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In this work, we propose a new self-adaptive extragradient projection method for
solving variational inequalities with Lipschitz continuous and quasimonotone mapping in

a real Hilbert space. Using the technique of inertial step into a single projection method,
we obtained strong convergence theorem for the proposed algorithm. Our results extend

and improve the existing results in the literature.
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1. Introduction

The paper deals with a new numerical approach for finding a solution of the quasi-
monotone variational inequality problem (VI) [16, 17] in a real Hilbert space H.

Let C be a nonempty closed and convex subset in H and F : H → H be an operator.
Recall that the problem (VI) for the operator F on C is stated as follows:

Find x∗ ∈ C such that ⟨Fx∗, y − x∗⟩ ≥ 0 for all y ∈ C. (1)

The solution set of the problem (VI) is denoted by S.

The dual variational inequality problem of (1) is to find a point x∗ ∈ C such that

⟨Fx, x− x∗⟩ ≥ 0 ∀x ∈ C. (2)

We denote the solution set of dual variational inequality problem (2) by SD. It is obvious
that SD is a closed convex set (possibly empty). In the case F is continuous and C is convex,
we get

SD ⊂ S.

If F is a pseudomonotone and continuous mapping, then S = SD (see, Lemma 2.1 in
[12]). The inclusion S ⊂ SD is false, if F is a quasimonotone and continuous mapping (see,
Example 4.2 in [38]).
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Variational inequality theory is an important tool in economics, engineering mechan-
ics, mathematical programming, transportation and others (see, [1, 4, 5, 7, 14, 24, 25, 26]).
Over the past decade, many numerical methods have been introduced for solving variational
inequalities and related optimization problems, see [9, 10, 11, 13, 15, 18, 28, 30, 36].

The simplest one for solving VI (1) is the following gradient projection method:{
v0 ∈ C,

vn+1 = PC(vn − τFvn),

where PC denotes the metric projection of H onto the set C and τ is a positive real number.
The main restriction of gradient projection methods is that the operators require to be Lip-
schitz continuous and strongly monotone (or inverse strongly monotone). The extragradient
method which introduced by Korpelevich [27] and Antipin [3] overcomes this disadvantage
by performing an additional projection at each iteration in the following way:

v0 ∈ C,

un = PC(vn − τFvn),

vn+1 = PC(vn − τFun),

(3)

where F : C → C is monotone and L-Lipschitz continuous, τ ∈ (0, 1
L ). Recently, the extra-

gradient method has given conclusive results assuming monotone and the Lipschitz contin-
uous mappings (see, e.g., [9, 13, 32]). It is well known that to implement the extragradient
method, one needs to calculate two projections onto C in each iteration. In [9] Censor et al.
proposed the modified extragradient method which is called the subgradient extragradient
method. In their method, they replaced the second projection onto C with a projection
onto a half-space. However, in the subgradient extragradient method, it requires the cost
mapping F to be defined on the whole H. This is a barrier if the mapping F is only Lipschitz
continuous on C.

In recent years, the class of pseudomonotone mappings has been studied for solving
the problem VI [8, 20, 35, 37]. In particular, when the mapping associated with variational
inequality is pseudomonotone and sequentially weakly continuity, the extragradient method
is introduced for solving variational inequalities in real Hilbert spaces [32].

Recently, some authors have investigated some weak convergence results of the extra-
gradient methods when the assumption on F is quasimonotone (or non-monotone), which is
weaker than the pseudomonotonicity assumption [2, 21, 22, 29, 33, 34, 38]. This is of inter-
est because of the fact that the convergence analysis when F is pseudomonotone cannot be
carried over to the case when F is quasimonotone. For instance, when F is quasimonotone,
the dual variational inequality of problem (2) is not equivalent to problem (1). In [38], Ye
and He proposed a double projection method and proved that it converges to a solution of
problem (1) when F is only required to be continuous in a finite-dimensional space. Similar
results are obtained by Izuchukwu et al. [21, 22], Alakoya et al. [2], Wang et al. [33, 34].
Recently, Liu et al. [29] proved that the forward-backward-forward method converges weakly
to a solution of (1) when F is quasimonotone, Lipschitz continuous and sequentially weakly
continuous in an infinite dimensional Hilbert space.

At the best knowledge of the authors, the study of the strong convergence of the
extragradient method (3) for solving quasimonotone variational inequalities in the setting
of Hilbert space is still unexplored. This leads us to the following question.

Question: Can we give strong convergence results of the extragradient method (3)
with the inertial technique for solving solving quasimonotone variational inequalities?
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Our aim in this paper is to answer the above question. We propose a new extragradient
method with an inertial step and self-adaptive step sizes for solving the problem (1), with
the following contributions: We introduce a novel extragradient method and obtain a strong
convergence result when F is quasimonotone and Lipschitz continuous. Unlike the other
projections, our proposed algorithm requires the cost mapping F to be calculated only on
the closed convex set C in each iteration, rather than on the entire H, and utilizes self-
adaptive step sizes to approximate a solution to the quasimonotone variational inequality
problem.

This paper is organized as follows: In Sect. 2, we recall some definitions and prelim-
inary results for further use. Sect. 3 deals with analyzing the convergence of the proposed
algorithms. we prove strong convergence results under the conditions that F is Lipschitz
continuous and quasi-monotone on H and the solution set SD is nonempty.

2. Preliminaries

Let H be a real Hilbert space and C be a nonempty closed convex subset of H.
The weak convergence of {xn}∞n=1 to x is denoted by xn ⇀ x as n → ∞, while the strong
convergence of {xn}∞n=1 to x is written as xn → x as n → ∞. For all x, y ∈ H, we have

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩. (4)

For all x ∈ H, there exists a unique nearest point in C, denoted by PCx, such that

∥x− PCx∥ ≤ ∥x− y∥ ∀y ∈ C.

PC is called the metric projection of H onto C. It is known that PC is nonexpansive.

Lemma 2.1 ([19]). Let C be a nonempty closed convex subset of a real Hilbert space H.
Given x ∈ H and z ∈ C. Then we have

z = PCx ⇐⇒ ⟨x− z, z − y⟩ ≥ 0 ∀y ∈ C.

Lemma 2.2 ([6, 19]). Let C be a closed convex subset in a real Hilbert space H and x ∈ H.
Then we have the following:

(1) ∥PCx− PCy∥2 ≤ ⟨PCx− PCy, x− y⟩ ∀y ∈ H;
(2) ∥PCx− y∥2 ≤ ∥x− y∥2 − ∥x− PCx∥2 ∀y ∈ C.

Definition 2.1. Let F : H → H be a mapping. Then the mapping F is said to be:
(1) L-Lipschitz continuous with L > 0 if

∥Fx− Fy∥ ≤ L∥x− y∥ ∀x, y ∈ H.

(2) monotone if
⟨Fx− Fy, x− y⟩ ≥ 0 ∀x, y ∈ H.

(3) pseudomonotone in the sense of Karamardian [23] if

⟨Fx, y − x⟩ ≥ 0 =⇒ ⟨Fy, y − x⟩ ≥ 0 ∀x, y ∈ H.

(4) quasimonotone, if

⟨Fx, y − x⟩ > 0 =⇒ ⟨Fy, y − x⟩ ≥ 0 ∀x, y ∈ H.

(5) δ-strongly pseudomonotone if there exists a constant δ > 0 such that

⟨Fx, x− y⟩ ≥ 0 =⇒ ⟨Fy, y − x⟩ ≥ δ∥x− y∥2 ∀x, y ∈ H.

(6) sequentially weakly continuous if, for each sequence {xn} in H, {xn} converges weakly
to a point x ∈ H implies {Fxn} converges weakly to Fx.

It is easy to see that every implication (2) =⇒ (3) =⇒ (4) hold, but the converse is
not true.

The following lemma gives a situation when SD is nonempty.
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Lemma 2.3 ([38]). If either
(1) F is pseudomonotone on C and S ̸= ∅,
(2) F is the gradient of G, where G is a differential quasiconvex function on an open set

K,C ⊂ K and attains its global minimum on C,
(3) F is quasi-monotone on C, F ̸= 0 on C and C is bounded,
(4) F is quasi-monotone on C, F ̸= 0 on C and there exists a positive number r such that,

for every v ∈ C with ∥v∥ ≥ r, there exists y ∈ C such that ∥y∥ ≤ r and ⟨Fv, y− v⟩ ≤ 0,
(5) F is quasimonotone on C and SN ̸= ∅, with SN := S\ST , where ST := {x∗ ∈

C|⟨F (x∗), y − x∗⟩ = 0 ∀y ∈ C}.
(6) F is quasi-monotone on C, intC is nonempty and there exists v∗ ∈ S such that Fv∗ ̸= 0.
Then, SD is nonempty.

Lemma 2.4 ([31]). Let {an} be a sequence of nonnegative real numbers, {αn} be a sequence
of real numbers in (0, 1) with

∑∞
n=1 αn = ∞ and {bn} be a sequence of real numbers. Assume

that

an+1 ≤ (1− αn)an + αnbn, ∀n ≥ 1,

If lim supk→∞ bnk
≤ 0 hold for every subsequence {ank

} of sequence {an} which satisfyies
lim infk→∞(ank+1 − ank

) ≥ 0, then limn→∞ an = 0.

3. The Main Results

We now introduce our algorithm.

Algorithm 3.1.

Initialization: Given τ1 > 0, 0 < a ≤ λ <
1

2
, and {αn}, {γn} are two nonnegative real

numbers sequences such that
∑∞

n=1 γn < +∞. Let x0, x1 ∈ H be arbitrary. We assume
{θn} ⊂ (0, 1) is positive real numbers sequence that satisfies the following conditions:

lim
n→∞

(1− θn) = 0,

∞∑
n=1

(1− θn) = ∞.

Iterative Steps: Calculate xn+1 as follows:
Step 1. Given the current iterates xn−1 and xn (n ≥ 1), compute

wn = xn + αn(xn − xn−1),

yn = PC(wn − τnFwn).

If yn = wn then stop and wn is a solution of problem (1). Otherwise, go to Step 2.
Step 2. Compute

xn+1 = (1− λ)(θnxn) + λPC(wn − τnFyn),

update

τn+1 =

min

{
µ

∥wn − yn∥
∥Fwn − Fyn∥

, τn + γn

}
if Fwn ̸= Fyn,

τn + γn otherwise.
(5)

Set n := n+ 1 and return to Setp 1.
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3.1. Strong convergence

In order to analyze the convergence of the proposed algorithm, we assume the follow-
ing conditions:

Condition 3.1. SD ̸= ∅.

Condition 3.2. The mapping F : C → C is L-Lipschitz continuous on H. However, the
information of L is not necessary to be known.

Condition 3.3. The mapping F is sequentially weakly continuous on C, i.e., for each
sequence {xn} ⊂ C, {xn} converges weakly to x∗ implies {Fxn} converges weakly to Fx∗.

Condition 3.4. The mapping F is quasimonotone on C.

We need the following lemmas.

Lemma 3.1 ([29]). Let {τn} be a sequence generated by (5). Then

lim
n→∞

τn = τ with τ ∈
[
min

{
τ1,

µ

L

}
, τ1 + α∗

]
,

where α∗ =
∑∞

n=1 γn. Moreover, we also obtain

∥Fwn − Fyn∥ ≤ µ

τn+1
∥wn − yn∥.

Lemma 3.2. Assume that Conditions 3.1 - 3.4 hold. Let {wn} be a sequence generated
by Algorithm 3.1. If there exists a subsequence {wnk

} convergent weakly to z ∈ H and
limk→∞ ∥wnk

− ynk
∥ = 0, then z ∈ SD or Fz = 0.

Proof. First, we see that {wnk
} ⇀ z and limk→∞ ∥wnk

−ynk
∥ = 0 this implies that ynk

⇀ z
and since yn ∈ C we get z ∈ C.

Now, we divide the proof into two cases.
Case 1: If lim supk→∞ ∥Fynk

∥ = 0, then we have

lim
k→∞

∥Fynk
∥ = lim inf

k→∞
∥Fynk

∥ = 0.

Since ynk
converges weakly to z ∈ C and F satisfies Condition 3.3 we get

0 ≤ ∥Fz∥ ≤ lim inf
k→∞

∥Fynk
∥ = 0.

This implies that Fz = 0.
Case 2: If lim supk→∞ ∥Fynk

∥ > 0. Without loss of generality, we take

lim
k→∞

∥Aynk
∥ = M > 0.

It then follows that there exists a K ∈ N such that ∥Fynk
∥ >

M

2
for all k ≥ K. Since

ynk
= PC(wnk

− τnk
Fwnk

), we have

⟨wnk
− τnk

Fwnk
− ynk

, x− ynk
⟩ ≤ 0 ∀x ∈ C,

or, equivalently,

1

τnk

⟨wnk
− ynk

, x− ynk
⟩ ≤ ⟨Fwnk

, x− ynk
⟩ ∀x ∈ C.

Consequently, we have

1

τnk

⟨wnk
− ynk

, x− ynk
⟩+ ⟨Fwnk

, ynk
− wnk

⟩ ≤ ⟨Fwnk
, x− wnk

⟩ ∀x ∈ C. (6)
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Since {wnk
} is weakly convergent, {wnk

} is bounded. Then, by the Lipschitz continuity of

F , {Fwnk
} is bounded. As ∥wnk

− ynk
∥ → 0, {ynk

} is also bounded and τnk
≥ min{τ1,

µ

L
}.

Passing (6) to the limit as k → ∞, we get

lim inf
k→∞

⟨Fwnk
, x− wnk

⟩ ≥ 0 ∀x ∈ C. (7)

Moreover, we have

⟨Fynk
, x− ynk

⟩ = ⟨Fynk
− Fwnk

, x− wnk
⟩+ ⟨Fwnk

, x− wnk
⟩

+⟨Fynk
, wnk

− ynk
⟩. (8)

Since limk→∞ ∥wnk
− ynk

∥ = 0 and F is L-Lipschitz continuous on H, we get

lim
k→∞

∥Fwnk
− Fynk

∥ = 0

which, together with (7) and (8), implies that

lim inf
k→∞

⟨Fynk
, x− ynk

⟩ ≥ 0. (9)

• If lim supk→∞⟨Fynk
, x − ynk

⟩ > 0, then there exists a subsequence {ynkj
} such that

limj→∞⟨Fynkj
, x− ynkj

⟩ > 0. Consequently, there exists j0 ∈ N such that

⟨Fynkj
, x− ynkj

⟩ > 0 ∀j ≥ j0.

Letting j → ∞, we have z ∈ SD.
• If lim supk→∞⟨Fynk

, x− ynk
⟩ = 0. From (9) implies that

lim
k→∞

⟨Fynk
, x− ynk

⟩ = 0.

Let ϵk := |⟨Fynk
, x− ynk

⟩|+ 1

k + 1
. Then we obtain

⟨Fynk
, x− ynk

⟩+ ϵk > 0 ∀k ≥ K. (10)

Furthermore, for each k ≥ 1, since {ynk
} ⊂ C, we can suppose Fynk

̸= 0 (otherwise, ynk
is

a solution) and, setting

qnk
=

Fynk

∥Fynk
∥2

,

we have ⟨Fynk
, qnk

⟩ = 1 for each k ≥ K. Now, we can deduce from (10) that, for each
k ≥ K,

⟨Fynk
, x+ ϵkqnk

− ynk
⟩ > 0.

Since F is quasimonotone on H, we get

⟨F (x+ ϵkqnk
), x+ ϵkqnk

− ynk
⟩ ≥ 0. (11)

Now, for all k ≥ K, using (11) we get

⟨Fx, x+ ϵkqnk
− ynk

⟩ = ⟨Fx− F (x+ ϵkqnk
), x+ ϵkqnk

− ynk
⟩

+ ⟨F (x+ ϵkqnk
), x+ ϵkqnk

− ynk
⟩

≥ ⟨Fx− F (x+ ϵkqnk
), x+ ϵkqnk

− ynk
⟩

≥ −∥Fx− F (x+ ϵkqnk
)∥∥x+ ϵkqnk

− ynk
∥

≥ −ϵkL∥qnk
∥∥x+ ϵkqnk

− ynk
∥

= −ϵkL
1

∥Fynk
∥
∥x+ ϵkqnk

− ynk
∥

≥ −ϵkL
2

M
∥x+ ϵkqnk

− ynk
∥. (12)
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In (12), letting k → ∞ and using the fact that limk→∞ ϵk = 0 and the boundedness of
{∥x+ ϵkqnk

− ynk
∥} we get

⟨Fx, x− z⟩ ≥ 0 ∀x ∈ C.

This implies that z ∈ SD. □

Theorem 3.1. Assume that Conditions 3.1 - 3.4 hold and Fx ̸= 0, for all x ∈ C. Then, the
sequence {xn} generated by Algorithm 3.1 converges strongly to an element x∗ ∈ SD ⊂ S,
where ∥x∗∥ = min{∥u∥ : u ∈ SD} provided that

lim
n→+∞

αn

1− θn
∥xn − xn−1∥ = 0. (13)

Remark 3.1. Note that SD is a closed and convex set, thus ∥x∗∥ = min{∥u∥ : u ∈ SD}
implies that x∗ = PSD

(0).

Proof. Let zn := PC(wn − τnFyn).
Claim 1.

∥zn − x∗∥2 ≤ ∥wn − x∗∥2 −
(
1− µ

τn
τn+1

)
(∥yn − wn∥2 + ∥zn − yn∥2). (14)

Indeed, since x∗ ∈ SD ⊂ S ⊂ C, we have

∥zn − x∗∥2 = ∥PC(wn − τnFyn)− PCx
∗∥2

≤ ⟨zn − x∗, wn − τnFyn − x∗⟩

=
1

2
∥zn − x∗∥2 + 1

2
∥wn − τnFyn − x∗∥2 − 1

2
∥zn − wn + τnFyn∥2

=
1

2
∥zn − x∗∥2 + 1

2
∥wn − x∗∥2 + 1

2
τ2n∥Fyn∥2 − ⟨wn − x∗, τnFyn⟩

− 1

2
∥zn − wn∥2 −

1

2
τ2n∥Fyn∥2 − ⟨zn − wn, τnFyn⟩

=
1

2
∥zn − x∗∥2 + 1

2
∥wn − x∗∥2 − 1

2
∥zn − wn∥2 − ⟨zn − x∗, τnFyn⟩.

This implies that

∥zn − x∗∥2 ≤ ∥wn − x∗∥2 − ∥zn − wn∥2 − 2⟨zn − x∗, τnFyn⟩. (15)

Since x∗ ∈ SD and yn ∈ C we get

⟨Fyn, x
∗ − yn⟩ ≤ 0.

Thus we have

⟨Fyn, x
∗ − zn⟩ =⟨Fyn, x

∗ − yn⟩+ ⟨Fyn, yn − zn⟩ ≤ ⟨Fyn, yn − zn⟩. (16)

From (15) and (16), we obtain

∥zn − x∗∥2 ≤ ∥wn − x∗∥2 − ∥zn − wn∥2 + 2τn⟨Fyn, yn − zn⟩
= ∥wn − x∗∥2 − ∥zn − yn∥2 − ∥yn − wn∥2 − 2⟨zn − yn, yn − wn⟩
+ 2τn⟨Fyn, yn − zn⟩

= ∥wn − x∗∥2 − ∥zn − yn∥2 − ∥yn − wn∥2

+ 2⟨wn − τnFyn − yn, zn − yn⟩. (17)

Using Lemma 2.1, it’s easy to see that from yn = PC(wn − τnFwn), and zn ∈ Tn, we obtain

2⟨yn + τnFwn − wn, yn − zn⟩ ≤ 0.

This is equivalent to

2⟨wn − τnFwn − yn, zn − yn⟩ ≤ 0. (18)
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Using (18) we deduce

2⟨wn − τnFyn − yn, zn − yn⟩ = 2⟨wn − τnFwn − yn, zn − yn⟩+ 2τn⟨Fwn − Fyn, zn − yn⟩
≤ 2τn⟨Fwn − Fyn, zn − yn⟩

≤ µ
τn

τn+1
∥wn − yn∥2 + µ

τn
τn+1

∥yn − zn∥2. (19)

Substituting (19) into (17), we obtain

∥zn − x∗∥2 ≤ ∥wn − x∗∥2 −
(
1− µ

τn
τn+1

)
∥yn − wn∥2 −

(
1− µ

τn
τn+1

)
∥zn − yn∥2

= ∥wn − x∗∥2 −
(
1− µ

τn
τn+1

)
(∥yn − wn∥2 + ∥zn − yn∥2).

From limn→∞

(
1− µ

τn
τn+1

)
= 1− µ > 0, it follows that there exists n0 ∈ N such that

1− µ
τn

τn+1
> 0 ∀n ≥ n0.

Thus, we have

∥zn − x∗∥ ≤ ∥wn − x∗∥ ∀n ≥ n0.

Claim 2. The sequence {xn} is bounded. Indeed, by Claim 1 then there exists n0 ∈ N such
that

∥zn − x∗∥ ≤ ∥wn − x∗∥ ∀n ≥ n0. (20)

On the other hand, from the definition of wn, we get

∥wn − x∗∥ = ∥xn + αn(xn − xn−1)− x∗∥
≤ ∥xn − x∗∥+ αn∥xn − xn−1∥

= ∥xn − x∗∥+ (1− θn)
αn

1− θn
∥xn − xn−1∥. (21)

By the condition limn→+∞
αn

1− θn
∥xn − xn−1∥ = 0, it follows that there exists a constant

M1 > 0 such that
αn

1− θn
∥xn − xn−1∥ ≤ M1, ∀n ≥ 1. (22)

Combining (20), (21) and (22), we obtain

∥zn − x∗∥ ≤ ∥wn − x∗∥ ≤ ∥xn − x∗∥+ (1− θn)M1. (23)

Now, from the definition of {xn}, we get

∥xn+1 − x∗∥ = ∥(1− λ)(θnxn) + λ− x∗∥
= ∥(1− λ)θn(xn − x∗) + λ(zn − x∗)− (1− θn)(1− λ)x∗∥
≤ ∥(1− λ)θn(xn − x∗) + λ(zn − x∗)∥+ (1− θn)(1− λ)∥x∗∥. (24)

Now, we estimate ∥(1− λ)θn(xn − x∗) + λ(zn − x∗)∥

∥(1− λ)θn(xn − x∗) + λ(zn − x∗)∥2

= (1− λ)2θ2n∥xn − x∗∥2 + 2(1− λ)θnλ⟨xn − x∗, zn − x∗⟩+ λ2∥zn − x∗∥2

≤ (1− λ)2θ2n∥xn − x∗∥2 + 2(1− λ)θnλ∥xn − x∗∥∥zn − x∗∥+ λ2∥zn − x∗∥2

= [(1− λ)θn∥xn − x∗∥+ λ∥zn − x∗∥]2.

Thus

∥(1− λ)θn(xn − x∗) + λ(zn − x∗)∥ ≤ (1− λ)θn∥xn − x∗∥+ λ∥zn − x∗∥. (25)
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Combining (23) and (25), we deduce

∥(1− λ)θn(xn − x∗) + λ(zn − x∗)∥
≤ (1− λ)θn∥xn − x∗∥+ λ∥xn − x∗∥+ (1− θn)λM1

= (1− (1− θn)(1− λ))∥xn − x∗∥+ (1− θn)λM1

≤ (1− (1− θn)(1− λ))∥xn − x∗∥+ (1− θn)(1− λ)M1 (26)

( by 0 < a ≤ λ ≤ 1

2
).

Substituting (26) into (24), we get

∥xn+1 − x∗∥ ≤ (1− (1− θn)(1− λ))∥xn − x∗∥+ (1− θn)(1− λ)(∥x∗∥+M1)

≤ max{∥xn − x∗∥, ∥x∗∥+M1}
≤ ... ≤ max{∥x0 − x∗∥, ∥x∗∥+M1}.

Therefore, the sequence {xn} is bounded. So, {zn} is also bounded.
Claim 3.(

1− µ
τn

τn+1

)
(∥yn − wn∥2 + ∥zn − yn∥2) ≤ ∥xn − x∗∥2 − ∥xn+1 − x∗∥2

+ (1− θn)[λ(1− (1− λ)(1− θn))M1 + (1− λ)Ax∗ ],

for some Ax∗ > 0. Indeed, we have

∥xn+1 − x∗∥2 = ∥(1− λ)θn(xn − x∗) + λ(zn − x∗)− (1− θn)(1− λ)x∗∥2

= ∥(1− λ)θn(xn − x∗) + λ(zn − x∗)∥2 + (1− θn)
2(1− λ)2∥x∗∥2

− 2(1− θn)(1− λ)⟨(1− λ)θn(xn − x∗) + λ(zn − x∗), x∗⟩

≤ ∥(1− λ)θn(xn − x∗) + λ(zn − x∗)∥2 + (1− θn)(1− λ)

[
(1− θn)(1− λ)∥x∗∥

+ 2⟨(1− λ)θn∥(xn − x∗) + λ(zn − x∗)∥∥x∗∥
]

≤ ∥(1− λ)θn(xn − x∗) + λ(zn − x∗)∥2 + (1− θn)(1− λ)Ax∗ . (27)

The last inequality obtains by the boundness of {xn}, {zn}, and {θn}, implies there exists
Ax∗ > 0 such that

(1− θn)(1− λ)∥x∗∥+ 2⟨(1− λ)θn∥(xn − x∗) + λ(zn − x∗)∥∥x∗∥ ≤ Ax∗ ∀n.

Now, we estimate ∥(1− λ)θn(xn − x∗) + λ(zn − x∗)∥2. We have

∥(1− λ)θn(xn − x∗) + λ(zn − x∗)∥2

= (1− λ)2θ2n∥xn − x∗∥2 + 2(1− λ)θnλ⟨xn − x∗, zn − x∗⟩+ λ2∥zn − x∗∥2

≤ (1− λ)2θ2n∥xn − x∗∥2 + 2(1− λ)θnλ∥xn − x∗∥∥zn − x∗∥+ λ2∥zn − x∗∥2

≤ (1− λ)2θ2n∥xn − x∗∥2 + (1− λ)θnλ∥xn − x∗∥2 + (1− λ)θnλ∥zn − x∗∥2

+ λ2∥zn − x∗∥2

≤ (1− λ)θn(1− (1− λ)(1− θn))∥xn − x∗∥2 + λ(1− (1− λ)(1− θn))∥zn − x∗∥2. (28)
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Combining (14) and (28), we get

∥(1− λ)θn(xn − x∗) + λ(zn − x∗)∥2

≤ (1− λ)θn(1− (1− λ)(1− θn))∥xn − x∗∥2 + λ(1− (1− λ)(1− θn))∥wn − x∗∥2

− λ(1− (1− λ)(1− θn))
(
1− µ

τn
τn+1

)
(∥yn − wn∥2 + ∥zn − yn∥2).

≤ (1− λ)θn(1− (1− λ)(1− θn))∥xn − x∗∥2 + λ(1− (1− λ)(1− θn))∥xn − x∗∥2

+ λ(1− (1− λ)(1− θn))(1− θn)M1

− λ(1− (1− λ)(1− θn))
(
1− µ

τn
τn+1

)
(∥yn − wn∥2 + ∥zn − yn∥2)

= (1− (1− λ)(1− θn))
2∥xn − x∗∥2 + λ(1− (1− λ)(1− θn))(1− θn)M1

− λ(1− (1− λ)(1− θn))
(
1− µ

τn
τn+1

)
(∥yn − wn∥2 + ∥zn − yn∥2).

Substituting (28) into (27), we get

∥xn+1 − x∗∥2 ≤ (1− (1− λ)(1− θn))
2∥xn − x∗∥2

+ (1− θn)(λ(1− (1− λ)(1− θn))M1 + (1− λ)Ax∗)

− λ(1− (1− λ)(1− θn))
(
1− µ

τn
τn+1

)
(∥yn − wn∥2 + ∥zn − yn∥2)

≤ ∥xn − x∗∥2 ( by (1− (1− λ)(1− θn))
2 ≤ 1 and λ ≥ a)

+ (1− θn)[λ(1− (1− λ)(1− θn))M1 + (1− λ)Ax∗ ]

− a(1− (1− λ)(1− θn))
(
1− µ

τn
τn+1

)
(∥yn − wn∥2 + ∥zn − yn∥2).

This implies that

a(1− (1− λ)(1− θn))
(
1− µ

τn
τn+1

)
(∥yn − wn∥2 + ∥zn − yn∥2)

≤ ∥xn − x∗∥2 − ∥xn+1 − x∗∥2

+ (1− θn)[λ(1− (1− λ)(1− θn))M1 + (1− λ)Ax∗ ].

Claim 4.

∥xn+1 − x∗∥2 ≤ (1− (1− λ)(1− θn))∥xn − x∗∥2

+ (1− λ)(1− θn)

[
αn

1− θn
∥(xn − xn−1∥(1− (1− λ)(1− θn))

λM3

1− λ
+ 2⟨x∗, xn+1 − x∗⟩

]
,

for some M3 > 0. Indeed, using the inequality (4) and (28) we have

∥xn+1 − x∗∥2 = ∥(1− λ)θn(xn − x∗) + λ(zn − x∗)− (1− θn)(1− λ)x∗∥2

≤ ∥(1− λ)θn(xn − x∗) + λ(zn − x∗)∥2 + 2(1− θn)(1− λ)⟨x∗, xn+1 − x∗⟩
≤ (1− λ)θn(1− (1− λ)(1− θn))∥xn − x∗∥2

+ λ(1− (1− λ)(1− θn))∥wn − x∗∥2 + 2(1− θn)(1− λ)⟨x∗, xn+1 − x∗⟩.
(29)
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On the other hand, by the definition of {wn}, we have

∥wn − x∗∥2 = ∥xn − x∗ + αn(xn − xn−1)∥2

= ∥xn − x∗∥2 + α2
n∥xn − xn−1∥2 + 2αn⟨xn − x∗, xn − xn−1⟩

≤ ∥xn − x∗∥2 + α2
n∥xn − xn−1∥2 + 2αn∥xn − x∗∥∥xn − xn−1∥

≤ ∥xn − x∗∥2 + αn∥xn − xn−1(∥αn∥xn − xn−1∥+ 2∥xn − x∗∥)
≤ ∥xn − x∗∥2 + αn∥xn − xn−1∥M3, (30)

for some M3 > 0.
Substituting (30) into (29) we deduce

∥xn+1 − x∗∥2 ≤ (1− λ)θn(1− (1− λ)(1− θn))∥xn − x∗∥2

+ λ(1− (1− λ)(1− θn))∥xn − x∗∥2

+ λ(1− (1− λ)(1− θn))αn∥xn − xn−1∥M3,+2(1− θn)(1− λ)⟨x∗, xn+1 − x∗⟩
= (1− (1− λ)(1− θn))

2∥xn − x∗∥2

+ (1− λ)(1− θn)

[
αn

1− θn
∥xn − xn−1∥(1− (1− λ)(1− θn))

λM3

1− λ
+ 2⟨x∗, xn+1 − x∗⟩

]
≤ (1− (1− λ)(1− θn))∥xn − x∗∥2

+ (1− λ)(1− θn)

[
αn

1− θn
∥xn − xn−1∥(1− (1− λ)(1− θn))

λM3

1− λ
+ 2⟨x∗, xn+1 − x∗⟩

]
.

Claim 5. {∥xn − x∗∥2} converges to zero. Indeed, by Lemma 2.4 it suffices to show that
lim supk→∞⟨x∗, xnk+1−x∗⟩ ≤ 0 for every subsequence {∥xnk

−x∗∥} of {∥xn−x∗∥} satisfying

lim inf
k→∞

(∥xnk+1 − x∗∥ − ∥xnk
− x∗∥) ≥ 0.

For this, suppose that {∥xnk
− x∗∥} is a subsequence of {∥xn − x∗∥} such that

lim infk→∞(∥xnk+1 − x∗∥ − ∥xnk
− x∗∥) ≥ 0. Then

lim inf
k→∞

(∥xnk+1 − x∗∥2 − ∥xnk
− x∗∥2)

= lim inf
k→∞

[(∥xnk+1 − x∗∥ − ∥xnk
− x∗∥)(∥xnk+1 − x∗∥+ ∥xnk

− x∗∥)] ≥ 0.

By Claim 3 we obtain

lim sup
k→∞

(1− θnk
)
(
1− µ

τnk

τnk+1

)
(∥ynk

− wnk
∥2 + ∥znk

− ynk
∥2)

≤ lim sup
k→∞

[∥xnk
− x∗∥2 − ∥xnk+1 − x∗∥2

+ (1− θnk
)[λ(1− (1− λ)(1− θnk

))A1 + (1− λ)Ax∗ ]

≤ lim sup
k→∞

[∥xnk
− x∗∥2 − ∥xnk+1 − x∗∥2]

+ lim sup
k→∞

(1− θnk
)[λ(1− (1− λ)(1− θnk

))M1 + (1− λ)Ax∗ ]

= − lim inf
k→∞

[∥xnk+1 − x∗∥2 − ∥x
nk

− x∗∥2] ≤ 0.

This implies that

lim
k→∞

(∥ynk
− wnk

∥2 + ∥znk
− ynk

∥2) = 0. (31)

It follows from (31) that

lim
k→∞

∥ynk
− wnk

∥ = 0 and lim
k→∞

∥znk
− ynk

∥ = 0. (32)
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Now, we show that

∥xnk+1 − xnk
∥ → 0 as n → ∞. (33)

Indeed, from (31), it follows that

∥znk
− wnk

∥ ≤ ∥znk
− ynk

∥+ ∥ynk
− wnk

∥ → 0. (34)

and

∥xnk
− wnk

∥ = αnk
∥xnk

− xnk−1∥ = (1− θnk
)

αnk

1− θnk

∥xnk
− xnk−1∥ → 0. (35)

Combining (34) and (35), we deduce

lim
k→+∞

∥znk
− xnk

∥ = 0.

Therefore, we have

∥xnk+1 − xnk
∥ = ∥(1− λ)θnk

xnk
+ λznk

− xnk
∥

= ∥λ(znk
− xnk

)− (1− θnk
)(1− λ)xnk

∥
≤ λ∥znk

− xnk
∥+ (1− θnk

)(1− λ)∥xnk
∥ → 0.

Since the sequence {xnk
} is bounded, without any loss of generality we may assume that

{snk
} converges weakly to some z ∈ H, such that

lim sup
k→∞

⟨x∗, xnk
− x∗⟩ = ⟨x∗, z − x∗⟩. (36)

From (35) we get

wnk
⇀ z,

this together with (32), using Lemma 3.2 and assumption Fx ̸= 0 ∀x ∈ C we obtain z ∈ SD

and, from (36) and the definition of x∗ = PSD
(0), we have

lim sup
k→∞

⟨x∗, xnk
− x∗⟩ = ⟨x∗, z − x∗⟩ ≤ 0. (37)

Combining (33) and (37), we have

lim sup
k→∞

⟨x∗, xnk+1 − x∗⟩ ≤ lim sup
k→∞

⟨x∗, xnk
− x∗⟩

= ⟨x∗, z − x∗⟩
≤ 0. (38)

Hence, by (38), limn→∞
αn

1− θn
∥xn − xn−1∥ = 0. Apply Lemma 2.4 to Claim 4, we obtain

limn→∞ ∥xn − x∗∥ = 0. That is the desired result. □

Remark 3.2. 1. We can choose the sequence {αn} that satisfies condition (13) as follows:

αn =

min
{
α,

ϵn
∥xn − xn−1∥

}
if xn ̸= xn−1,

α otherwise,

where α > 0 and {ϵn} is a positive sequence such that ϵn = 0(1 − θn). This means that

limn→∞
ϵn

1− θn
= 0.

2. The parameter {θn} satisfies Algorithm 3.1 as follows: θn = 1− 1

(n+ 1)p
, 0 < p ≤ 1.

Then, it is easy to see that limn→+∞(1− θn) = 0 and
∑∞

n=1(1− θn) = +∞.
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4. Conclusions

In this paper, we investigate a new version of the inertial extragradient algorithm
for finding a solution of the variational inequality problem in Hilbert spaces where the
operator is assumed to be Lipschitz continuous and quasimonotone. The strong convergence
theorem of the proposed algorithm is presented under assumptions of the quasimonotonicity
and the Lipschitz continuity of the variational inequality mapping.
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