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A LAGRANGE MULTIPLIER APPROACH USING INTERVAL
FUNCTIONS FOR GENERALIZED NASH EQUILIBRIUM IN
INFINITE DIMENSION

Bogdan BIOLAN*

In this paper we study a class of generalized Nash equilibrium problems in
the interval analysis framework. Some characterizations of the solutions
corresponding to players which share the same Lagrange Multipliers are also given.
The types of functions used in this article are the so called interval applications or
interval functions. According to [3], this kind of Nash equilibria concept was
introduced by Rosen [12] in 1965 for finite dimensional spaces. In order to obtain
the same property for the infinite dimensional approach, we use recent
developments of a new duality theory. Regarding its usfulness new theorems are
proven and similar kinds of equilibrium for pay-off interval type functions or their
extended versions are approached.
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1. Introduction

In [3] F.Faraci extended the Nash Equilibria concept defined by Rosen
[12] in 1965 to infinite dimensional spaces. The aim of this paper is to extend this
type of equilibria obtained in [3] to a class of functions, called interval functions.
So the pay-off functions used in this article and the other functionals are described
be interval functions. Generalized Nash equilibrium problems (GNEP’s) are
noncooperative games in which the strategy of each player can depend on the rival
players’ strategies. These problems have become popular recently because of their
utility for modeling economic problems, as well as routing problems in
communication networks. Recently, Facchinei et al. [2] have proved that for a
large class of GNEP’s, in finite dimension, certain solutions can be computed by
solving a variational inequality rather than a quasi-variational inequality.
Moreover, they have proved that the solutions of GNEP’s which are preserved by
switching to the variational inequality formulation are characterized by the fact
that all players share the same vector of Lagrange multipliers. This kind of Nash
equilibria was introduced by Rosen in his seminal paper [12] and its connection to
variational inequalities has important consequences from computational point of
view. In order to prove the main result from [2], assuming that some constraints
qualification holds, the authors use the Knaster-Kuratowski-Mazurkievicz
conditions associated to the GNEP. In this paper we are interested in extending
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the above mentioned result to an infinite-dimensional functional setting. This
extension is motivated by the fact that modeling the all time dependent
equilibrium problems requires the use of variational inequalities in LP spaces.
Moreover, the study of random equilibrium problems can be done using
variational inequalities theory in probability spaces. Here can be mentioned the
contributions of [6-11].

The application of the standard Lagrangian duality theory to the above
mentioned infinite-dimensional problems is not possible, because the ordering
cone which describes the inequality constraints (i.e. the cone of non-negative
functions in some LP space) has empty interior. However, very recently, a new
duality theory developed in [3] has proved to be a powerful instrument to
overcome this difficulty. The key tool in this theory is represented by the so-called
Assumption S, which replaces, in the infinite-dimensional framework, the
qualification constraints assumptions of the classical finite-dimensional setting.
The main result has been improved and since then many works have been devoted
to develop and apply the new duality theory. In this paper, by using the new
theory, we are able to prove the existence of Lagrange Multipliers for GNEP’s in
general Banach spaces and to extend the results to the infinite dimension case. For
more details concerning convex analysis in infinite dimension, see [13].

The paper is organized as follows. In Section 2 we introduce the setting of
our problem and the variational inequality concept, which constitute the main
object of our study. In Section 3 we prove our main result in an abstract Banach
space, we denote attention to Assumption S and we show how abstract theory can
be applied to concrete case of GNEP’s in Lebesgue spaces. Finally, in Section 4,
we conclude our work by revising the importance of the new results obtained in
this paper.

2. The setting

Let X; and X, be two Banach spaces and let u = (u!,u?) be an element of
the product space X = X; x X,. The element u! corresponds to the first player
and the element u? corresponds to the second one. Let K c X be an non-empty
and convex set and let J;, J,: X — R be two functionals, also known as the utility
functions or the pay-off functions, so that J;(.,u?) is convex and Gateaux
differentiable for every u?e€ X, and J,(ul,.) is convex and Gateaux
differentiable for every u! € X;.

For every u = (ul,u?) the sets of optimal strategies of the two players
can be expressed as follows:

K,(uw) = {v! € X;: W u?) € K} c X,
KW ={v?eX,:(u,v)) eEK}cX,.
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Note that if u € K, then the above sets are convex and non-empty, as
u' € K;(u). The purpose of each player i, given the strategy of the rival, is to
choose a strategy which minimizes the function J; on its optimal set.

The following definition describes the goal of the game, which consists in
finding an equilibrium point for both players, represented by a vector u =
(ut,u?), such that no player can decrease his utility function by changing
unilaterally ii‘ to any other optimal point. We will recall this definition from [3]
and afterwards we will show how an interval function can change this setting.
Definition 2.1. We say that u = (u!, u?) is a generalized Nash equilibrium point
or a solution of the GNEP (Generalised Nash Equilibrium Problems, see [3]) if
u € K and the following conditions hold:

Ji @', u*) = min{j; (u', @?); u' € K; (@)},
Jo(@",u*) = min{j, (@', u?); u® € K,(@)} .
Leta,b,a,b € R.

Definition 2.2. We say that [a, b] < [a’,b] if: {a s a,}_

b<bh
We say that [a,b] < [a,b]] if: {aga,} or {a<a,} or {a<a,}.
y [a,b] < [a,b]i b<b b<bh b<b

Let Ibe a non-empty set. Then we define f:I - MI(R),f = [fL, Y], with
fE(x) < fY(x),Vx € I, the so-called interval function, where
MI(R) ={J : ] c Ris aclosed interval}.
We say that x is a minimum for f if the following constraints hold:
[F2Go, fY (1 < [fFCo, UGl vx € 1.

Let g: I — R™ be a vectorial application, where m > 1.
Consider the optimization problem:

inf [£2, £V]

{ gx)<o0 }

x €l

We say that % is an optimum interval point iff x is an optimal solution for: p* ()

and pY(x), where:

minft(x) minfY(x)
Liwy.d 9 <0 . Uyl 9@ =<0
PN < M PPN am<pmf
x €1l x €l

We will give the definition of Nash equilibrium point for this class of functions.

Let /; and J, be two interval functions, J;, J,: X - MI(R) the utility functions or
pay-off functions so that J; (., u?) is convex and Gateaux differentiable for every
u? € X, and J,(ul,.) is convex and Gateaux differentiable, for every u'® € X;.
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Now, we will define the equilibrium point for the problems with the interval
functions: [J;%, 7,1, .5 )2"].
Definition 2.3. We say that u = (u!,%?) is an interval equilibrium point for
GNEP if the following conditions hold:

(1) J; (@, u?) = min{J; (u!, w?); ut € K, (@)}, where u? is fixed;

() J,(@t, u?) = J,(at, u?) = min{J,(at, u?); u? € K,(@w)}, where @! is

fixed,

i.e., u! is optimal for the problems:

min J; " (u?, 7?) min ;Y (u', u?)
pt(a2): u' € Ky (1) ,pU (@2): u' € Ky (1)
J 1

V@) <Y @t u?) Ft,u?) <t u?)

and %? is optimal for the problems:

min J," (@', u?) min J," (@!, u?)
L1y, u® € K, () U1y, u® € K,()
P LY@ u?) < LY @', u?) PR Lr@,u?) < pra@ta?) |

respectively.
Remark 2.1. (1) and (2) are the equilibrium conditions for the so-called interval
functions.
Remark 2.2. u is an interval equilibrium point for GNEP iff @ is an optimum for:
pt@h), p?@") and p* (@), p¥(@*).
Now we recall the concept of Gateaux differentiability. Let Y be a Banach space
and Y* the dual of the topological space Y.
Definition 2.4. The function h:Y — R is said to be Gateaux differentiable in
u €Y if there exists ¢ € Y™ such that we have:
h(u + au) — h(u
Jim, ( a) @ =p),VueyY.
The functional ¢ is called the Gateaux derivative of h and it will be denoted by
¢ = Dh(n).
From well-known results of convex analysis (see e.g. Theorem 3.8 of [4]),
u = (ut,u?) is considered to be optimum interval for a GNEP interval game if
and only if:
D" (@, ) (! — ") 20, (V) u' € Ky (@) n{u': ), (u', w®) < J, 7@, @)},
Dy’ (@, u?) (' =) 2 0, V) u' € Ky (@) n{u': ;" (', @?) < " (@, u*)},
(2.2)
D), (@, u®)(u? — u?) = 0, (V) u? € K, (@) n{u?: ," (@, u?) < J,7 (@, u*)},
D" (@, a*)(u? = @*) 2 0, (V) u? € Kp (@) n{u?: ;" (@', u®) < J," (@' u*)},
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where D; and D, stand for the Gateaux derivative of J,“(.,%?),J,Y(.,%?) and
LY@t ), JL,R@h,.), respectively.
Denote by I': X — X;" x X",
D1]1L(u1,u2)
D1]1U(u1;u2)
Dz]zL(ul:uZ)
Dz]zu(ul'uz)
Now we will recall the concept of underlevel subset.
Definition 2.5. We say that Ly(a) = {x:(x) < a}, where a €R is the
underlevel subset of the function : X — R.
Considering this, it is clear that (2.2) is equivalent with:

r@T™(u—u) =0, Mu

e (K@ n Lo(L"@,7%)n LhL(le(al,az)))

x (K@ 0 L (" @, 79) 0 Ly (@, 72))).
Obvious: L, .(J;"(@",a?))={u': ;" (!, @?) < J,"(@*, a*)}

LhU(]lU(ﬁl'ﬁz)) = {ul:]lU(ul’EZ) < ]1U(a1'a2)}’
and the same for the others two involving J,.
Since the convex sets K; (i) depend on the solution, one obtains that GNEP for
interval games can be formulated equivalently as a quasi-variational inequality.
The nature of the optimal sets allows us to reduce the problem to variational
inequalities. Solving this associated to I' and the set K (in short : VI(T, K)), means
finding a point @ = (!, %) € K such that we have the following inequality:
r@"(u—1u) =0,(V)u €K.

Theorem 2.1. Every solution of the variational inequality VI(T,K)) is a solution
of GNEP interval games.
Proof:
Let = (u!,u?) € K be solution of (2.4.) where T is as in (2.3). If u! € K, (%),
then u = (u',u?) € K and from the definition of T we have that 0 <
F@)7(u—1u) = D, (@', u?)(ut —@b). In a similar way we get the other three
inequalities of (2.2).
A solution of the GNEP interval games that is also a solution of VI(T,K)) is
usually referred in Nash equilibrium theory as a variational equilibrium.
Theorem 2.2. ([7], Corollary 3.7). If K is a convex, closed and bounded subset of
a reflexive space X and I': K —» X* is a monotone map which is continuous on
finite-dimensional subspaces of K, then VI (T, K)) has a solution.

F'(ut,u?) =
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3. The Lagrange multipliers rule

A solution of the GNEP interval games can be obtained as a solution of the
VI(T,K)). By adopting the reduction method, we can lose solutions of the GNEP
interval game.

We want to see now which kind of solutions are preserved for a special set
of constraints. We follow the finite dimensional case [5] and prove that a solution
of the GNEP interval game is a variational equilibrium iff the shared constraints
have the same multipliers. The result is true under any constraints qualification
condition.

The setting is the same like in Section 2. We assume that Y is a Banach
space ordered by a convex cone, let’s say C, g: X — Y is convex, continuously
Gateaux differentiable mapping and:

K={weY":<w,z>yy>0,(V)z € C},
<.,.>y+y denotes the duality between Y* and Y.
If f:X—>R and u € K, we say that & is a solution of the minimal problem
(Pr)([3]) if:

f (@) =min{ f(x)| x € K}.

The following theorem is the main result of our research.
Theorem 3.1. (i) Let u be a solution of the VI(T, K) so that a suitable constraints
qualification condition for the VI(T, K) takes place at u. Then u is a solution of
the GNEP-interval game such that both players have the same Lagrange
multipliers.
(i) w is a solution of the GNEP-interval game such that a constraints qualification
condition takes place at u and both players have the same Lagrange multipliers.
Then u is a solution of the VI (T, K).

Proof:
(i) Suppose that u is a solution of the VI(T, K). Then, if f: X — R is the function
defined by:  f(uw) =T@)"(u—1u) (3.1),

then f is convex, Gateaux differentiable with the derivative given by:

Dfu)(z) =T(@)7 () for all z € X and for all u € X and:
f(z) = min{ f (x)| x € K} = 0. Under a suitable constraints qualification condition,
there exists w € C* such that:
(3.2): 0=Df (u)+ whg(m) = T'(w)" + wDg(u), and (3.3): <w, g(u) >y-y.
Since g € CY(X,Y), Dg()u=D,g(@)u' + D,g(@)u?, (V)(ul,u?) € X
and for the arbitrariness of (u!,u?) € X, (3.2) and (3.3) can be rewritten as:

(Dus® @ + Dufs? @ ) ut + (Do) @ + DoJy” @) u? + W(D, g (@)
+w(D,g(@)u?)=0, (V)(ul,u?) € X,and for the arbitrariness of (ul,u?) € X,
(3.2) and (3.3) read as:
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(@ Dyt @ +wDig(@ =0, D1J,” @ +WD1g@) = 0, DyJ," (@) + WDog(@) =
0, D,J,Y (W) + wD,g(i1) = 0.
B) <w,g(@) >y-y=0.
If g.: X, - Y is the mapping g, (u') = g,(ul, @?), then the set K, (it) has the
following expression: K; (@) * = {u": g(u") € =€} n L, +(J;"(@",@*)) and:
K@)V = {ut:g") € ~Cyn L, v(J," (@', @%)).
Similarly, if g,:X, — Y is defined by g,(u?)= g,(u?, u?), then:
K,(@) " = {u* g(u?) € =Cyn L, ()" @, u?),
K,(@) Y = {u*: g(u®) € —=Cyn L, v(J," (@, u?)). One also has that:
Dg;(@') = Dig(w), and g;(@) = g(@),i = 1,2.
Then (a) and (f) can be rewritten as:
DiJ;* (@) + wDg, (@) = 0,D,/,” (@) + wDg, (@") = 0, D,J," (@) +
wDg, (%) = 0,D,],Y (W) + wDg,(u?) = 0,

<W,g1(0) >y y=<w,g,(@) >yy=0.
The above condition means that u satisfies the Lagrange multipliers rule for the
GNEP interval games with w the common multiplier for both players.
This condition guarantees (e.g. Corollary 5.15 of [4]) that # is the minimal
solution of the following problems (Pfx), with (f,K) = (J*,,K;(@)*) and
(f.K) = (Y, K@) and (f,K) = (J*,, K,(@") and (f,K) = (JV,, K(@)Y),
respectively, that is u is a GNEP interval solution and both players have the same
Lagrange multipliers.
(if) Suppose that u is a GNEP interval solution and some constraints qualification
takes place at u. If the two players have the same Lagrange multipliers, then:
(1) DJi" (@) + wDg,(u') = 0.0,),Y (@) + wDg,(@') =0,
(B1) < W, g1 (@") >y+y=0
and
(a;) DoJ," (@) + WD g, (@?) = 0,D,J,” () + wDg,(u?) = 0,
(B2) < W, gy (@) >y+y=0.
In conclusion it is clear that (a) and (B) are satisfied. From Corollary 5.15 of [4],
we get that @ is a minimal solution of the problem (Pf ) with f as in (3.1). This
means that « is a solution of the VI(T, K).
Remark 3.1. w is the common Lagrange multiplier for both players.

4, Conclusions

In this paper we have studied a special type of Nash equilibria,
corresponding to the case when the pay-off functions associated to the two players
who want to maximize their winning chances are described by interval functions.
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Results from Convex Analysis and Duality Theory were used for obtaining new
original results concerning these type of equilibria. The results obtained can be
applied in several fields such as Economics. For investors who seek to improve
their available wealth (where the available wealth is considered to be an interval
function) at the end of a period, the equilibrium results obtained in this paper
show that this available wealth has an optimum interval point under some given
conditions. Furthermore, these results can be applied in other fields of
mathematics such as Optimization, Optimal Control Theory and Differential
Geometry.
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