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FIDUCIAL INFERENCE: AN APPROACH BASED ON 
BOOTSTRAP TECHNIQUES 

H.-D. HEIKE1, C-tin TÂRCOLEA2, Adina I. TARCOLEA3, M. DEMETRESCU4 

În prima parte a acestei lucrări sunt prezentate conceptele de bază ale 
inferenţei fiduciale. La aplicarea acestui principiu inferenţial apar dificultăţi când 
distribuţia variabilei pivotale folosite nu este cunoscută. În partea a doua este 
propusă o soluţie pentru această problemă constând în folosirea de metode 
bootstrap. 

The basic concepts of fiducial inference are presented in the first part of this 
paper. Problems arise if the form of the distribution of the pivot used by the fiducial 
argument is not known. Our main result consists in showing how bootstrap 
techniques can be used to handle this kind of situation. 
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1. Introduction 

Commenting on Fisher’s work, [3] stated at the beginning of his paper:  
 
’The history of fiducial probability dates back over thirty years and so 
is long by statistical standards; however, thirty years have not proved 
long enough for agreement to be reached among statisticians as to the 
derivation, manipulation and interpretation of fiducial probability’.   
 

Forty years later, the situation is very much the same. What is actually the 
fiducial theory? The fiducial model designed by Fisher leads us to objective 
probability statements about values of unknown parameters solely on the basis of 
given data, without resorting to any prior distribution. The idea that the initially 
assumed randomness may be preserved was one of Fisher’s great contributions to 
the theory of statistical estimation; the lack of acceptance arose from the fact that 
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Fisher failed to formulate clearly and completely the framework in which it can be 
applied.  

The main contribution of this paper is to show how computer-intensive 
resampling methods can circumvent some of the difficulties associated with 
fiducial inference, aiming to extend the applicability of the fiducial method in 
practical situations.  

This paper is organized as follows. First, fiducial inference is presented 
with the help of two illustrative examples; some of its properties and 
characteristics are summarized. Section 3 provides a proposal for enlarging the 
area of applications of the fiducial argument, based on bootstrap techniques. The 
final section concludes.  

2. Fiducial inference 

Methods of measuring uncertainty of parameters in statistical models 
include use of Bayes theorem, likelihood-inference as well as confidence and 
significance intervals. Although statisticians have a variety of procedures, none of 
these covers all the possible situations and that is why fiducial inference deserves 
a place among them.  

It is generally agreed that statistical inference should rely on the Bayes 
theorem, if the statistical model includes a valid prior distribution. But a prior 
distribution is not always obtainable and the use of uninformative priors can lead 
to many inconsistencies and contradictions. If there is a prior, it may be empirical, 
as in technical applications, or of subjective nature, as possibly in economic 
problems. Nevertheless, this subjectivity can cause some loss of accuracy in the 
results.  

If the prior distribution of the Bayesian methodology is not available, 
statistical inference can use the likelihood function, which expresses, for example, 
the plausibility of parameter 1θ  against parameter 2θ  provided by the sample. 
Because the likelihood approach is a relatively weak method of expressing 
uncertainty, it is used only when other methods of inference are not available.  

The confidence interval is known to be a random interval, which covers 
the fixed but unknown parameter at a confidence level 1 α−  with a probability of 
( )1 100α− ⋅ %  in repeated sampling. It is universally applicable, but has the 
disadvantage that the probability statement rests on repeated sampling, while 
actually only one sample is available. Intervals constructed by this method include 
the true value in the mean, but possibly not in an actual case, based on a given 
sample. Consequently, the probability statement is associated to a procedure 
concerning the whole sample space and not to a random variable, as it may be 
desired.  
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With the introduction of fiducial probability, Fisher paved the way for 
objective probability statements related to the unknown real-valued parameter θ  
without relying on prior distributions, but based exclusively on sample data and 
conditional on the assumed statistical model. Since parameters are viewed as 
constants, fiducial probability is not a frequentistic probability, but a probability 
statement that mirrors the uncertainty of the parameter due to the randomness of 
the sample.  

The one-dimensional case, in which the fiducial distribution is known to 
be unique, is obviously the simplest situation to which the fiducial method can be 
applied, see [3] and his sources.  
 
Example 1 (adapted from [9]). Let 1 2, , ..., KX X X  be a random sample from the 

population X , 2~ σ⎛ ⎞
⎜ ⎟
⎝ ⎠
,X N m , with m  und σ  unknown. Then, the two-sided 

fiducial interval can be derived in the following way. 
First, the pivot T  is considered:  

1~ −

−
= ,K

X mT K t
S

 

so that:  

2 21
1 1 1

α α

α
⎛ ⎞
⎜ ⎟−⎜ ⎟

− −⎜ ⎟
⎜ ⎟
⎝ ⎠

−
≤ ≤ = − .K KS

K

X mP t t
 

The fiducial argument states that, given an observed sample (here, with mean x  
and standard deviation s ), this probability statement can be transferred onto the 
parameter m  itself. X  is a sufficient statistic for the unknown parameter m , and, 
based on the distribution of X , a proper fiducial interval for the parameter m  
can be obtained as follows:  

2 21
1 1 1
α α

α−
− −

⎛ ⎞− ⋅ ≤ ≤ − ⋅ = − .⎜ ⎟
⎝ ⎠

K K
s sP x t M x t
K K  

Here, M  is a random variable defined on a suitable probability space which 
captures the uncertainty associated with the parameter m  in light of the given 
sample. A similar result occurs for a one-sided interval:  

1 1α α−
⎛ ⎞≤ − ⋅ = − .⎜ ⎟
⎝ ⎠

K
sP M x t
K  

Hence, the fiducial distribution of m  is Student’s t  distribution with 1−K  
degrees of freedom, scaled by /s K  and shifted by x .  
 

Note that, initially, m  is assumed to be a fixed, unknown constant. There is no 
prior distribution for m  and the Bayes theorem is not used in the above inversion. 
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More than that, the existence of a prior distribution for m  would invalidate the 
fiducial distribution, because X  would then not contain all available information 
about ;m  the additional knowledge will change the resulting distribution yet in the 
beginning of the reasoning.  

In this way, the informational content of the sample is fully used to express 
the uncertainty of a parameter, uncertainty generated by the sample itself. This 
transformation of a probability statement for an observable variable into a 
probability statement for a parameter by means of a pivotal variable on the basis 
of a given sample will be explained in a more general setting as follows:  

1. Let Z  be a statistic/estimator for a real-valued parameter θ  and ( )θ,F z  its 
cumulative distribution function.  

2. Given a suitable pivot ( )θ, ,T Z  the cumulative distribution function ( )TF t  
of this pivot can be derived, so that it should not depend on the true value of 
θ . 

3. Considering a fixed value z  (provided by the sample) of Z , one obtains the 
fiducial distribution of θ ; in the continuous case, under additional regularity 
conditions, its density is well-defined and expressed as follows:  

( ) ( )θθ
θ

∂ ,
| = ,

∂
F z

f z
 

turning out not to depend on the pivot used. Note that the fiducial distribution is 
not necessarily unique, since there may be more than one statistic for the 
considered parameter.  

Pivots, although not explicitly appearing in this density, are important in 
deriving the fiducial probability and interpreting it. A pivot could be obtained by 
considering the pivotal transformation ( )θ,T Z  as an unknown function, deriving 
the distribution function of T  from the distribution function of Z , requiring that 
its partial derivative with respect to θ  equals zero, and solving the resulting 
equation. Note that pivots are by no means unique, since any function of T  will 
also have a distribution that is independent of θ .  

A number of authors - [4], [8], [16] - criticized Fisher’s fiducial approach and 
presented inconsistent or seemingly paradoxical results of his theory; other 
authors defended Fisher’s position, e.g. [18], or set up a theoretical framework 
that restricts its application, , e.g. [11], which actually seems the best way to go 
on. One of the points of criticism was that it involves the transformation from a 
probability statement of a random variable to a probability statement of a 
parameter which is claimed to be constant. This argument arises from a 
misinterpretation, because it has never been claimed that the parameter θ  is a 
random variable defined by an actual distribution, but, to the contrary, it is said 
that the fiducial distribution of a parameter θ  is an expression of the uncertainty 
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of the fixed parameter due to the sampling. Especially those situations, where the 
dimension of the parameter space is two or more, have frequently generated 
criticism about ambiguities of the fiducial argument. Many of the difficulties have 
been resolved in the meantime or shown to be a consequence of restrictive 
axiomatic conclusions, see [1], [17].  

In response to early criticism, Fisher found himself forced to write a list of 
criteria of fiducial inference that should be adhered to: the random variable 
involved should be continuous, the statistic should be complete and sufficient, the 
pivot should involve only one parameter and vary monotonically with the 
parameter, etc. Nevertheless, [19] proved that the distribution induced by a proper 
pivotal variable is not necessarily unique; the induced fiducial distribution 
depends on the particular set of pivotal quantities chosen. No supplementary 
requirements which could ensure uniqueness could be found; however, the non-
uniqueness of the induced distribution must not be considered as a great 
disadvantage. The criterion of uniqueness is likely to have been applied more 
severely to fiducial probability than to other areas of inference, not because of its 
real necessity, but simply because Fisher’s claim of uniqueness. Moreover, the 
required sufficiency is likely to have been an attempt to secure uniqueness.  

One of the points that were also considered as a major inconsistency of 
fiducial theory was the fact that fiducial probability sometimes doesn’t obey the 
Bayes theorem, see [16]. The fiducial distribution of a parameter based on a first 
sample cannot be always used as a prior in Bayes theorem along with a second 
sample in order to produce a posterior distribution for the parameter based on both 
the samples; the problem consists in the fact that the two samples from this 
mechanism are not always interchangeable. As later stated by some authors, it 
would be reasonable to accept that there may be some limitations to the 
applicability of Bayes theorem and that universal applicability is a task very 
difficult to achieve. [16] also provided the conditions that a fiducial distribution 
must fulfill to be a Bayes distribution in the one-dimensional case and [3] proved 
that an extension for a multidimensional situation is not always possible.  

Another criticism was the fact that both fiducial argument and confidence 
argument often use the same pivotal variable and coincide in many situations. 
This led some people to think that the whole fiducial method is nothing else than 
the classical confidence theory. [1] and [5] explained in their papers why the two 
arguments are conceptually different and provide a more detailed analysis of the 
difference between the concepts of ’fiducial’ and ’confidence’ interval. In addition 
to that, confidence intervals actually need not be identical to the fiducial intervals, 
as can be seen in an example for two-sided intervals, proposed below.  
 
Example 2. Consider the case where a parameter θ  is known to lie in an open 
interval ( )≡ ,I a b , although its exact value is not known. The fiducial distribution 
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of the parameter θ  can be shown to be the usual fiducial distribution, censored 
on the interval I . 
Confidence intervals can be built by inverting a two-sided test for the parameter 
in cause. This is done by taking all those values of the parameter for which a two-
sided (usually symmetric, or equal-tailed) test at level α  would not be rejected, 
when using them as null hypotheses. Thus, coverage is guaranteed, whatever the 
true value of the parameter is. 
In the general case, one is not bound to split the significance level of the tests 
equally. In fact, these do not even have to be constant for all θ ∈ .I  Imagine the 
case where the significance level is split depending on the value of the parameter 
under the null hypothesis. For instance, choose the lower critical value under the 
null hypothesis 0θ θ=  such that the probability of the test statistic being smaller 
equals ( )0α θ⋅ ,g  where g  is a continuous and increasing mapping from I  onto 

[ ]0 1, .  A linear function may be used, motivated by symmetry reasons. Then, the 

probability that the test statistic exceeds the upper critical value is ( )01α θ⎛ ⎞
⎜ ⎟
⎝ ⎠
⋅ − g . 

This is done for all possible null hypotheses in I . 
Based on these rejection bounds, one obtains confidence intervals with exact 
coverage, but they no longer have the disadvantage that degenerated confidence 
intervals appear with large probability, should the true value of the parameter be 
close the boundaries. But, more importantly, it is straightforward to check that 
these confidence intervals are not identical to the fiducial intervals, since, given 
the form of the fiducial distribution when restricting the parameter space, the 
latter can degenerate to a point, while the former always have non-zero length.  
 

Until recently, the pivotal inference was supposed to be rigorously applicable 
only to data whose distribution was taken to be continuous. Although this paper 
deals with fiducial inference for continuous distributions, it is useful to know that 
an approach for the discrete case is possible, as suggested, among others, by [13]. 
See also [14] for a discussion of the case of the multinomial proportions. 

The general nowadays conclusion about the fiducial theory is that the general 
form of fiducial inference is appealing, but that many of the restrictions imposed 
by Fisher are awkward or ambiguous and ought to be replaced or, in some cases, 
removed.  

3. A proposal enlarging the basis of applications of fiducial probability 

A comparison of different methods of assessing the uncertainty of parameters 
in statistical models reveals that fiducial inference deserves its own area of 
application. The use of fiducial inference is appropriate when parameter 
uncertainty due to sample evidence has to be measured by a probability approach. 
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Certainly, the applicability of fiducial inference is limited by numerous safeguards 
to be obeyed. An important restriction is the necessity of knowing the probability 
distribution of the pivotal quantity to be used in the inversion. We suggest that 
this difficulty can be solved by bootstrapping the unknown distribution of the 
pivotal quantity. One could use, for instance, the following resampling procedure 
as in [6]:  

1. Suppose a random sample 1 2, , ..., KX X X  is taken from a population with an 
unknown cumulative distribution function ( )θ, ;F x   

2. Let Θ̂  be a statistic for θ,  where Θ̂  is a function of the sample mean  

( )Θ̂ = ;h X  

3. Generate (with replacement) B  samples from the original sample  

 11 12 1 1 2 1 2, , ..., ,..., , , ..., ,..., , , ..., ;K b b bK B B BKX X X X X X X X X  
4. Compute the approximate pivot on each data set  

ˆ

ˆˆ

Θ

−ΘΘ=
b

b
bY

S
 

where  
( )ˆ = ,Θ bb h X  

1

1ˆ ˆ
=

Θ = Θ∑
B

b
bB

 

and 
Θ̂b

S  is the bootstrap estimator of the standard deviation of Θ̂b ;  
5. Produce the ordered data set e.g. with 1000=B   

( ) ( )1 1000,..., ;Y Y
 

6. Then, the following probability statement stands:  

2 21

ˆ

ˆˆ
1

α α

α
⎛ ⎞
⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟Θ⎝ ⎠

−ΘΘ≤ ≤ ≈ − .
b

bP y y
S

 

With e.g. 0 05α = .  it follows  

( )

( )

2

2

26

1
975

α

α−

=

= ;

y Y

y Y
 

Since this probability statement apparently doesn’t depend on θ,  it follows 
in analogy that  

2 21
ˆ ˆ

ˆ ˆ 1
α α

θ θ α⎛ ⎞−
⎜ ⎟⎜ ⎟Θ Θ⎝ ⎠
− ⋅ ≤ Θ ≤ − ⋅ ≈ − ,

b b
P y s y s  

and, for the one-sided case,  
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( )1
ˆ

ˆ 1αθ α−
Θ

− ⋅ ≤ Θ ≈ − ,
b

P y s  

respectively.  
The last two relations are to be interpreted as fiducial statements, consequently 

Θ  takes the role of a random variable and, with given ˆ ( )θ = h x  and 
Θ̂b

s  obtained 
from the sample, the fiducial distribution of θ  can be ascertained. One could, of 
course, apply some smoothing technique to obtain a proper fiducial density.  

The quantity  

ˆ

ˆˆ

Θ

−ΘΘ=
b

b
bY

S
 

is called an approximate pivot, since its distribution is only approximately 
independent of θ.  The pivot quality and its large sample distribution are 
guaranteed by the following extension of the central limit theorem, see for 
instance [2, p. 29].  

Given the i.i.d. random variables kX  ( 1 )= ,..., ,k K  with ( ) μ=kE X  and 

( ) 2σ=kVar X  (finite), the classical central limit theorem states that:  

( )
( )0 1

μ

σ

−
⎯⎯→ , →∞, . .d

K X
N for K i e

 
( )( ) μ
σ

⎛ ⎞−
≤ ≈ Φ .⎜ ⎟⎜ ⎟

⎝ ⎠

K xP X x
 

The following result is known from the probability theory: suppose that Ka  is a 
sequence of constants tending to ∞,  b  is a fixed number and KX  a sequence of 
random variables for which holds  

( )− ⎯⎯→ →∞.d
K Ka X b X for K  

If h  is a real function of a real variable, differentiable, and with a continuous 
derivative ′h  at b , then  

( ( ) ( )) ( )′− ⎯⎯→ →∞.d
K Ka h X h b h b X for K  

In our case, = ,KX X  μ=b , =Ka K , 2~ (0 )σ,X N  and, as a supplementary 
condition, ( )μ′h  is presumed to be different from zero.  

As a result of the above properties, approximations to the distributions of 
functions ( )h X  can be obtained under certain regularity conditions:  

( )( ) ( )
( ( ( ))μ

σ μ′

⎛ ⎞
− ≤ ≈ Φ⎜ ⎟⎜ ⎟⋅⎝ ⎠

xP K h X h x
h  
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( )( ) ( )
( )

( )
 

μ
σ μ′

⎛ ⎞−
≤ ≈ Φ , . .⎜ ⎟⎜ ⎟⋅⎝ ⎠

K x h
P h X x i e

h
 ( ) ( )

( )( )22

~
σ μ

μ
′⎛ ⎞

⎜ ⎟, .
⎜ ⎟
⎝ ⎠

approx h
h X N h

K
 

This approximation covers among others inference concerning mean, variance, 
correlation coefficient and exponential model applications.  

Since the pivot has a valid asymptotic distribution, fiducial intervals generated 
by means of this resampling approach are most likely correct of higher order than 
the usual t  and normal intervals respectively, see e.g. [12] for regularity 
conditions. The bootstrap estimates of the α -level quantile of bootstrap 
distributions are in error by only 1( )−O K  (where K  is the sample size). 
Comparatively, the traditional normal approximation is in error by a much worse 

0.5( )−O K . Also, the approximations by Student’s t  distributions hardly improve 
on the normal approximation. Thus, the bootstrap has higher accuracy over 
traditional methods employed to approximate critical points, while the fiducial 
theory could allow for estimation, when no other powerful estimation methods are 
available.  

A difficulty that can appear is that the fiducial intervals may vary erratically if 
the sample size is small, but this problem can be solved by variance stabilizing 
transformations. In fact, these kind of transformations are sometimes 
recommended, because the use of the untransformed bootstrap procedure can lead 
to intervals too wide and even outside the allowable range of the values for the 
estimated parameter. One can obtain different bootstrap intervals depending on 
what scale is used, and finding the most advantageous transformation for our 
goals is an important challenge. The most appropriate transformation should 
normalize and also stabilize the variance, but this is not always possible. 
Fortunately, it was shown that it is sufficient to have variance stabilizing 
transformation and that this can be determined with the help of the given data, see 
for instance the algorithm given in [7, p. 165].  

Of course, there are ”better” bootstrapping algorithms, with respect to 
different criteria, but we used this simple one in order to illustrate the use of 
resampling procedures within fiducial inference.  

Aside from the discussed case, other problems of fiducial inference can be 
solved by the proposed method, as the use of fiducial distributions in discrete 
cases and in multivariate applications.  

4.Conclusions 

As a result of criticism and caveats the range of applications of fiducial 
inference is limited, although the central argument is theoretically sound and 
fiducial probability should have its place in the foundation of statistics. Our 
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proposal to modify the fiducial approach may help to establish fiducial inference 
in statistical practice as a means of evaluating the uncertainty of parameters, based 
exclusively on the informational content of samples through objective probability 
statements.  
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