
U.P.B. Sci. Bull., Series C, Vol. 87, Iss. 4, 2025 ISSN 2286-3540

MODEL FOR COMPETENCY-BASED TEST GENERATION
TO SUPPORT TEAM SELECTION USING GENETIC

ALGORITHMS

Nicolae Bold1, Ion Alexandru Popescu2

Within companies, research and government institutions, there
are frequent situations when work teams need to be formed in which mem-
bers are specialized in certain fields. For this specific context, the paper
proposes an automatic knowledge test generation model based on genetic al-
gorithms, used to assess the skills required for different roles in a team. In
this context, a model was designed, implemented, and tested using a database
of evaluation topics and a random selection of test items based on genetic
algorithms. This approach facilitates the efficient selection of team mem-
bers by generating knowledge assessment tests tailored to the competencies
required for each role. The items are organized into categories that corre-
spond to specific skills relevant to the positions within the team. Separate
sections describe the proposed model and the applied algorithms, while the
final section presents the results obtained from the model’s implementation.

Keywords: tests assessment, genetic algorithm, categories, generation

1. Introduction

The paper presents a model for automatic generation of knowledge as-
sessment tests based on genetic algorithms. The model is designed to evaluate
candidates’ competencies for specific roles within a team, supporting the se-
lection process rather than directly forming the team.

The proposed model aims to address the problem of selecting members
of a work team for projects, research activities, or other complex tasks that
require diverse expertise. Team members are expected to possess competencies
in specific domains relevant to the task at hand. The model is based on a
structured database of assessment items, organized into competency-specific
categories, and integrates mechanisms for generating role-specific evaluation
tests.

1Assistant, Department of Mathematics and Computer Science, Pitesti University Cen-
ter, National University of Science and Technology POLITEHNICA Bucharest, e-mail:
nicolae.bold@upb.ro

2PhD Student, Department of Mathematics and Computer Science, Pitesti University
Center, National University of Science and Technology POLITEHNICA Bucharest, e-mail:
alexionpoplescu@gmail.com

29

30 Nicolae Bold, Ion Alexandru Popescu

Details of the model are provided in Section 3. The test types were sepa-
rated to allow greater flexibility in selecting the algorithm used for generating
the evaluation tests. In addition, the section outlines the constraints applied
to the selection of test items, ensuring that they align with the competency
requirements of the team members.

The algorithm used for the model is presented in Section 4. It uses groups
of items, from each group a number (specified by the one who selects the team
members) of items is selected used to build the evaluation test. Then, the
implementation and testing of the model are presented in Section 6 of this
paper.

The main contribution of the paper is a flexible framework for gener-
ating role-adapted knowledge assessment tests using genetic algorithms. The
proposed model introduces a weighted role vector that aligns test item selec-
tion with the competencies required for each team role. Although the system
does not perform direct team formation, it supports the process by providing
competency-based evaluation results that can guide role assignment and team
composition. Instead of randomly generating tests, the proposed model builds
tests according to the requirements of each role in a team, based on a vector of
importance by domains. Furthermore, the test results are interpreted to rec-
ommend the allocation of candidates to specific roles, providing an automatic
and objective mechanism for building teams. This approach transforms the
test generator into an active tool for selecting and organizing human resources,
which is the original contribution of the paper.

2. Literature review

Automatic test generation using optimization algorithms has been widely
explored. Rahim et al. [1] and Popescu et al. [2] applied genetic algorithms for
selecting exam items under predefined constraints. Other authors, such as Tan
et al. [3] and Duan [4], proposed adaptive or personalized course generation.
However, these studies focus on learning and assessment at the individual
level. In contrast, the present work introduces a role-based configuration of
tests, aligning item selection with team role requirements rather than with
personal adaptation.

Generally, generating tests with certain restrictions refers to the assess-
ment of learning for courses, as referred in Rahim et al. [1]. For example,
models presented by Seman et al., [5], Bradley [6] and Popescu et al. [2] are
based on the selection of test items are presented that are similar to those used
by us in the model we present.

The selection of items is an issue that takes part in a larger group of
problems that need greater computational resources, where a lot of data must
be computed, such as research, economics (as shown by Horoias et al.), [7],
Popescu and Radulescu [8], banking (presented by Stefan and Tita)[9] or ed-
ucation (as shown by Šimić) [10], either teaching, learning (presented by Tan

Model for competency-based test generation to support team selection using genetic algorithms31

et al.) [3] or assessment (described by Yang) [11]. For the selection of items
to test the competencies of the work team members, we will use genetic algo-
rithms, because the number of items in the database can be very large, there
may be various restrictions and also the number of items in the tests can be
large, as preseneted in the study of Popescu et al. [12]. This does not al-
low the use of exponential algorithms. The results obtained in the paper of
Nutescu and Mocanu [13], Constantin et al.[14] and Popescu and Nastase [15]
and confirmed by our research show that classic or improved (as described by
Zhang et al. [16]) genetic algorithms are a good choice, according to Duan [4]
for solving this problem.

The type of items is the one used in the works of Nutescu and Mocanu
[13], Hamidi et al. [17] and Kolb [18] with certain modifications. The algorithm
used to extract the items from each group of items uses genetic algorithms and
is presented in Section 5. Variants of this algorithm for selecting data from a
database were used in works of Bobade et al. [19], Popescu and Nastase [20]
and Popescu et al.[2].

As for the formation of teams, representative works show that automatic
team formation can be approached through evolutionary optimization assisted
by reinforcement learning and person-job matching, like mentioned by Guo
et al. [21], through artificial intelligence tools that combine coalition genera-
tion, Bayesian learning and Belbin roles for heterogeneous teams, as presented
by Alberola et al. [22], respectively through multi-criteria goal programming
models that integrate human factors and AI acceptance in personnel allocation
in organizations, described in the works of La Torre et al. [23].

These approaches confirm that the integration of test generation with
role-based evaluation and intelligent allocation strategies forms a solid foun-
dation for developing automated systems that not only assess competencies
but also actively support the efficient and optimized formation of work teams.

3. Description of the model

3.1. Purpose

The purpose of the proposed model is to facilitate the rapid and efficient
selection of work team members, based on the specific competencies required
for each domain, through an automated system based on knowledge assess-
ment. The model uses a database of assessment topics and applies genetic
algorithms to generate role-adapted tests that measure candidates’ skills in a
wide range of domains. The term ”role-adapted test” refers to the fact that the
structure of the test is adapted to the unique configuration of skills required
by a specific team or role — not to the individual characteristics of a given test
taker. These tests are tailored to assess the competencies relevant to the team
positions, thus ensuring an optimized, dynamic and flexible selection process.
Through the random and diversified selection of questions, the genetic algo-
rithm optimizes the tests, guaranteeing a complete and balanced assessment

32 Nicolae Bold, Ion Alexandru Popescu

of skills, contributing to the formation of effective work teams that meet the
specific requirements of each project or organization.

Initially, the model indirectly contributes to team formation by generat-
ing specialized tests for each role, but by the addition of several aspects — such
as defining importance vectors and evaluating scores by category — the model
also allows for direct and assisted team formation, by allocating candidates
based on compatibility with role profiles.

3.2. An example

The model uses a database in which assessment items are grouped by
categories. For example, if the work team has to create an IT application,
we could have the following item groups: design and specifications, databases,
algorithms, graph theory, security, testing and validation. In this concrete
scenario, a company needs to assemble a work team to develop a custom IT
application for managing internal resources. The team must cover the men-
tioned areas of competence. The global process would comprise the next steps:
Step 1: the team leader defines the number of test items per competence cat-

egory, for example:
m = 2design + 2databases + 3algorithms + 1graphtheory + 2security + 2testing, to-
taling 12 items.

Step 2: the genetic algorithm is run for each category in order to obtain the
set of items selected for a category. In this example, the genetic component
is run for six times, each time for each of the six categories.

Step 3: the test is formed from the union of all the six obtained sets of items.
The obtained test would be optimized related to the score of the items.
The optimisation is related to a lower difference between the lowest and
highest score of an item within a category, in order to express consistency
of assessment within a category.

Step 4: the test is applied to the potential members of the team, with focus
on scoring results on each of the domain.

Step 5: a scoring system would consist in the determination of the score of
each category. In the example shown in Table 1, the scoring results would
show that the candidate is the most proficient in Databases and Testing
categories, making one’s competencies valuable in these categories within
the process.
An item in the database will contain: item statement, answer options

(choices), the correct answer, the score and the category the item belongs to.
An example of an item would be:

• item statement: How many nodes does a tree with 100 edges have?
• choices: A) 100 B) 99 C) 101 D) 102
• the correct answer: C) 101
• the score: 2 points
• category: graph theory

Model for competency-based test generation to support team selection using genetic algorithms33

Table 1. Example of scoring system for a candidate perfor-
mance

Category Items Max Score Example Score Score (%)
Design 2 10 7 70%
Databases 2 10 9 90%
Algorithms 3 15 12 80%
Graph Theory 1 5 3 60%
Security 2 10 7 70%
Testing 2 10 9 90%
Total 12 60 47 78.3%

The model user must choose the groups used to generate the test and
how many items to use from each group.

In order to further emphasize the teamwork formation, we will automate
the choosing of the number of items appropriate for a specific role. In this
matter, for a given role within the team, a weights vector wr will be deter-
mined for that specific role. In our example, the role r would be ”Full Stack
Developer” and each component of the vector would have values comprised
between 0 and 10. Continuing the example, we would have the weights vector
wr = (6, 6, 9, 3, 6, 6), corresponding to the given assessment categories C. The
next steps of the determination of the configuration of items would consist in:

• the determination of the total weight, made by summing up the values of
the wr vector:

∑
wr = 6 + 6 + 9 + 3 + 6 + 6 = 36;

• the distribution of the number per category, made by the calculation of a

simple proportion: mk =
⌊

wrk∑
wr

·m
⌋
;

• the distribution of the left empty places (if existent).
After the appliance of the steps, we would obtain the next distribution

mk = (2, 2, 3, 1, 2, 2).

3.3. Mathematical description

The model is comprised of several components related to an assessment
environment. In this matter, we are referring to a database of items and a set
of categories, a mapping function, a feature vector for an item and a feature
vector for a category, an item selection algorithm and an optimization function,
which determines the score obtained by a candidate. The description of the
mathematical model contains the next elements:

• data sets:
– I, I = {i1, i2, ..., iN}: the set of items. An item is a specific form of
evaluation means, such as multiple-choice, essay, short-answer etc..
The total number of items in this set is N . In this matter, this set
may be identified in the implementation with a database of items.
The item component will be described further. An example would

34 Nicolae Bold, Ion Alexandru Popescu

be I = {1, 2, ..., 500}, containing the identification particle of each
item.

– C, C = {c1, c2, ..., cK}: the set of item categories, where K is the
number of categories. Each category can be established as a subset
Ck ⊆ I, k = 1, K, that is, for a category ck, the subset Ck contains
all the items within the kth category. The user may select a desired
number Kd of categories to be included in the test. An example
would be C = { Databases, Algorithms, Graph Theory, Security,
Testing }.

– T, T = {i1, i2, ..., im}: the obtained assessment test, where m is the

total number of items within the test, m =
∑Kd

k=1 mk, mi being the
desired number of items desired from each category within the test:

T =

Kd⋃
k=1

{ik1, ik2, ..., ikmKd
}, ikj ∈ Ck,

Kd∑
k=1

mk = m (1)

The meaning of the entire test collection of items T is that the
test is comprised of m items, an item being also part of the en-
tire test (ii ∈ T, i = 1,m) as well as extracted and part of the
subset of the items from the test that belong to a specific cate-
gory (ii = ij ∈ Ck, j = 1, kl, l = 1,mKd

). An example would be T =
{22, 15, 104, 12, 56, 45, 35, 98, 11, 2, 432, 341} withmk = (2, 2, 3, 1, 2, 2).

• functions:
– cat, cat : I → C :the mapping function, which associate an item
with a specific category. The function associate an item with a
category:

cat(ij) = ck, ij ∈ Ck (2)

For example, an item would be part of a category by the mapping
cat(356) = Database.

• feature vectors:
– x, xj ∈ Rd, d = 1: the feature vector for each item. This is the
description of a specific item related to its characteristics. d is the
number of characteristics each item has, in this model d = 1, because
each item is characterized by a score pj. For example, x356 = [7.4],
meaning that the item 356 has a score of 7.4.

– v: for a specific category Ck = {ik1, ik2, ..., ikMk
}, the feature vec-

tor includes the average value of the scores of all items within the
category:

vk =
1

Mk

×
∑

ikj∈Ck

xkj (3)

For example, vDatabase = [6.9], meaning that the average score of the
Database category is 6.9.

Model for competency-based test generation to support team selection using genetic algorithms35

– t: for a specific test, the feature vector includes the total score of
the test ST =

∑m
j=1 pij , the average score of the test MT = 1

m
ST

and the average deviation dT = 1
m

∑m
j=1 |pij −MT |:

t = [ST ,MT , dT], t ∈ R3 (4)

For example, t42 = [14, 3.5, 1.0], meaning that the test has a total
of 14 points, with an average score of 3.5 and an average deviation
of 1.0 (variated scores).

• algorithms:
– select : the algorithm that uses a selection function that extracts a
certain number mKd

of items from each category Ck, obtaining a
subset of items T :

T =
K⋃
k=1

select(Ck,mKd
) (5)

The model schematics is presented in Figure 1.

Fig. 1. Model components

As a conclusion, the generator selects items from the database categories
of items that correspond to the assessment requirements. For each category,
the generator uses a different genetic algorithm to select m1, m2, ..., mKd

items
to form the test with m = m1 +m2 + ...+mKd

assessment items.

3.4. Input data and expected results

Essentially, the input consists of a data set about domains, questions,
and parameters for the genetic algorithm, and the output consists of an op-
timized test, with the highest possible fitness, that respects the requirements
for selecting questions from each domain and distributing their scores.

More specific, the input data consists in:

36 Nicolae Bold, Ion Alexandru Popescu

• mk, k = 1, Kd: the number of desired items to be selected from each
category;

• P : the parameters of the genetic algorithm, presented in the Section 4,
presented as a tuple P = (NrP,NG, rm), where NrP is the size of the
initial population (the number of chromosomes within the population),
NG is the number of generations of the genetic algorithm and rm is the
rate of mutation.
As for the determination ofmk according to the given example, the model

contains several aspects:
• the set of roles r: r = {r1, r2, ..., rQ}, where ri is a given role (e.g., ”Fron-
tend Developer”, ”Backend Developer” etc.);

• the weights vector wr: wr = {wr1, wr2, ..., wrk}, wri ∈ {1, 10}, which
defines the importance of the domain or item category C for a specific
role.
Then, the vector mk is determined using:

mk =

⌊
wrk∑
wr

·m
⌋

(6)

The desired output consists in:
• practical output: a test T containing m items, each category ck being
represented by a number of mKd

items. The optimization requirements
relies on the choose of the test which has the most balanced items related
to score differences. In this matter, the test with the least deviations
within a category are selected:

F (T) =
1

Kd

Kd∑
j=1

F (Tk), F (Tk) = 1− dTk

STk

(7)

, where Tk = {ik1, ik2, ..., ikmKd
} and T =

Kd⋃
k=1

Tk.

• experimental output: analysis of the performance of the genetic algo-
rithm:

– A1 : related to fitness results and convergence (fitness value analy-
sis);

– A2 : related to runtime performance (runtime analysis).

4. Description of the algorithm in the model

For the model presented in Figure 1, the algorithm steps are as follows:
Step 1: The item categories along with the number necessary to generate the

evaluation test are taken from the team leader: m1,m2, ...,mKd
.

Step 2: Filter the database for each category ck, k = {1, 2, . . . , Kd}, and send
the candidate test items together with mKd

to the GENERATOR.
Step 3: Take the assessment test from the GENERATOR and send it to the

competitor.

Model for competency-based test generation to support team selection using genetic algorithms37

Step 4: Take the competitor’s answers and send them to the team leader for
assessment.
To implement the presented algorithm, a web implementation can be

used, to obtain a web application that involves multiple users with access and
security accounts in going through the stages of the model.

5. Description of the GENERATOR

5.1. Components

For the genetic algorithm we use:
• genes: a gene gj, j = 1,mKd

codifies an item within both the category
sub-test (Tk) and the whole test;

• chromosomes: a chromosome (Chj) codifies a sub-test Tk (a part of the
test that contains items from the same category) and also, after the union
of all chromosomes, a test T ;

• fitness function: the fitness function (f) determines for a sub-test Tk the
balance of the score within the sub-test. In other words, the tests with less
difference between the lowest score item and the highest score item have
a greater fitness value. In this way, more consistent tests are generated.
The form of the fitness value has the form presented in Equation 7.

• genetic operators: the genetic operators bring modifications to the chro-
mosomes in the population. For a chromosome Ch = (g1, g2, ..., gmKd

),
there are three operators that can be used in the algorithm:

– mutation (Mut): the mutation operator swaps a randomly-chosen
gene with a randomly-generated gene, as follows:

g′i = u, u = 1, N (8)

– crossover (Crs): the crossover operator selects two random parents
and splits them at a random position, recombining the resulted parts
of the two split chromosomes:

Chchild = [P1[1 : p], P2[(p+ 1) : mKd
]] (9)

where P1 and P2 are the two chromosomes selected as parents and
p ∈ {1,mKd

− 1} is the randomly-generated position.
– sorting (Srt): the sorting operator ensures the elitism (the selection
of the chromosomes with the highest fitness values). After the ap-
pliance of the Mut and Crs operators and the new chromosomes
are added in the population, the chromosomes are sorted descending
according to their fitness value and the first NrP chromosomes are
kept.

5.2. Methodology

The steps of the GENERATOR algorithm are as follows:
Step 1: Repeat step 2 for mKd

and the corresponding item category.

38 Nicolae Bold, Ion Alexandru Popescu

Step 2: Retrieve the data from the database I from the item category used
for assessment.

Step 3: Calculation of the fitness for the obtained test.
Step 4: The obtained test is used to assess the competitors.

6. Implementation and Results

The presented algorithm was implemented using a web application. Sta-
tistical analysis and result interpretation were performed using descriptive and
comparative metrics generated during algorithm execution. The code outputs
include convergence plots, deviation and difficulty evolution graphs, and a sum-
mary dataset containing the results for different parameter configurations. The
implementation and analysis were performed on a Windows 11 operating sys-
tem using Python 3.11, with development carried out in Visual Studio Code.
The implementation of the proposed model was developed in Python 3.11.
Data management was handled through a local SQLite database that stores
all generated items, including their difficulty levels, fuzzy membership val-
ues, assigned points, response times, and associated keywords. The algorithm
evaluates each test using a multi-component fitness function that minimizes:

• the deviation from the target difficulty profile;
• the imbalance between disciplines;
• the difference between the actual and desired proportions of items per
category.
Data analysis and visualization were carried out using NumPy, Pandas,

Matplotlib, and Seaborn libraries. The results are saved in a CSV file for
post-processing and reproducibility.

The experimental results were obtained using a combination of Python-
based analytical tools and the Orange Data Mining environment. The imple-
mentation and data processing pipeline were developed in Python 3.11, using
the following libraries:

• NumPy and Pandas - for numerical computation, data manipulation, and
generation of descriptive statistics (means, deviations, fitness values);

• Matplotlib and Seaborn - for data visualization, including convergence
plots, parameter influence, and comparative analysis;

• SQLite3 - for managing the local database of generated test items (diffi-
culty, fuzzy values, time, and keywords);

• Orange Data Mining (v3.36.1) – for visual statistical analysis, correlation
and regression exploration, and graphical comparison of parameters.
The Orange environment was used to import and analyze the CSV file

exported from the Python implementation. Through the use of Orange wid-
gets such as Data Table, Scatter Plot, Linear Regression, Correlation, and
Distributions, additional insights were obtained regarding the behavior of the
genetic algorithm under different configurations. This workflow enabled the
comparison of the influence of algorithmic parameters: number of generations

Model for competency-based test generation to support team selection using genetic algorithms39

(NG), population size (NP), and chromosome length (m) on both runtime and
fitness values.

The obtained results confirm that the genetic algorithm achieves better
optimization performance compared to random generation. All experiments
and evaluations were executed locally in a reproducible environment. The code
used for processing and evaluation is available upon request for reproducibility
purposes. The form used to generate tests is presented in Figure 2.

Fig. 2. Screenshot of the web application interface

There were two directions of analysis of the results, A1 and A2, described
earlier. These two directions are presented in the next subsections.

6.1. Fitness analysis - A1

For the first part of the analysis, two elements were studied: the fitness
values for each domains, the influence of the genetic parameters on the values
and the fitness convergence. In this matter, within the implementation, there
were set a number of 1000 experiments. In each experiment, the genetic algo-
rithm was run and the fitness for each category and the general fitness were
determined. The values of the parameters were established as follows:

• the number of items in the database N = 1000;
• the initial population size NrP = 10;
• the number of generations NG = 50;
• the mutation rate rm = 0.1(10%);
• the number of categories Kd = 5;
• the number of desired items within the test for each categorym = (10, 6, 9, 11, 17).

The results of the genetic algorithm are shown in Figure 3.

40 Nicolae Bold, Ion Alexandru Popescu

(a) Average fitness per category (b) Fitness distribution per category

Fig. 3. Average and distribution of fitness values per category,
showing the optimization behavior of the genetic algorithm.

Figures 3 and 4 illustrate the distribution of fitness values for five dis-
tinct categories (Domain 1-5), each represented by different colors. Category 2
clearly dominates, with the highest frequency (over 800) and a strong concen-
tration at fitness = 1.0, indicating superior performance. Categories 3, 4 and
5 show more balanced distributions, with fitness values concentrated between
0.94 and 0.98, partially overlapping. Category 5 covers a wider range of fit-
nesses, but with higher frequencies in the lower range (0.90-0.96). In contrast,
Category 1 has a reduced presence, with low frequencies and fitness values lim-
ited close to the maximum (1.0). This distribution highlights a differentiated
performance between categories, with Category 2 being the best performing
and Category 1 the least represented.

(a) Fitness distribution per category
(b) Fitness values per experiment and cat-
egory

Fig. 4. Fitness values distribution

The average fitness values for the five categories range between 0.9496
and 1.0, highlighting different performances. Category 2 stands out with a

Model for competency-based test generation to support team selection using genetic algorithms41

perfect fitness of 1.0, but includes the smallest number of questions (6), which
may suggest a lower difficulty. Categories 1, 3 and 4 have similar average
fitnesses, ranging from 0.9714 to 0.9756, but differ in the number of questions,
being 10, 9 and 11, respectively. In contrast, Category 5, which has the largest
number of questions (17), presents the lowest average fitness (0.9496), which
could reflect a higher difficulty or a more inconsistent performance. These data
highlight differences in both performance and distribution across categories.

We have also studied the behaviour of the final fitness value (FT). The
resulted values are shown in Figure 5.

(a) Fitness distribution per category
(b) Fitness values per experiment and cat-
egory

Fig. 5. Final fitness values distribution

We can observe a relative high value of the average fitness between the
categories. As related to convergence, a number of 500 generations was run
in order to observe the progressive value of the fitness while the generations
increase. The results are shown in Figure 6.

Fig. 6. Convergence study

42 Nicolae Bold, Ion Alexandru Popescu

Analyzing the evolution of the fitness value over generations, a significant
increase is observed until generation 130, when it reaches the value of 1.0, a
sign that the optimization algorithm has found the optimal solution. After
this point, the fitness remains constant at 1, indicating that the process has
fully converged, and the solutions have reached a state of stability in which
no further changes are needed. This behavior suggests that the algorithm has
evolved efficiently and identified a global maximum, without recording further
improvements in subsequent stages.

6.2. Runtime analysis - A2

The algorithm was studied then for the efficiency related to generation
time. The algorithm was studied in the context of a development of a regres-
sion, various data values for the three main parameters of the genetic algorithm
being taken into account (NrP , NG and mKd

, in order to observe their in-
fluence on the runtime of the algorithm. Some values are presented in Figure
7.

(a) The influence of the three parameters
on the runtime

(b) The coefficients of the obtained regres-
sion function

Fig. 7. Runtime analysis

Analyzing the results obtained from the various combinations of param-
eters (number of genes, number of generations and initial population), it is
observed that the fitness reaches the maximum value of 1 in most cases with
large parameters: for 100 genes, 100-200 generations and a large population
of 50-100, for example, in the configuration 100 genes, 100 generations, 100
population, the fitness is 0.9094, and the execution time is 34.99 seconds. In
contrast, combinations with fewer resources, such as 10 genes, 50-100 gener-
ations and a small population of 20-50, have much shorter execution times,
such as for 10 genes, 50 generations, 20 population (fitness = 1, time 0.083
seconds), but with a lower fitness. Thus, for fast solutions and decent fit-
ness, small values for genes, generations, and population can be used, and

Model for competency-based test generation to support team selection using genetic algorithms43

for optimal solutions, it is recommended to increase them, accepting a longer
execution time.

Regression analysis shows that the number of genes, the number of gen-
erations and the initial population positively influence fitness, with the highest
coefficient being associated with the initial population (0.1588), followed by the
number of genes (0.1271) and the number of generations (0.0294). The Mean
Squared Error (MSE) is 351.76, indicating a significant error in the model pre-
dictions, and the regression intercept is -11.59, suggesting a negative value of
fitness in the absence of the analyzed factors.

7. Conclusions

The presented model is an efficient way for the selection of candidates
for building a work team based on competencies from various fields of activity.
The evaluation is based on accumulated and verified knowledge and can be
used in the section of candidates for different positions in an interdisciplinary
team.

The algorithms used and the technologies used to implement the model
are up-to-date and efficient. The results obtained by the implemented appli-
cation are very good and show its usefulness.

The model allows the use of other item selection algorithms for the cre-
ation of evaluation tests. The model can also be used for other purposes,
where evaluations using items must be performed, for example, the assessment
of student progress in an academic course, such as those presented in [13], [15]
and [20].

REFERENCES

[1] T. N. T. Abd Rahim, Z. Abd Aziz, R. H. Ab Rauf, N. Shamsudin, Automated exam
question generator using genetic algorithm, in: 2017 IEEE Conference on e-Learning,
e-Management and e-Services (IC3e), IEEE, 2017, pp. 12–17.

[2] D. A. Popescu, G. C. Stanciu, D. Nijloveanu, Evaluation test generator using a list of
keywords, in: ITS 2021, 2021, pp. 481–489.

[3] X.-h. Tan, R.-m. Shen, Y. Wang, Personalized course generation and evolution based on
genetic algorithms, Journal of Zhejiang University SCIENCE C 13 (12) (2012) 909–917.

[4] X. Duan, Automatic generation and evolution of personalized curriculum based on
genetic algorithm, International Journal of Emerging Technologies in Learning (Online)
14 (12) (2019) 15.

[5] L. O. Seman, R. Hausmann, E. A. Bezerra, On the students’ perceptions of the knowl-
edge formation when submitted to a project-based learning environment using web
applications, Computers Education 117 (2018) 16–30.

[6] V. M. Bradley, Learning management system (lms) use with online instruction, Inter-
national Journal of Technology in Education 4 (1) (2021) 68–92.

[7] R. Horoias, , V. Tit,a, D. Nijloveanu, Study on the new management strategy for agri-
cultural farms in romania, as a result of the energy crisis from 2021-2022. (2022).

[8] D. P. Anastasiu, D. Radulescu, Monitoring of irrigation systems using genetic algo-
rithms, in: 2015 6th International Conference on Modeling, Simulation, and Applied
Optimization (ICMSAO), IEEE, 2015, pp. 1–4.

44 Nicolae Bold, Ion Alexandru Popescu

[9] I. O. Ştefan, V. Tit,a, Analysis of the profitability ratios of romanian companies listed
on bucharest stock exchange: trends and perspectives. (2021).

[10] G. Šimić, A. Jevremović, D. Strugarević, Improvement of the teaching process using
the genetic algorithm, in: International Conference on Future Access Enablers of Ubiq-
uitous and Intelligent Infrastructures, Springer, 2024, pp. 80–90.

[11] H. Yang, Design of intelligent exam management optimization system based on im-
proved genetic algorithm, International Journal of High Speed Electronics and Systems
(2024) 2540142.

[12] D. A. Popescu, C. I. Gosoiu, D. Nijloveanu, Learning testing model using test generators
and mobile applications., in: L2D@ WSDM, 2021, pp. 41–48.

[13] C. I. Nutescu, M. Mocanu, Test data generation using genetic algorithms and informa-
tion content, U.P.B. Scientific Bulletin, Series C 2 (2020).

[14] D. Constantin, C. Balcau, D. A. Popescu, Ica model estimation using a mixed learning
rule based on genetic algorithms and neural networks, in: 3rd Evolutionary Data Mining
and Machine Learning Workshop IEEE International Conference on Data Mining, IEEE
Computer Society Press, Shanghai, China, 2023.

[15] D. A. Popescu, M. M. Nastase, Evaluation test generation model using two intervals of
difficulty and keywords, in: MIS4TEL (Workshops), 2022, pp. 13–22.

[16] H. Zhang, B. Xiao, J. Li, M. Hou, An improved genetic algorithm and neural network-
based evaluation model of classroom teaching quality in colleges and universities, Wire-
less Communications and Mobile Computing 2021 (1) (2021) 2602385.

[17] F. Hamidi, M. Meshkat, M. Rezaee, M. Jafari, Information technology in education,
Procedia Computer Science 3 (2011) 369–373.

[18] D. A. Kolb, Experiential learning: Experience as the source of learning and develop-
ment, FT Press, 2014.

[19] V. Bobade, S. Dandge, M. Pund, A study of different algorithm for automatic generation
of question paper, International Science and Technology Journal 7 (5) (2018).

[20] D. A. Popescu, M. M. Nastase, Evaluation test generation model using degrees of
difficulty and keywords, in: International Conference on Intelligent Tutoring Systems,
2022, pp. 197–203.

[21] Y. Guo, H. Wang, L. He, W. Pedrycz, P. N. Suganthan, L. Xing, Y. Song, A rein-
forcement learning-assisted genetic programming algorithm for team formation problem
considering person-job matching, Neurocomputing (2025) 130917.

[22] J. M. Alberola, E. Del Val, V. Sanchez-Anguix, A. Palomares, M. D. Teruel, An artificial
intelligence tool for heterogeneous team formation in the classroom, Knowledge-Based
Systems 101 (2016) 1–14.

[23] D. La Torre, C. Colapinto, I. Durosini, S. Triberti, Team formation for human-artificial
intelligence collaboration in the workplace: A goal programming model to foster or-
ganizational change, IEEE Transactions on Engineering management 70 (5) (2021)
1966–1976.

