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CONSTITUTIVE MATERIAL LAWS IN THE 
MULTIFRACTAL THEORY OF MOTION (PART II) 

Stefana AGOP1, Maria-Alexandra PAUN2*, Costica BEJINARIU1, Tudor-Cristian 
PETRESCU3, Cristina Marcela RUSU4, Alin Marian CAZAC1, Catalin-Gabriel 
DUMITRAS5, Adrian-Constantin HANGANU5, Vladimir-Alexandru PAUN6, 
Maricel AGOP4,8, Viorel-Puiu PAUN7,8 

In the present paper, several properties of the stress/strain tensors are 
presented. More precisely, various operational procedures (algebraic and 
differentiable procedures, variational principles, harmonic mappings etc.) and their 
physical implications are highlighted (synchronization group between the structural 
units of any material structure, various types of stresses fields propagation through 
functionalities such as period doubling, modulation etc.).  

Keywords: multifractal Theory of Motion, Schrödinger scenario, Madelung 
scenario, multifractal tensor, multifractal constitutive material laws 

1. Introduction 

In a recent paper [1], using the Fractal Theory of Motion in the Madelung 
Scenario [2,3], the presence of a permanent interaction between structural units of 
any complex system and a multifractal medium was shown. Therefore, the 
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description of the multifractal medium through a multifractal tensor permits the 
obtainment of material constitutive laws. Additionally, particular types of material 
constitutive laws are discussed: strains exist even when no stresses are applied to 
the material, stresses which can be viewed as intrinsic or pure material properties 
(for example, Bell’s constitutive laws for metallic materials). It is mentioned that 
the existence of the multifractal medium can be fundamented through the cosmic 
radiation background and the electromagnetic field in the Maxwell form.  

In the present paper, several properties of the stress/strain tensors are 
presented. More precisely, various operational procedures (algebraic and 
differentiable procedures, variational principles, harmonic mappings etc.) and their 
physical implications are highlighted. 
 

2. Algebraic properties induced by the stress/strain tensors  
 

In continuum problems, it is of great importance the so-called quadric 
equation characteristics of a 3 × 3 matrix representing stresses or strains. That 
equation contains all the information related to the spatial distribution of the 
physical quantity represented by the respective matrix. To describe that distribution, 
a special reference system is needed any point in space, reference system generated 
by the eigenvectors of the matrix of considered physical quantity. Because this 
matrix is usually symmetric, its eigenvectors are mutually perpendicular. If the 
quantity is defined at any point in space, then any point from space is endowed with 
such an orthogonal reference system, which thus receives physical meaning through 
the quantity that the matrix represents. Indeed, in this system of reference there are 
always three numbers with physical meaning that characterize its origin, and these 
are the eigenvalues of the matrix. They uniquely characterize that point and, 
because they are the roots of a cubic equation (the so-called secular equation of the 
stress tensor), they can be taken in space as generalized elliptical coordinates ([4]).  

In such a context, let it be considered the so-called secular equation of the 
stress tensor, in the so-called binomial form (i.e. the cubic equation): 

𝑎𝑎0𝑥𝑥3 + 3𝑎𝑎1𝑥𝑥2 + 3𝑎𝑎2𝑥𝑥 + 𝑎𝑎3 = 0 (1) 

and it is assumed that the numbers 𝑎𝑎𝑘𝑘 are real, representing by 𝑎𝑎0 the possibility to 
adjust coefficients to take into account the arbitrariness allowed by the relationships 
between roots and coefficients. This fact makes the coefficients of equation (1) true 
homogeneous coordinates in a space three-dimensional, which helps not only to 
associate a 2 × 2 matrix to cubic, but also to characterize a specific group of 
movements. There also exists the possibility to consider the roots of the cubic 
equation as a special case of vector coordinates, which helps to interpret the group. 

Equation (1), according to the mathematical methodology from [5,6] admits 
the real roots:  
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𝑥𝑥1 =
ℎ + ℎ∗ ⋅ 𝑘𝑘

1 + 𝑘𝑘
,  𝑥𝑥2 =

ℎ + 𝜀𝜀 ⋅ ℎ∗ ⋅ 𝑘𝑘
1 + 𝜀𝜀 ⋅ 𝑘𝑘

,  𝑥𝑥3 =
ℎ + 𝜀𝜀2 ⋅ ℎ∗ ⋅ 𝑘𝑘

1 + 𝜀𝜀2 ⋅ 𝑘𝑘
 (2) 

with ℎ,ℎ∗ the roots of the Hessian: 

Δ = (𝑎𝑎0𝑎𝑎1 − 𝑎𝑎1𝑎𝑎2)2 − 4(𝑎𝑎0𝑎𝑎2 − 𝑎𝑎12)(𝑎𝑎1𝑎𝑎3 − 𝑎𝑎22) (3) 

and 𝑘𝑘 a complex factor of unity modulus and  𝜀𝜀 ≡ (1 + 𝑖𝑖√3)/2 the cube root of the 
unit different from the unit itself. It is appropriate to give a physical and geometric 
interpretation of the pure external factor 𝑘𝑘, which appears when it is attempted to 
build the cubic having its Hessian ready to use. Let it be considered the vector of 
components 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 as before. This vector is in relation to a special group [5] 
which will be mentioned later, but it represents a real spatial situation, which is 
revealed when the three roots are proper values of a symmetric matrix. Thus, the 
eigenvalues of the matrix can be represented by a column matrix: 

|𝑥𝑥⟩ ≡ �
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
� (4) 

Thus, any eigenvalue of a matrix is the component of a vector along the own 
appropriate direction. It is possible to decompose this vector in relation to the plane 
that cuts the axes of the reference system at points located at a distance of one unit 
from the origin. The standard vector is the normal to that plane. It is known as the 
octahedral plane, since it represents a face of an octahedron in space. The normal 
component on this plane of vector is given by: 

|𝑥𝑥𝑛𝑛⟩ ≡ |𝑛𝑛⟩⟨𝑛𝑛 ∣ 𝑥𝑥⟩

=
1
√3

�
1
1
1
� ⋅

1
√3

(1,1,1) ⋅ �
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
� =

𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3
3

�
1
1
1
� (5) 

In (5), |𝑛𝑛⟩ is the unit vector normal to the plane. The component from the 
octahedral plane (or tangent) of the vector (4) is then given by 

|𝑥𝑥1⟩ ≡ |𝑥𝑥⟩ − |𝑥𝑥𝑛𝑛⟩ =
1
3
�

2𝑥𝑥1 −𝑥𝑥2 −𝑥𝑥3
2𝑥𝑥2 −𝑥𝑥3 −𝑥𝑥1
2𝑥𝑥3 −𝑥𝑥1 −𝑥𝑥2

�. (6) 

This latter vector, in engineering applications, is also known as octahedral 
shear vector. It allows the interpretation of the complex number 𝑘𝑘 introduced from 
external considerations earlier – see (2). For this, let it be noted that, by the 
mathematical methodology from [5,7,8], for the cubic (1), it is possible to give the 
binomial coefficients in relation to the quantities ℎ,ℎ∗ and 𝑘𝑘, up to an arbitrary 
factor, through relationships 
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𝑎𝑎0 = 1 + 𝑘𝑘3,  𝑎𝑎1 = −(ℎ + ℎ∗ ⋅ 𝑘𝑘3),
𝑎𝑎2 = ℎ2 + ℎ∗2 ⋅ 𝑘𝑘3,  𝑎𝑎3 = −(ℎ3 + ℎ∗3 ⋅ 𝑘𝑘3).

 (7) 

From this identification, by direct calculation 

1
3
�  𝑥𝑥1 =

ℎ + ℎ∗ ⋅ 𝑘𝑘3

1 + 𝑘𝑘3
 ∴ |𝑥𝑥𝑡𝑡⟩ =

(ℎ − ℎ∗)𝑘𝑘
1 + 𝑘𝑘3

�
𝑘𝑘 − 1

𝜀𝜀(𝜀𝜀𝜀𝜀 − 1)
𝜀𝜀2(𝜀𝜀2𝑘𝑘 − 1).

� (8) 

Let it be taken as reference in the octahedral plane the vector corresponding 
to 𝑘𝑘 = 1, which corresponds to the case when the cubic roots (2) are determined 
only by the Hessian roots, without any arbitrariness [9-12]. In this case, for the shear 
part of the vector 

|𝑥𝑥10⟩ =
(ℎ − ℎ∗)

2
�

0
𝜀𝜀(𝜀𝜀 − 1)
𝜀𝜀2(𝜀𝜀2 − 1)

� (9) 

and it is possible to calculate the angle between this vector and a generic shear 
vector with 𝑘𝑘 ≠ 1, by the geometric formula: 

cos 𝜃𝜃 =
⟨𝑥𝑥𝑡𝑡0 ∣ 𝑥𝑥𝑡𝑡⟩

�⟨𝑥𝑥𝑡𝑡0 ∣ 𝑥𝑥𝑡𝑡0⟩⟨𝑥𝑥𝑡𝑡 ∣ 𝑥𝑥𝑡𝑡⟩
 (10) 

Using (8) and (9), the factors of this equation are 

⟨𝑥𝑥𝑡𝑡0 ∣ 𝑥𝑥𝑡𝑡⟩ = −
3(ℎ − ℎ∗)2𝑘𝑘

2(1 + 𝑘𝑘3) (𝑘𝑘 + 1),

⟨𝑥𝑥𝑡𝑡 ∣ 𝑥𝑥𝑡𝑡⟩ = −6𝑘𝑘
(ℎ − ℎ∗)2𝑘𝑘2

(1 + 𝑘𝑘3)2 ,  ⟨𝑥𝑥𝑡𝑡0 ∣ 𝑥𝑥𝑡𝑡0⟩ = −6
(ℎ − ℎ∗)2

22

 (11) 

so that (10) becomes 

cos 𝛼𝛼 ≡
1
2
�√𝑘𝑘 +

1
√𝑘𝑘
�. (12) 

It is observed that, if the Hessian does not uniquely determine the respective 
cubic, at least when it has complex roots it underlines a family of cubics, with the 
roots depending on a single parameter [13-17]. This parameter results from the 
orientation angle of the octahedral shear vector in the octahedral plane from a given 
point in space. 

The benefit of the above-mentioned method in the characterization of the 
cubic equation is especially physically. As noted above, in problems of physics and 
engineering, the issue is about quantities that can be taken as coefficients of the 
Hessian associated with a cubic (in particular, the cubic (1)), something much more 
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encountered than dealing with the roots of the cubic itself. The general reasoning is 
that in the case of movements in a continuum it is rare to discern a located cause 
that can be associated with a force vector as in material point mechanics. Rather, it 
can be accepted that, at a given point in a continuum, what is done feels right as the 
cause of a movement is a certain average of influences from all possible directions. 
If those actions are characterized by a tensor of stress, or those movements through 
a strain tensor, which can also be observed and measured, they are actually the 
components of the tensor in a given direction or on a given plane [17-21]. Let it be 
referred to a certain plane of unity normal 𝑛̂𝑛 through a point of the considered 
continuum. The component of the tensor 𝝈𝝈 - which can represent either stresses or 
strains - along the normal of this plane is calculated according to the formula 

𝜎𝜎𝑛𝑛 = 𝜎𝜎𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑛𝑛𝑗𝑗  (13) 

In the same way, the component of the tensor in this plane will be given by 

𝜎𝜎𝑡𝑡2 ≡ 𝜎𝜎2 − 𝜎𝜎𝑛𝑛2 = (𝜎𝜎2)𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑛𝑛𝑗𝑗 − �𝜎𝜎𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑛𝑛𝑗𝑗�
2
 (14) 

These equations are valid in the idea that the tensor has associated in each 
direction a vector defined through the relationship 

𝜎𝜎𝑘𝑘 = 𝜎𝜎𝑘𝑘𝑘𝑘𝑛𝑛𝑙𝑙 (15) 

Therefore, a tensor is defined here as a linear application between the unit 
sphere and the set of vectors in general. Referring to the previously used frame, 
these equations can be written in the form 

𝜎𝜎𝑛𝑛 = 𝑥𝑥1𝑛𝑛12 + 𝑥𝑥2𝑛𝑛22 + 𝑥𝑥3𝑛𝑛32

𝜎𝜎𝑡𝑡2 = 𝑥𝑥12𝑛𝑛12 + 𝑥𝑥22𝑛𝑛22 + 𝑥𝑥32𝑛𝑛32 − (𝑥𝑥1𝑛𝑛12 + 𝑥𝑥2𝑛𝑛22 + 𝑥𝑥3𝑛𝑛32)2 (16) 

If now it is written 

𝑛𝑛1 = sin 𝜃𝜃cos 𝜙𝜙,  𝑛𝑛2 = sin 𝜃𝜃sin 𝜙𝜙,  𝑛𝑛3 = cos 𝜃𝜃, (17) 

where 𝜃𝜃 and 𝜙𝜙 are the usual spherical angles, it is possible to define the spatial 
average of some quantity 𝑄𝑄(𝝈𝝈), characteristic of the considered tensor, by the 
formula 

𝑄𝑄‾(𝝈𝝈) =
1
Ω
�  𝑄𝑄(𝝈𝝈)𝑑𝑑Ω𝑛𝑛 (18) 

where Ω is the solid angle around the given point and 𝑑𝑑Ω𝑛𝑛 is the elementary solid 
angle relative to the direction 𝑛̂𝑛, which are given by the relations 

Ω = 4𝜋𝜋,  𝑑𝑑Ω𝑛𝑛 = sin 𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃 (19) 

Applying this method to the quantities from equation (16) above, it is 
obtained [5]: 
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𝜎𝜎𝑛𝑛  =
1
3

(𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3)

𝜎𝜎𝑡𝑡2  =
1

15
[(𝑥𝑥1 − 𝑥𝑥2)2 + (𝑥𝑥2 − 𝑥𝑥3)2 + (𝑥𝑥3 − 𝑥𝑥1)2]

 (20) 

The first of these expressions is obviously the magnitude of the normal 
component of the vector (4), and the second is, up to the factor of 1/5, the square 
of the magnitude of the octahedral shear vector [21-23]. These quantities are 
directly related to the roots of the cubic Hessian representing the secular equation 
of the tensor in question.  

3. Differentiable properties induced by the stress/strain tensors  

A simple transitive group containing real parameters can be built by making 
use of the values of ℎ, ℎ∗ and 𝑘𝑘 from (2). The fundament of the theory is the notion 
that the transitive simple group with three real parameters [7,8] 

𝑥𝑥𝑗𝑗 ↔
𝑎𝑎𝑥𝑥𝑗𝑗 + 𝑏𝑏
𝑐𝑐𝑥𝑥𝑗𝑗 + 𝑑𝑑

,  𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 ∈ 𝑅𝑅 (21) 

where 𝑥𝑥𝑗𝑗 are the cube roots previously mentioned, produces a simple transitive 
group with real parameters for the complex variables of ℎ, ℎ∗ and 𝑘𝑘: 

ℎ ↔  
𝑎𝑎ℎ + 𝑏𝑏
𝑐𝑐ℎ + 𝑑𝑑

,  ℎ∗ ↔  
𝑎𝑎ℎ∗ + 𝑏𝑏
𝑐𝑐ℎ∗ + 𝑑𝑑

,  𝑘𝑘 ↔  
𝑐𝑐ℎ∗ + 𝑑𝑑
𝑐𝑐ℎ + 𝑑𝑑

⋅ 𝑘𝑘 (22) 

The structure of this group is of type SL (2, R) [5,7,8]. In accordance with 
[5], the generators of SL (2, R) can be determined as components of the Cartan 
frame, in the form: 

𝑑𝑑(𝑓𝑓)  ≡�  
∂𝑓𝑓
∂𝑥𝑥𝑘𝑘

𝑑𝑑𝑥𝑥𝑘𝑘

 = �𝜔𝜔1 �ℎ2
∂
∂ℎ

+ ℎ∗2
∂
∂ℎ∗

+ (ℎ − ℎ∗)𝑘𝑘
∂
∂𝑘𝑘
�

+2𝜔𝜔2 �ℎ
∂
∂ℎ

+ ℎ∗
∂
∂ℎ∗

� + 𝜔𝜔3 �
∂
∂ℎ

+
∂
∂ℎ∗

�� (𝑓𝑓)

 (23) 

The differential 1-forms 𝜔𝜔𝑘𝑘, as components of a Cartan coframe, can be 
determined by the following algebraic system:   

𝑑𝑑ℎ = 𝜔𝜔1ℎ2 + 2𝜔𝜔2ℎ + 𝜔𝜔3

𝑑𝑑ℎ∗ = 𝜔𝜔1ℎ∗2 + 2𝜔𝜔2ℎ∗ + 𝜔𝜔3

𝑑𝑑𝑑𝑑 = 𝜔𝜔1𝑘𝑘(ℎ − ℎ∗)
 (24) 
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Now, by identification of the right member of (23) through the standard 
scalar product of the group SL (2, R) 

𝜔𝜔1𝐵𝐵3 + 𝜔𝜔3𝐵𝐵1 − 2𝜔𝜔2𝐵𝐵2 (25) 

both the infinitesimal generators  

𝐵𝐵1  =
∂
∂ℎ

+
∂
∂ℎ∗

,  𝐵𝐵2 = ℎ
∂
∂ℎ

+ ℎ∗
∂
∂ℎ∗

𝐵𝐵3  = ℎ2
∂
∂ℎ

+ ℎ∗2
∂
∂ℎ∗

+ (ℎ − ℎ∗)𝑘𝑘
∂
∂𝑘𝑘

 (26) 

and the Cartan coframe  

𝜔𝜔1  =
𝑑𝑑𝑑𝑑

(ℎ − ℎ∗)𝑘𝑘
,  2𝜔𝜔2 =

𝑑𝑑ℎ − 𝑑𝑑ℎ∗

ℎ − ℎ∗
−
ℎ + ℎ∗

ℎ − ℎ∗
𝑑𝑑𝑑𝑑
𝑘𝑘

,

𝜔𝜔3  =
ℎ𝑑𝑑ℎ∗ − ℎ∗𝑑𝑑ℎ

ℎ − ℎ∗
+

ℎℎ∗

ℎ − ℎ∗
𝑑𝑑𝑑𝑑
𝑘𝑘

.
 (27) 

are obtained. 
In real values, given by ℎ ≡ 𝑢𝑢 + 𝑖𝑖𝑖𝑖,𝑘𝑘 =𝑒𝑒 𝑖𝑖𝑖𝑖, (26) and (27) can be expressed 

as 

𝐵𝐵1  =
∂
∂𝑢𝑢

,  𝐵𝐵2 = 𝑢𝑢
∂
∂𝑢𝑢

+ 𝑣𝑣
∂
∂𝑣𝑣

𝐵𝐵3  = (𝑢𝑢2 − 𝑣𝑣2)
∂
∂𝑢𝑢

+ 2𝑢𝑢𝑢𝑢
∂
∂𝑣𝑣

+ 2𝑣𝑣
∂
∂𝜙𝜙

𝜔𝜔1  =
𝑑𝑑𝑑𝑑
2𝑣𝑣

,  𝜔𝜔2 =
𝑑𝑑𝑑𝑑
𝑣𝑣
−
𝑢𝑢
𝑣𝑣
𝑑𝑑𝑑𝑑

𝜔𝜔3  =
𝑢𝑢2 + 𝑣𝑣2

2𝑣𝑣
𝑑𝑑𝑑𝑑 +

𝑣𝑣𝑣𝑣𝑣𝑣 − 𝑢𝑢𝑢𝑢𝑢𝑢
𝑣𝑣

 (28) 

Using the components (27) of the coframe, the invariant metric of SL (2, R) 
becomes 

d𝑠𝑠2 = −�𝑑𝑑𝑑𝑑 +
𝑑𝑑𝑑𝑑
𝑣𝑣
�
2

+
(𝑑𝑑𝑑𝑑)2 + (𝑑𝑑𝑑𝑑)2

𝑣𝑣2
 (29) 

in which the Beltrami metric is identified. For such a metric, the condition   

𝑑𝑑𝑑𝑑 = −
𝑑𝑑𝑑𝑑
𝑣𝑣

 (30) 

defines the parallelism angle in the Lobachevski plane, i.e. the connection form [23-
25]. 
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4. Harmonic mappings induced by the stress/strain tensors  

In accordance with the previous results, the problem of the stress field 
becomes the equivalent to the existence of harmonic mappings. Indeed, let it be 
considered the variational principle [25-27]:  

𝛿𝛿∭ �
𝛾𝛾𝑚𝑚𝑚𝑚∇𝑚𝑚ℎ∇𝑛𝑛ℎ∗

(ℎ − ℎ∗)2
� (𝑑𝑑3𝑥𝑥) = 0 (31) 

This variational principle corresponds to a harmonic map among the 
ordinary flat space of the metric 𝛾𝛾𝑚𝑚𝑚𝑚 and the complex half-plane containing the 
Poincaré metric: 

𝑑𝑑𝑠𝑠2 =
𝑑𝑑ℎ𝑑𝑑ℎ∗

(ℎ − ℎ∗)2
=
𝑑𝑑𝑑𝑑2 + 𝑑𝑑𝑑𝑑2

𝑣𝑣2
 (32) 

Now, the differential equation associated to the variational principle (31) is: 
(ℎ − ℎ∗)∇2ℎ = 2(∇ℎ)(∇ℎ) (33) 

and results that: 

ℎ = −𝑖𝑖
cosh𝜒𝜒 − 𝑒𝑒−𝑖𝑖𝑖𝑖 sinh𝜒𝜒
cosh𝜒𝜒 + 𝑒𝑒−𝑖𝑖𝑖𝑖 sinh𝜒𝜒

 

∇2 �
𝜒𝜒
2
� = 0 

(34) 

with 𝛼𝛼 being real. 

  
Fig. 1: 3D representation of real (Re(h)) for r=0.8  

and 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 = 24 

Fig. 2: Contour plot of real (Re(h)) for r=0.8  
and 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 = 24 

In what follows, the harmonic mapping modes are explained, based both on 
scale resolution [28] and temporal ordering. In the following figures, the 3D 
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representation and contour plot for the real (Re(h)) and imaginary (Im(h)) part of h 
are shown, together with the full representation of the signal (Se(h)), where 𝑟𝑟 =
𝑡𝑡𝑡𝑡𝑡𝑡ℎ �𝜒𝜒

2
�, 𝛼𝛼 = 𝜔𝜔𝜔𝜔 and 𝜔𝜔 is the pulsation of motion and 𝑡𝑡 is the time.  

  

Fig. 3: 3D representation of imaginary (Im(h)) for 
r=0.8 and 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 = 24 

Fig. 4: Contour plot of imaginary (Im(h))                   
for r=0.8 and 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 = 24 

  
Fig. 5: 3D representation of signal (Se(h)) for 

r=0.8 and 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 = 24 

Fig. 6: Contour plot of signal (Se(h)) for r=0.8             
and 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 = 24 

In Figures 1-6, three separate illustrations of the function which describes 
the explicit (Re(h)), implicit (Im(h)) and the measurable (Se(h)) factors are shown.  

When studying the influence of the external factors, by means of the control 
parameter r, it can be observed that diverse dynamics can be induced at various 
scale resolutions (ωmax) [29]. 
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Fig. 7: Time series of Re(h) for ω = 24 Fig. 8: Time series of Re(h) for ω 
= 31 

 
 

Fig. 9: Time series of Im(h) for ω = 24 Fig. 10: Time series of Im(h) for ω 
= 31 

 
 

Fig. 11: Time series of Se(h) for ω = 24 Fig. 12: Time series of Se(h) for ω 
= 31 

In Figures 7-12 the time-series of the three previously mentioned functions 
are illustrated, for a fixed control parameter, r = 0.8. This showcases a dynamic 
unperturbed by external factors, for ω = 24 and ω = 31. For example, the period 
doubling is more of a superposition of Re(h) and Im(h). This can be viewed as a 
classical oscillatory behavior, where different frequencies are reflected in the 
structure of the time series. It is also possible to identify quasi-chaotic, non-linear 
behaviors, for some systems – especially in the imaginary part.   
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Fig. 13: Reconstruction of the system attractors 
in the phase space for the Re(h),  ω = 24 

Fig. 14: Reconstruction of the system attractors in            
the phase space for the Re(h), ω = 31 

  
Fig. 15: Reconstruction of the system attractors 

in the phase space for the Im(h), ω = 24 

Fig. 16: Reconstruction of the system attractors in the 
phase space for the Im(h), ω = 31 

  
Fig. 17: Reconstruction of the system attractors 

in the phase space for the Se(h), ω = 24 

Fig. 18: Reconstruction of the system attractors in 
the phase space for the Se(h),   ω = 31 
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In order to illustrate the quasi-chaoticity/implicit chaos which can be 
identified, the attractors for all the time series from Figures 7-12 can be consulted 
in Figures 13-18. Some attractors appear to have converging trajectories (i.e. 
towards a certain area), while others appear to have diverging trajectories (i.e. 
outwards of their representation plane). These non-linear behaviors underline the 
implicit existence of quasi-chaoticity. 

5. Conclusions 

The main conclusions of the present paper are the following: 
i) Algebraic properties of the stress/strain tensors and their physical 

implications are presented. In such a context, if actions are characterized 
by a tensor of stress, or those movements through a strain tensor, which 
can also be observed and measured, they are actually the components of 
the tensor in a given direction or on a given plane. Such a situation is 
explained. 

ii) Differentiable properties of the stress/strain tensors and their physical 
implications are presented. It is shown that the existence of stress/strain 
cubics induces a particular group of SL (2, R)-type and moreover, a 
differentiable geometry associated to such a group (in the form of the 
differential 1-forms, of the differential 2-forms, of parallelism of 
direction in the Poincaré metrics etc.) becomes functional. In such a 
conjecture, SL (2, R) can behave as a synchronization group between 
the structural units of any material structure and various types of stresses 
fields propagation can be described. 

iii) Harmonic mappings properties of the stress/strain tensors and their 
physical implications are presented. The existence of a variational 
principle induces a harmonic mapping between the ordinary flat space 
and the complex half-plane possessing the Poincaré metric, situation in 
which various functionalities of the stresses fields are represented 
(period doubling, modulation etc.). 

iv) Usually, material constitutive laws are considered to have a semi-
empirical character, due to the inherent complexity of the interactions 
which take place within the materials (i.e. when a material is subjected 
to mechanical loading). As an example, plastic modelling of 
unidirectional composite materials can be described using the Drucker-
Prager model. Moreover, when discussing metal machining modelling, 
Johnson-Cook (JC), Modified Johnson-Cook, power law etc. are all 
models based on material constitutive laws. The present formalism 
allows the obtainment of various classes of material constitutive laws, 
which can potentially characterize several types of materials (metallic 
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materials, composite materials, shape memory alloys etc.), as well as 
machining/processing modelling. Such an approach - i.e. obtaining 
classes of material constitutive laws - could lead to the increase of 
mechanical performance of materials. It is noted that the analysis of 
"non-linearities" (based on harmonic mappings), which occur when a 
material is subjected to mechanical loading, make possible the 
explaining of various material constitutive laws. In a future paper, such 
a constitutive law will be explained for a particular class of materials. 
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