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NYQUIST STABILITY FOR HYSTERESIS SWITCHING 
MODE CONTROLLERS 

Dan OLARU1 

The stability analysis of the non-linear circuits is a challenging problem. 
Recently, new results were obtained in linear modeling using a discrete-time 
correspondence method. The presented paper extends this research for Nyquist 
stability analysis of a feedback controlled hysteresis switching buck circuit. 
Moreover, quantitative information was obtained about the control robustness, 
using a discrete differential evaluation of the Nyquist diagram characteristics. Also, 
numerical simulations are achieved, in order to validate the methods and analyze 
the circuit behavior. 
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1. Introduction 

In power control domain, the switching systems need reactive filters in 
order to obtain sufficient smooth output voltage. Thus, in a buck configuration 
with feedback, control loop stability problems arise. Classical stability analysis 
can't be applied because the non-linear switching characteristics.  A recent 
research proves that the hysteresis operation allow a linear discrete-time approach 
using Z transform. This is done by an equivalence method described in reference 
[1]. Using a linear model for the driving comparator circuit, the authors succeed to 
obtain an analytical mathematical expression for the open loop gain of the control 
circuit. These important results enable to achieve a quantitative analysis of the 
circuit behavior, allowing useful comparisons for hysteresis, PWM, and phase 
delay circuit configurations. 

This paper continues the study and is focused on the Nyquist stability 
analysis for the hysteresis configuration (Fig.1). Because the complex profile of 
the resulting Nyquist diagram, special differential methods are used. Mathcad 
numerical representation and simulation are used in order to confirm the methods 
validity and circuit operation.  
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2. The Equivalence method 
 
In the following the buck configuration of Fig.1 is considered. 

From paper [1] two very important results are derived. First, the comparator 
circuit is modeled by a linear one. The hysteresis transition process is modeled by 
discrete-time representation using the Z transform. Second, an analytical 
expression is derived for circuit open-loop gain. A continuous-time domain 
expression is obtained by a mixed representation in s-Laplace domain and z-
variable domain. 

This equivalence principle is based on the following reasons. The 
transitions of the non-linear comparator arise when the input error signal exceeds 
the hysteresis thresholds. For a stationary operation, the feed-back controlled 
circuit acts as an auto-oscillate one. Due to the low-pass filter the output voltage 
swing near the constant reference value. At the filter input we have a discrete 
variation. The hysteresis levels control the duty cycle of the comparator output. 
This determines an equivalent (non-linear) gain of the comparator, taking into 
account the integration process achieved by the low-pass filter. 

The main contribution of paper [1] is the fact than the Z-transform 
representation of the comparator model gives the same behavior, if we assume 
that the sampling frequency correspond with the nonlinear auto-oscillate 
frequency and the gain of the linear model equals the non-linear one. Thus, the 
sampling controlled operation in discrete-time domain models the non-linear 
transitions controlled by hysteresis in voltage value domain.  

In reference [1] the following two important expressions are obtained: 
 

a) The z-domain transfer function of the comparator linear model: 
 

 
)(1

)(
zHK

KzCTF
zz

z

⋅+
=       (1) 

 
where: CTF(z) - the z-domain comparator model transfer function; 
 Kz - comparator equivalent gain; 
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Fig.1. Principial circuit diagram 
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 Hz(z) - low-pass filter transfer function (z-domain). 
 
b) The (s,z)-domain mixed representation input-output (reference to output) 
transfer function: 
 

 )()()exp()( zCTFsHTssGro sd ⋅⋅⋅−=     (2) 
 
where: Td - the circuit loop delay; 
 Hs(s) - low-pass filter transfer function (s-domain). 
 

The mixed representation with both s and z variables is non-contradictory. 
If z is substituted by exp(sT) this correspond to a physical experiment where for 
every frequency component applied to the input, only this component is measured 
at output (by a selective analyzer, for example). 
 

3. Analysis method 
 

In our case, the Z-transform of the LC filter is necessary. After some 
symbolical calculations, we have: 
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where: T – the sampling period; 
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Nyquist diagram and criterion are valuable methods that may determine if 

a linear dynamical system is stable and, moreover, a so called "reserve of 
stability" may be determined, when robustness requests are implied. 

The results from paper [1] enable to extend these methods to above 
described circuit, which is highly nonlinear. In this case, the instability situation is 
dependent on the phase delay, due to the LC low-pass filter. 

But for the non-linear system model, the open loop transfer function has 
an infinity of poles that lead to complicated profiles of the Nyquist diagram. Thus, 
sometimes is difficult to observe the stable behavior and to appreciate the 
robustness of the system. For this purpose, here, a differential procedure is 
conceived. 

Nyquist criterion take under consideration the encirclement of the (-1,0) 
coordinate point by the trajectory. In this situation, the vector radius with the 
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origin in (-1,0) will describe a 2π angle. Here, an incremental numerical procedure 
is used, in order to measure the vector radius angle variation. For short trajectory 
segments, we can define the movement tangent vector τk and radius vector Rk with 
coordinates (Xk-1,Yk-1) and (Xk,Yk) respectively. The angle increments (in radians) 
Uk may be approximated by the ratio of modules: 
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For each point, the sense of angle variation may be defined as the sign of 
vectorial product R×τ , considering a 3-dimensional coordinates extension. If an 
encirclement of the (-1,0) point appears, the angle variation must cumulate at least 
2π. Thus, in a recursive representation: kkkkk URsignUU ⋅×+Σ=Σ + )(1 τ . 
The stability criterion taken under consideration becomes: π2<Σ NU . Thus the 
robustness evaluation may use as indicator the value of difference Δ = ΣUN - 2π. 

Due to the non-linear behavior, the stability reserve hasn’t a smooth 
dependence on the circuit phase delay, which in this case has a periodic variation. 
Instead, the robustness of the circuit may be evaluated with the Δ value 
corresponding to the Nyquist diagram profile. 

Also, it is important to remember that a determinant factor for the whole 
behavior is the sampling period T. This is a specific parameter only for the 
discrete model approach. For the original non-linear circuit, which normally uses 
a PID regulator for stabilization, the correspondence must be done with the ripple 
auto-oscillating frequency. 
 

4. Simulation results 
 
For numerical simulation purposes, was considered a hysteresis “buck” 

circuit followed by a reactive filter with the following parameters: R=1Ω; 
L=1mH; C= 1μF. The filter is in fact a LC one. A low value of resistance is 
considered for a good mathematical conditioning and a realistic approach. The 
Fig.2 and Fig.3 show, respectively, the profiles of Hz(z) and Gro(s) modulus. 

The Nyquist diagram is plotted for three representative cases in Fig. 4,6,8 
respectively. The first is for a very stable case and the last for an instable one. The 
middle case is poor stable situation. For each situation, at the left, the frequency 
dependence of the cumulative angle ΣUk of the vectorial radius is plotted in Fig. 
5,7,9 respectively. As shown, instability arises when 2π value is exceeded.  
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Fig.3 Open loop gain variation Fig.2. Filter Z-transfer function 

Fig.4. Stable Nyquist diagram Fig.5. Stable cumulative ΣU angle 

Fig.6. Poor stable Nyquist diagram Fig.7. ΣU angle for poor stable case 

Fig.8. Instable Nyquist diagram Fig.9.Instable cumulative ΣU angle 
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5. Conclusions 
 
The presented method enables the stability analysis of a non-linear 

switching circuit with hysteresis operation mode. Using the Z-transform linear 
model from [1], a Nyquist diagram representation was derived.  

The main contribution of the paper is a new geometrical and algebraical 
method for robustness evaluation of a switching mode circuit. This is based on a 
discrete differential method and algebraic calculation giving a stability margin 
evaluation for non-linear circuits. Thus, Nyquist criterion may be applied even for 
complex trajectory profiles where visual observations on diagram give poor 
results. Moreover, using the cumulative angle representation as in Fig. 5,7,9 a 
potential instability situation may be presumed. 

The numerical simulations are done for only few representative cases, but 
these procedures are useful in many different situations. 
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