptic curves, the cyclic case:

computations for various n

n fixed points of w, | old CPU time | new CPU time
2 2 0.001s 0.001s
39 8 0.016s 0.001s
101 14 0.016s 0.002s
1457 24 0.811s 0.043s
2012 42 1.326s 0.050s
2022 24 3.026s 0.057s
2023 36 2.948s 0.062s
5772 48 6.396s 0.244s
12383 184 20.733s 0.747s
124071 708 703.689s 24.990s
253124 456 2078.292s 44.340s

TABLE 2. Number of fixed points of Fricke’s involution

machine than the one used in [1] namely the computations were done using Magma 2.19-9
as well as C++ on the same Lenovo i3-3110M laptop at 2.40 GHz and 8 GB RAM. For each
n we have also recorded the CPU time the processor took to complete these calculations
with the old code (written in Magma) as well as with the new one (written in C++).

5. Conclusions

In this paper we improve the orders of complexity of the algorithms of [1] and provide
examples as well as an extended comparison between the old CPU time recorded and the
new one. The new code implemented in C++ is available upon request and can be further
used in problems involving the Fricke involution in the theory of complex elliptic curves.
Moreover, we also emphasize here the utility of studying elliptic curve quotients.

REFERENCES

[1] B. Canepa, R. Gaba, On some special classes of complex elliptic curves and related algo- rithms,
Mathematical Reports 16(66), 4 (2014), 477-502.

[2] B. Canepa, R. Gaba, A generalization of a fized point theorem for CM elliptic curves, U.P.B. Sci.
Bull., Series A (2019), 3-12.

[3] B. Canepa, R. Gaba, V. Olteanu, CM complex elliptic curves and algorithms comple- zity, U.P.B. Sci.
Bull., Series A (2022), 123-130.

36 Radu Gaba, Vladimir Olteanu

[4] F. Diamond, J. Shurman, A first course in modular forms, Graduate Texts in Mathematics, volume
228, Springer, New-York, 2005.

[5] D. Husemoeller, Elliptic curves, Graduate Texts in Mathematics, volume 111, Springer, New-York,
2004.

[6] M. A. Kenku, Atkin-Lehner involutions and class number residuality, Acta Arithmetica, 23 (1977), 1-9.

[7] R. Miranda, Algebraic curves and Riemann surfaces, Graduate Studies in Mathematics, volume 5,
AMS.

[8] A. P. Ogg, Hyperelliptic modular curves, Bulletin de la S.M.F. (1974), 449-462.

	1. Introduction
	2. Preliminaries
	3. Main Results
	4. Examples
	5. Conclusions
	REFERENCES

