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CONSTITUTIVE MATERIAL LAWS IN THE
MULTIFRACTAL THEORY OF MOTION (PART II)
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In the present paper, several properties of the stress/strain tensors are
presented. More precisely, various operational procedures (algebraic and
differentiable procedures, variational principles, harmonic mappings etc.) and their
physical implications are highlighted (synchronization group between the structural
units of any material structure, various types of stresses fields propagation through
functionalities such as period doubling, modulation etc.).
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1. Introduction

In a recent paper [1], using the Fractal Theory of Motion in the Madelung
Scenario [2,3], the presence of a permanent interaction between structural units of
any complex system and a multifractal medium was shown. Therefore, the
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description of the multifractal medium through a multifractal tensor permits the
obtainment of material constitutive laws. Additionally, particular types of material
constitutive laws are discussed: strains exist even when no stresses are applied to
the material, stresses which can be viewed as intrinsic or pure material properties
(for example, Bell’s constitutive laws for metallic materials). It is mentioned that
the existence of the multifractal medium can be fundamented through the cosmic
radiation background and the electromagnetic field in the Maxwell form.

In the present paper, several properties of the stress/strain tensors are
presented. More precisely, various operational procedures (algebraic and
differentiable procedures, variational principles, harmonic mappings etc.) and their
physical implications are highlighted.

2. Algebraic properties induced by the stress/strain tensors

In continuum problems, it is of great importance the so-called quadric
equation characteristics of a 3 X 3 matrix representing stresses or strains. That
equation contains all the information related to the spatial distribution of the
physical quantity represented by the respective matrix. To describe that distribution,
a special reference system is needed any point in space, reference system generated
by the eigenvectors of the matrix of considered physical quantity. Because this
matrix is usually symmetric, its eigenvectors are mutually perpendicular. If the
quantity is defined at any point in space, then any point from space is endowed with
such an orthogonal reference system, which thus receives physical meaning through
the quantity that the matrix represents. Indeed, in this system of reference there are
always three numbers with physical meaning that characterize its origin, and these
are the eigenvalues of the matrix. They uniquely characterize that point and,
because they are the roots of a cubic equation (the so-called secular equation of the
stress tensor), they can be taken in space as generalized elliptical coordinates ([4]).

In such a context, let it be considered the so-called secular equation of the
stress tensor, in the so-called binomial form (i.e. the cubic equation):

apx3 + 3a;x?> + 3a,x +a; =0 (1)

and it is assumed that the numbers a,, are real, representing by a, the possibility to
adjust coefficients to take into account the arbitrariness allowed by the relationships
between roots and coefficients. This fact makes the coefficients of equation (1) true
homogeneous coordinates in a space three-dimensional, which helps not only to
associate a 2 X 2 matrix to cubic, but also to characterize a specific group of
movements. There also exists the possibility to consider the roots of the cubic
equation as a special case of vector coordinates, which helps to interpret the group.

Equation (1), according to the mathematical methodology from [5,6] admits
the real roots:
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with h, h* the roots of the Hessian:
A = (apa, — alaz)z —4(apa; — a%)(a1a3 - a22) (3)

and k a complex factor of unity modulus and € = (1 + iv/3)/2 the cube root of the
unit different from the unit itself. It is appropriate to give a physical and geometric
interpretation of the pure external factor k, which appears when it is attempted to
build the cubic having its Hessian ready to use. Let it be considered the vector of
components Xxq, X,, X3 as before. This vector is in relation to a special group [5]
which will be mentioned later, but it represents a real spatial situation, which is
revealed when the three roots are proper values of a symmetric matrix. Thus, the
eigenvalues of the matrix can be represented by a column matrix:

X1
lx) = <x2> 4
X3

Thus, any eigenvalue of a matrix is the component of a vector along the own
appropriate direction. It is possible to decompose this vector in relation to the plane
that cuts the axes of the reference system at points located at a distance of one unit
from the origin. The standard vector is the normal to that plane. It is known as the
octahedral plane, since it represents a face of an octahedron in space. The normal
component on this plane of vector is given by:

[x,) = In}n | x)

1 {1\ 1 T\ xtap sl (5)
) o () -5

In (5), |n) is the unit vector normal to the plane. The component from the
octahedral plane (or tangent) of the vector (4) is then given by

2x1 xz _.X3
lx1) = [x) = [xp) = §<2x2 —X3 —x1)- (6)
2X3 —X1 —Xy
This latter vector, in engineering applications, is also known as octahedral
shear vector. It allows the interpretation of the complex number k introduced from
external considerations earlier — see (2). For this, let it be noted that, by the
mathematical methodology from [5,7,8], for the cubic (1), it is possible to give the
binomial coefficients in relation to the quantities h, h* and k, up to an arbitrary
factor, through relationships
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a0:1+k3, a1=—(h+h*'k3),

7
a, =h?>+h*? k3, a3 = —(h3 + h*3 - k3). D
From this identification, by direct calculation
k-1
_h+h"- k3 h—h")k
3D, = ) = | k=D ®
e2(e’k —1).

Let it be taken as reference in the octahedral plane the vector corresponding
to k = 1, which corresponds to the case when the cubic roots (2) are determined
only by the Hessian roots, without any arbitrariness [9-12]. In this case, for the shear
part of the vector

0
e(e—1) 9)
e?(e?2-1)
and it is possible to calculate the angle between this vector and a generic shear
vector with k # 1, by the geometric formula:

(h—h")

x9) =

0
cos 6 = b | xe) (10)

\/(x? | xt?><xt | x¢)
Using (8) and (9), the factors of this equation are

3 h*)%k
(68 13y = — S5 e+ 1),
(xe 1) = — YOk (e 1 xg) = — T
so that (10) becomes
1 1
cos a = E(\/E + ﬁ) (12)

It is observed that, if the Hessian does not uniquely determine the respective
cubic, at least when it has complex roots it underlines a family of cubics, with the
roots depending on a single parameter [13-17]. This parameter results from the
orientation angle of the octahedral shear vector in the octahedral plane from a given
point in space.

The benefit of the above-mentioned method in the characterization of the
cubic equation is especially physically. As noted above, in problems of physics and
engineering, the issue is about quantities that can be taken as coefficients of the
Hessian associated with a cubic (in particular, the cubic (1)), something much more
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encountered than dealing with the roots of the cubic itself. The general reasoning is
that in the case of movements in a continuum it is rare to discern a located cause
that can be associated with a force vector as in material point mechanics. Rather, it
can be accepted that, at a given point in a continuum, what is done feels right as the
cause of a movement is a certain average of influences from all possible directions.
If those actions are characterized by a tensor of stress, or those movements through
a strain tensor, which can also be observed and measured, they are actually the
components of the tensor in a given direction or on a given plane [17-21]. Let it be
referred to a certain plane of unity normal 7 through a point of the considered
continuum. The component of the tensor o - which can represent either stresses or
strains - along the normal of this plane is calculated according to the formula

Oon, = Gl-jnl-n]- (13)
In the same way, the component of the tensor in this plane will be given by

2
O'tz = 0'2 — O'.,% = (az)ijnl-nj — (al-jnl-nj) (14)

These equations are valid in the idea that the tensor has associated in each
direction a vector defined through the relationship

Ok = Oy (15)

Therefore, a tensor is defined here as a linear application between the unit
sphere and the set of vectors in general. Referring to the previously used frame,
these equations can be written in the form

O = X1N2 + X135 + x3n5

(16)
of = xtn? + x2n5 + xin% — (xn? + x,n3 + x3n3)?
If now it is written
n,; = sin 6cos ¢, n, = sin Osin ¢, ny = cos 6, (17)

where 6 and ¢ are the usual spherical angles, it is possible to define the spatial
average of some quantity Q(a), characteristic of the considered tensor, by the
formula

_ 1
o =5 || ew@ada, (18)
where () is the solid angle around the given point and d{},, is the elementary solid
angle relative to the direction 71, which are given by the relations
Q = 4m, dQ, = sin 6d0d¢ (19)

Applying this method to the quantities from equation (16) above, it is
obtained [5]:
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1
O-TL =§(x1+x2 +x3)
) 0)
of = 15 [Cer — x2)% + (% — x3)% + (%3 — x1)?]

The first of these expressions is obviously the magnitude of the normal
component of the vector (4), and the second is, up to the factor of 1/5, the square
of the magnitude of the octahedral shear vector [21-23]. These quantities are
directly related to the roots of the cubic Hessian representing the secular equation
of the tensor in question.

3. Differentiable properties induced by the stress/strain tensors

A simple transitive group containing real parameters can be built by making
use of the values of h, h* and k from (2). The fundament of the theory is the notion
that the transitive simple group with three real parameters [7,8]

ax; +b
x]- A d )
cx; +d

ab,c,d €R (21)

where x; are the cube roots previously mentioned, produces a simple transitive
group with real parameters for the complex variables of h, h* and k:
ah+b ah*+b ch*+d
o ,h" o ko .
ch+d ch*+d ch+d

The structure of this group is of type SL (2, R) [5,7,8]. In accordance with
[5], the generators of SL (2, R) can be determined as components of the Cartan
frame, in the form:

0
an =) a—){;{dxk

k (22)

) ) )
— |l (h2— 1+ p2_—_ — W)k — 23
[‘“ (h g th gt h)kak> (23)
+2 2<ha+h* a>+ 3<a+ a)]
W \hap t RS T G T o )| D

The differential 1-forms w*, as components of a Cartan coframe, can be

determined by the following algebraic system:
dh = w'h? + 2w?h + w3
dh* = w'h*? + 20%h* + w3 (24)
dk = w'k(h — h*)
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Now, by identification of the right member of (23) through the standard
scalar product of the group SL (2, R)

w'B; + w3B; — 2w?B, (25)
both the infinitesimal generators
LI N
oh ~ 0h* oh oh* (26)

) ) )
By =Mt h? ot (= )k

oh oh*
and the Cartan coframe

dk dh—dh* h+ h*dk
w! =———— 2w? = — —,
(h—h"k h —h* h—h*k 27)
3 hdh* — h*dh hh* dk
w =

-k h-h k.
are obtained.
In real values, given by h = u + iv, k =e '?, (26) and (27) can be expressed

as
g 0 00
1 Ty T a Vov
d d
B; = (u? —vz)—+2uv—+2v—
¢ (28)
do dv u
w' =—, wt=——-—d¢
2 v v
5 u? 4+ v? vdu — udv
w =
2v

Using the components (27) of the coframe, the invariant metric of SL (2, R)
becomes

(du)? + (dv)?

ds? <d¢ + ) 3 (29)
in which the Beltrami metric is identified. For such a metric, the condition
du
dp = —— (30)

v

defines the parallelism angle in the Lobachevski plane, i.e. the connection form [23-
25].
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4. Harmonic mappings induced by the stress/strain tensors

In accordance with the previous results, the problem of the stress field
becomes the equivalent to the existence of harmonic mappings. Indeed, let it be
considered the variational principle [25-27]:

Y™V, hV, h*

5 [ _] d3%) = 0 31
) [ mes] @ G1)
This variational principle corresponds to a harmonic map among the

ordinary flat space of the metric y™" and the complex half-plane containing the
Poincaré metric:

dhdh* du? + dv?

ds? = = 32
S T th=n)? 2 (32)
Now, the differential equation associated to the variational principle (31) is:
(h — h*)V2h = 2(Vh)(Vh) (33)
and results that:
“cosh y — e “sinh y
cosh y + e"@sinh y (34)
X
2~ =
V2 ( 2) 0
with a being real.
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Fig. 2: Contour plot of real (Re(#)) for 7=0.8

Fig. 1: 3D representation of real (Re(%)) for =0.8 and w, ., = 24

and wWp,q, = 24

In what follows, the harmonic mapping modes are explained, based both on
scale resolution [28] and temporal ordering. In the following figures, the 3D
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representation and contour plot for the real (Re(%)) and imaginary (Im(/4)) part of /4
are shown, together with the full representation of the signal (Se(%)), where r =
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Fig. 3: 3D representation of imaginary (Im(%)) for
=0.8 and w4, = 24
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Fig. 5: 3D representation of signal (Se(#)) for
=0.8 and w4, = 24

wt and w is the pulsation of motion and t is the time.
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Fig. 6: Contour plot of signal (Se(k)) for =0.8
and Wy, = 24

In Figures 1-6, three separate illustrations of the function which describes
the explicit (Re(%)), implicit (Im(%)) and the measurable (Se(%)) factors are shown.
When studying the influence of the external factors, by means of the control
parameter r, it can be observed that diverse dynamics can be induced at various

scale resolutions (wmax) [29].
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In Figures 7-12 the time-series of the three previously mentioned functions
are illustrated, for a fixed control parameter, » = 0.8. This showcases a dynamic
unperturbed by external factors, for @ = 24 and @ = 31. For example, the period
doubling is more of a superposition of Re(4) and Im(/4). This can be viewed as a
classical oscillatory behavior, where different frequencies are reflected in the
structure of the time series. It is also possible to identify quasi-chaotic, non-linear
behaviors, for some systems — especially in the imaginary part.
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Fig. 13: Reconstruction of the system attractors the phase space for the Re(h), @ = 31

in the phase space for the Re(#), w =24
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Fig. 15: Reconstruction of the system attractors phase space for the Im(h), @ = 31

in the phase space for the Im(%), v =24

Fig. 18: Reconstruction of the system attractors in

Fig. 17: Reconstruction of the system attractors the phase space for the Se(h), @ =31

in the phase space for the Se(%), w =24
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In order to illustrate the quasi-chaoticity/implicit chaos which can be
identified, the attractors for all the time series from Figures 7-12 can be consulted
in Figures 13-18. Some attractors appear to have converging trajectories (i.e.
towards a certain area), while others appear to have diverging trajectories (i.e.
outwards of their representation plane). These non-linear behaviors underline the
implicit existence of quasi-chaoticity.

5. Conclusions

The main conclusions of the present paper are the following:

1) Algebraic properties of the stress/strain tensors and their physical
implications are presented. In such a context, if actions are characterized
by a tensor of stress, or those movements through a strain tensor, which
can also be observed and measured, they are actually the components of
the tensor in a given direction or on a given plane. Such a situation is
explained.

1) Differentiable properties of the stress/strain tensors and their physical
implications are presented. It is shown that the existence of stress/strain
cubics induces a particular group of SL (2, R)-type and moreover, a
differentiable geometry associated to such a group (in the form of the
differential 1-forms, of the differential 2-forms, of parallelism of
direction in the Poincaré metrics etc.) becomes functional. In such a
conjecture, SL (2, R) can behave as a synchronization group between
the structural units of any material structure and various types of stresses
fields propagation can be described.

1ii) Harmonic mappings properties of the stress/strain tensors and their
physical implications are presented. The existence of a variational
principle induces a harmonic mapping between the ordinary flat space
and the complex half-plane possessing the Poincaré metric, situation in
which various functionalities of the stresses fields are represented
(period doubling, modulation etc.).

v) Usually, material constitutive laws are considered to have a semi-
empirical character, due to the inherent complexity of the interactions
which take place within the materials (i.e. when a material is subjected
to mechanical loading). As an example, plastic modelling of
unidirectional composite materials can be described using the Drucker-
Prager model. Moreover, when discussing metal machining modelling,
Johnson-Cook (JC), Modified Johnson-Cook, power law etc. are all
models based on material constitutive laws. The present formalism
allows the obtainment of various classes of material constitutive laws,
which can potentially characterize several types of materials (metallic
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materials, composite materials, shape memory alloys etc.), as well as
machining/processing modelling. Such an approach - i.e. obtaining
classes of material constitutive laws - could lead to the increase of
mechanical performance of materials. It is noted that the analysis of
"non-linearities" (based on harmonic mappings), which occur when a
material is subjected to mechanical loading, make possible the
explaining of various material constitutive laws. In a future paper, such
a constitutive law will be explained for a particular class of materials.
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