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GEOMETRY INFLUENCE ON THE HALL EFFECT DEVICES 
PERFORMANCE 

Maria-Alexandra PAUN1, Jean-Michel SALLÈSE2, Maher KAYAL3 

The influence of the geometry, via the ratio L/W of the Hall cells and the 
geometrical correction factor G on several figures of merit regarding Hall sensors 
is analyzed, namely the sensitivity, Hall Voltage and power dissipated within the 
device. Experimental values for the parameters of interest are given for eight 
different geometries integrated in CMOS technology using certain biasing currents. 
We discuss how these results compare with an analytical model and we propose a 
global optimization analysis for guiding the designer in best Hall cell dimensions 
selection.  

Keywords: Hall effect sensors, geometrical correction factor, sensitivity, Hall  
                  voltage, power dissipated  
 

1. Introduction. Generalities about the Hall effect sensors  

 Since more than hundred years, Hall effect devices have been used to 
demonstrate the basic laws of physics, to study details of carrier transport 
phenomena in solids, to detect the presence of a magnet and as sensing devices for 
magnetic fields. Generally, the Hall effect takes place in any solid-state electron 
device exposed to a magnetic field. When a bias current is supplied between two 
contacts of a Hall plate and a perpendicular magnetic field is applied to the device, 
a voltage appears between the sense contacts. This voltage is called Hall voltage 
[1].  

Microscopic models have recently been developed to simulate self-
consistent electric potentials in Hall devices. Molecular dynamics for the motion 
of electrons and electron-electron interactions and conformal mapping were used 
to obtain the Hall potentials, by a computational feasibility method [2]. 

The Hall voltage is proportional to the vector cross product of the current 
(I) and the magnetic field (B). It is on the order of few tens of mV in silicon and 
thus requires amplification for practical applications. Silicon exhibits the 
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piezoresistance effect, a change in electrical resistance proportional to strain. This 
effect can be minimized by properly orienting the Hall element on the IC and by 
using multiple Hall elements. Fig. 1 shows two Hall elements located in close 
proximity on an IC. They are positioned in such a way that they experience the 
same packaging stress, represented by ΔR. The first Hall element has its 
excitation applied along the vertical axis and the second along the horizontal axis. 
Summing the two outputs eliminates the signal due to stress. Micro switch Hall 
ICs use two or four elements [3].  

2. Basic Hall effect sensors 

 The Hall element is the basic magnetic field sensor. It requires an 
amplifier stage and temperature compensation circuitry in order to use it in most 
applications. Voltage regulation is needed when operating from an unregulated 
supply. Figure 2 illustrates a basic Hall sensor from the Honeywell reference on 
Hall sensors. If the Hall voltage is measured when no magnetic field is present, 
the output should be zero. However this is never satisfied in practice and there is 
always an offset voltage that should be minimized. According to Popovic’s 
monography, major causes of offset are imperfections in the device fabrication 
process, such as misalignment of contacts, non-uniformity in material resistivity 
and thickness. A mechanical stress in combination with the piezoresistance effect 
can also generate offset. 

)(BVVV Hoffsettotal +=  (1)

On the other hand, the potential of each output terminal measured with 
respect to ground will not be zero. This is the common mode voltage (CMV) that 
should be equal for both output nodes, therefore the potential difference should 
ideally be zero. Figure 2 shows a schematic where only the potential difference, 
the Hall voltage, is amplified, thus rejecting the common mode voltage. The Hall 
voltage is of the order of 30 mV in the presence of a one gauss magnetic field. 
This low-level output requires an amplifier with low noise, high input impedance 
and moderate gain. A differential amplifier with these characteristics can be 
readily integrated with the Hall element using different technologies on Si, in 
general CMOS technology. Temperature compensation is also easily integrated. 

Since the Hall voltage is a function of the input current, there is a need for 
a regulator that will maintain a constant current.  
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Fig. 1 Hall element orientation 

 

 
Fig. 2 Basic Hall effect sensor  

 
Today, due to economical considerations, a new class of Hall microsensors 

with minimal design complexity was developed [4]. 

3. Classical approach for Hall cells  

In the classical approach, the Hall cell is shaped as a Greek cross. The 
structure has some symmetry and it is invariant by a rotation of π/2. This allows 
current-spinning technique to be used for minimizing residual offsets.  

The offset depends on many parameters such as technology, temperature 
and stress. Practically, it limits the minimum magnetic field that can be measured. 
A classical way of reducing offset is to couple two or four identical cells that are 
rotated [5]. Hall circuits fabricated in CMOS technology rely on the so-called 
spinning current method (periodic supply and output-contacts permutations) to 
enhance the sensor sensitivity [6]. 

The 3D cross presented in Fig. 3 has 4 contacts (in darker grey shades), 
among which two used to impose a current (namely A and C) and others are used 
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(B and D) for sensing the Hall voltage. Length and width of the cross are 
respectively denoted by L and W, sensing contacts extension is further on denoted 
by s, and the thickness of the active region is referred as t. 
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Fig. 3 Classical Greek Cross  

 
  To summarize, different quantities are used to characterize the Hall device [1].  

The Hall Voltage  
The Hall voltage follows the well known relation.  

⊥= BI
nqt
Gr

BV bias
H

H )(  
(2)

where B is the magnetic field component perpendicular to the plane, G is the 
geometrical correction factor, Ibias the biasing current, rH is the scattering factor of 
silicon that can be approximated to 1.15, n is the carrier density, q is the magnitude of 
the electron charge, t is the thickness of the plate and SI is the current-related 
sensitivity. 

Equivalently, we have 

⊥= GVB
L

WBV HH μ)(   
(3)

where  is the Hall mobility. 
 The geometrical correction factor, G  

In general, the geometrical correction factor G for a Hall device is given by the 
following relationship 
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This relation is valid for 0.85 ≤L/W≤∞ and 0≤θH≤0.45 radians. 
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The absolute sensitivity, S  
 
The absolute sensitivity of Hall effect sensors is given by: 

biasIbias
HH IGSI
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Gr

B
VS ===
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 (5)

where SI is the current-related sensitivity. 
Further on, we have the relationships: 

nqt
rSSIGSS H

IIbiasI === max;  (6)

where the geometrical factor G models the reduction of VHALL due to the part of the 
current which is perturbed from the sensing contacts as well as the short circuit effect 
induced by the biasing contacts [7]. 
 

The power dissipated, P  
The Hall voltage expressed as function of the dissipated power is 
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  For certain values of the width-to-length ratio, the dissipated power inside the 
device can be introduced as: 
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4. Hall device configurations 

  Up to 8 geometries implemented in 0.35 μm CMOS technology have been 
measured and analyzed in terms of specific parameters, such as absolute sensitivity, 
Hall voltage and power dissipated. All structures are symmetric and invariant to a 
rotation with π/2. The classical Greek cross was implemented as the basic cell. Further 
on, the variation of the cell dimensions led us to proposing the cells called L, XL. To 
avoid piezoresistive effects, the axes of the cells were oriented 45 degrees with respect 
to the Si crystallographic directions. Leaving the cross behind, we also implemented 
new shapes, such as as borderless and square structures. The borderless cell has the 
sensing contacts located inside of the active N-well region in order to minimize as 
much as possible errors related to the border. A low doped Hall cell with higher 
absolute sensitivity was also integrated  

 The resistances of the Hall cells, the dimensions of the active N-well, as well as 
values for the sensing contacts have been reported in table 1. The narrow contacts, 
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borderless and square cells have small sensing contacts in comparison with the others 
in order to satisfy that the condition s/W < 0.18 is fulfilled. The geometrical correction 
factor has been computed for each individual geometry. For the first five geometries, 
Eq. (4) was used. For the last three structures, because of the small sensing contacts 
area, an approximate expression given by Eq. (11) could also be used. 

The Hall cells were integrated together with the specific electronics and an 
automated measurement system was used to measure the specific parameters of the 
proposed geometries.  

5. Results and discussion 

  An analysis at the device level was performed. The following table summarizes 
the eight tested geometries and their specific parameters, such as resistance, 
dimensions of the active area, geometrical correction factor (G), length-to-width ratio 
L/W, etc.   

Table 1  
Properties of the eight analyzed Hall cells geometries 

Geometry  
Type 

Basic Low-
doped 

L XL 45 Deg Narrow 
Contacts 

Borderless Square 

 
Shape 

   

 
R0 (kΩ) at 
T=300K 

and B=0T 

 
2.3 

 
5.6 

 
2.2 

 
2.2 

 
2.1 

 
2.5 

 
1.3 

 
4.9 

W, L (μm) 
of the 

Active Area 
N-well 

 
W=11.8 

 
W=11.8 

 
W=17.8 

 
W=22.6 

 
W=11.8 

 
W=9.5 

 
W=49.9 

 
W=20 

 
L=21.6 

 
L=21.6 

 
L=32.4 

 
L=43.2 

 
L=21.64 

 
L=21.6 

 
L=49.9 

 
L=20 

s (μm) for 
Sensing 
Contacts  

 
S=11 

 
S=11 

 
S=16 

 
S=20.7 

 
S=11 

 
S=1.5 

 

 
S=2.3 

 

 
S=2.3 

 
Geometrica

l 
Correction 
Factor (G) 

 
0.913 

 
0.913 

 
0.912 

 
0.924 

 
0.913 

 
0.87 

 
0.76 

 
0.73 

L/W 1.83 1.83 1.82 1.91 1.83 2.27 1 1 
W/L 0.54 0.54 0.55 0.52 0.54 0.44 1 1 
s/W 0.932 0.932 0.898 0.915 0.932 0.157 0.04 0.115 

 
The absolute sensitivity of the eight cells as a function of the biasing current, between 
0-2 mA, is represented in Fig. 4. 
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Fig. 4 The measured absolute sensitivity (V/T) of the eight cells as a function of the biasing 

current (A) 
 

Measurements were made for a perpendicular magnetic field of B=0.497 T and current 
sweeping between 0-2 mA. The cells behavior with emphasis at 1 mA is summarized 
in Table 2. 

Table 2  
Measured vs. computed values for certain parameters of the Hall Cell 

Geometry 
Type 

Basic Low-
doped 

L XL 45 Deg Narrow 
Contacts 

Borderless Square 

Absolute 
Sensitivity 

(V/T) at 
Ibias=1 mA 

 
0.0807 

 
0.3392 

 
0.0804 

 
0.0806 

 
0.0807 

 
0.0822 

 
0.0325 

 
0.0884 

Measured 
VHall (mV) 
at Ibias=1 

mA 

 
40.10 

 
168.58 

 
39.95 

 
40.05 

 
40.10 

 
40.85 

 
16.15 

 
43.93 

Computed 
VHall (mV) 

as a 
function of 

G 

 
39.96 

 
150.29 

 
39.91 

 
40.44 

 
39.96 

 
38.07 

 
33.26 

 
31.95 
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Power 
Dissipated 
(mW) at 

Ibias=1 mA 

 
2.302  

 
5.606 

 
2.202 

 
2.202 

 
2.102 

 
2.503 

 
1.301 

 

 
4.905 

Computed 
power 

(mW) as a 
function of 
VHall and G 

 
1.999 

 
7.288 

 

 
1.949 

 
2.014 

 
1.999 

 
2.437 

 
1.072 

 
1.072 

 
 Further on, the graph of the estimated versus measured Hall voltage (mV) is 
presented, as well as the power dissipated within the device, for Ibias=1 mA and a 
perpendicular magnetic field B=0.497 T. 
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Fig. 5 Measured vs. estimated values for VHALL(mV) (a) and power dissipated (mW) within the 
device (b) for Ibias=1 mA 

 
For correcting the resistance with the presence of the magnetic field, we used:  

)1( 22
0 BRR μ+=       (9) 

  After calculations, we obtained an increase of 1.0012 for the resistance in the 
presence of magnetic field B=0.497 T.   
  From [1], it is possible to evaluate the highest Hall voltage that can be obtained 
for different situations that will depend on how the device is monitored. For instance, 
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imposing the bias current (assuming a long device, i.e. L/W>3), imposing the input 
voltage (which requires a rather short device, L/W < 0.1), and fixing the power 
(requiring L/W≈1.3-1.4). 

Analysis of the geometrical correction factor behavior  
Using MATHEMATICA 7.0, the geometrical factor G is plotted as a function of 

the length to width ratio L/W and Hall angle, θH.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 
(b) 

Fig. 6 Representation of the Geometrical correction factor (G), as a function of L/W and Hall 
angle, θH, for 0.85 < L/W < 3 (a) and 0.85 < L/W < 5 (b) 

 
  G presented in Eq. (4) will be interpreted in terms of physical meaning, therefore 
L/W will be evaluated up to 5. In general, for L/W >3, the Hall plate is considerate 
infinitely long, but we decided to see what happens for 3< L/W<5. 
  As we can see on Figure 6, for 0.85 < L/W < 3, the geometrical correction factor 
has a maximum value of 0.98 obtained for L/W=3 and θH=0.45 radians. For 0.85 < 
L/W < 5, the maximum of G is 0.99 and is obviously obtained, due to the behavior of 
the curve, for the maximum Hall Angle θH=0.45 radians and at maximum ratio L/W=5. 
We observed that for 3< L/W<5, the upper limit of G begins to rapidly increase, from 
0.98 to 0.99, but it’s only after L/W>5 when G begins to rapidly approach 1. 

Indeed, the mathematical limit of G  
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If we plot the geometrical correction factor as before, but we take L/W to start 
from 0, we obtain a point of inflexion, with a point of minimum at 0.85 and a 
decreasing behavior of G with respect to L/W in the range (0, 0.85]. This can be 
considered as the limit of validity of relation written in Eq. (10).  
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Fig. 7 The presence of the inflexion point close to L/W=0.85 

 
  If we include the length of the sensing contacts, we obtain the following 
simplified expression for the geometrical correction factor 
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which is valid if L/W >1.5 and is sensing contacts are relatively small, namely s/W < 
0.18.  

We shall try to find the maximum of the sensitivity, S. 
Analytical calculus of the maximum sensitivity as a function of L, W and of 

the sensing contacts length, s 
Using Eq. (6), we write further on 

dGISdS biasI=   (12) 

where dG is the differential of the geometrical factor, written in Eq. (11), more 
precisely 
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The partial derivatives of G with respect to each variable are the following: 
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  For finding an extremum of a function f, we assume a domain A that is open and 
that f is of class C2 over A. We consider a point a of A and we denote the Hessian 
matrix of f at point a by )(2 af∇ . 

If 0)( =∇ af and if )(2 af∇ is negatively defined and f has a local maximum point 
at a. 
Conversely, if 0)( =∇ af and )(2 af∇ is positively defined, then f has a local 
minimum point at a. 
Therefore, in our case, G has a point of extremum, a, when  
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  To decide whether the extremum point is a maximum or a minimum the second 
order derivatives should be investigated. The sign of the following determinant must 
therefore be evaluated. 
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Solving by hand the above system for finding the extrema, we find out that G has no 
maximum. Therefore, it seems that there is no way to maximize G unless the ratio L/W 
goes to infinity. MATHEMATICA 7.0 was used to find the maximum value (in this 
case the upper limits) for G for the certain physical intervals investigated, with the best 
accepted error by the software.  

Numerical values obtained with MATHEMATICA 7.0, for the maximum 
absolute sensitivity 
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Fig. 8 Variation of the geometrical correction factor G as a function of L/W and s/W 

 
Using MATHEMATICA 7.0, we find that optimized values for L/W and s/W, over 

the interval analyzed giving a geometrical factor close to 1 are.  
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  (19)
 This is consistent with the fact that the maximum geometrical correction factor 
G=1 is obtained for infinitely long Hall devices with point-like sensing contacts.    
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  In terms of the eight Hall cells analyzed, seven of them have a carrier 
concentration n1, but the lightly-doped cell has a carrier concentration n2 four times 
lower than n1. Since the carrier concentration n2 is four times lower than n1, we obtain 
an absolute sensitivity four times higher. 
  Assuming that the biasing current is the same, we can calculate the maximum 
sensitivity. Then, using G=1 and the technological parameters we obtain the following 
theoretical maximum absolute sensitivities for the different doping concentrations with 
Ibias=1 mA. 

22max,

11max,

/33.0

/088.0

nforTVS

nforTVS

n

n

=

=
 (21) 

  The proposed global optimization methodology could be used to find optimum in 
Hall devices where additional parasitic effects could also impact the sensitivity (doping 
homogeneity, strain…). The maximization procedure for the geometrical factor and 
absolute sensitivity could be applied for finding extrema points of functions with 
constraints. For example, if we have a certain available surface of Si at our disposal, 
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fixing therefore the value of A=LW, and having a smin imposed by the technology  for 
the sensing contacts, we could be thinking about finding W or L giving us a maximum 
sensitivity (by maximizing G) in this context. In this way, we end up with one variable. 
This procedure that could guide the designer into tailoring the Hall cell dimensions.  

  Therefore, Eq. (11) can be rewritten as  
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  Keeping constant the contact size provided by the technology (in our case smin 
=0.35 μm) and having at our disposal a certain area of Si, meaning fixed A, we proceed 
at maximizing G, now a function of only one variable W, imposing these constraints. 
Further on, in Figure 9, the variation of L/W with respect to the area A, for different 
contact sizes, s, which assures a maximum correction factor G, is plotted.  
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Fig. 9 Variation of L/W with respect to the area A, for different contact  

sizes s, assuring the maximum correction factor G 
 

Some of the 0.35 μm CMOS Si technology parameters in which the cells were 
integrated, are summarized in the table below. The N-well doping concentration is 
usually a Gaussian, but the values of n1 and n2 are taken close to the center of the 
Gaussian. The value of n2 corresponds to a lightly doped N-well. 
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Table 3 
Technology parameters of interest 

Parameter name Symbol Units Value 

Mobility μ m2V-1s-1 0.0715 

Carriers Concentration 
for N-well 

n1 m-3 8.16e22 

n2 m-3 2.17e22 

Thickness of N-well t m 1e-6 

 

5. Conclusions 

  A series of eight different shapes was integrated in 0.35 μm CMOS Si technology. 
A device level analysis of the Hall cell geometries, in terms of sensitivity, VHALL, 
power dissipated, etc. was performed. Each structure was geometrically characterized 
by the L/W, s/W ratio and geometrical correction factor, G. The impact of the 
geometrical parameters and how these affect the device performances was studied.  
 With the proposed technology, a maximum absolute sensitivity Smax,n1=0.088 V/T 
was obtained with the carrier concentration n1 and Smax,n2=0.33 V/T for lightly doped 
N-wells, with a carrier concentration n2. As the absolute sensitivity is proportional to 
G, cells with G close to unity will assure obtaining the maximum absolute sensitivity.  
  MATHEMATICA 7.0 was used for evaluating the maximum values of the 
geometrical correction factor, for the two expressions, both in terms of L/W, θH and 
L/W and s/W respectively, for the intervals imposed by the physical interpretation of 
Hall devices. 

For 0.85 < L/W < 3, the geometrical correction factor has a maximum value of 
0.98 obtained for L/W=3 and θH=0.45 radians. For 0.85 < L/W < 5, G approaches 0.99. 
For values of L/W >5, the geometrical factor begins to asymptotically tend to 1. The 
geometrical correction factor G begins to asymptotically tend to 1, for infinitely long 
devices (L/W > 5) with point-like sensing contacts (s→0).  

Measurements versus simulations were investigated, for all eight cells, in terms of 
VHALL and power dissipated. Because the cells were measured with an automated 
system, the same biasing conditions were applied to all the 8 cells. A biasing current 
between 0-2 mA, together with a compliance voltage for the current source of 5 V, 
was sufficient for testing the majority of cells, but for the low doped and square, 
saturation begins to appear for higher biasing currents. However, for the absolute 
sensitivity curves for these two cells, an extrapolation was done between 1 and 2 mA 
of biasing current. Due to the high values of the resistances for the low-doped cells 
(approximately 5 kΩ) the values for the measured versus estimated power dissipated 
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show some discrepancies, due to the effective saturation that might appear when 
biasing the cells with higher currents. 
 VHALL has an average value of 40 mV for Ibias=1 mA and B=0.497 T, with a value 
four times higher for lightly doped N-wells. For the tested geometries, the highest 
Hall voltage was obtained with a given bias current, if a Hall device was long, let’s 
say with L/W≈2. 
 The proposed maximization procedure for the geometrical correction factor and 
subsequent sensitivity maximization was used for guiding the designer in finding the 
optimum dimensions (W, L) for the Hall cell, subject to some technological 
constraints (imposed sensing contact size) and Si surface availability. 
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