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GENERALIZED SWITCHING TABLE OF THE DTC OF AN 

INDUCTION MOTOR DETERMINED BY REINFORCEMENT 

LEARNING 

Abderrahmane BERKANI1, Karim NEGADI2, Tayeb ALLAOUI3, Fabrizio 

MARIGNETTI4 

This paper proposes a new method of reinforcement learning. (RL) method 

based on Q learning algorithm applied to the direct torque control (DTC) of an 

induction machine powered by a multilevel inverter. The Q-learning algorithm is 

used in direct torque control with multilevel inverters to find optimal actions at data 

states off-line among several available discrete actions, updating the action (voltage 

vector) awards received. The results obtained by the reinforcement learning (RL) 

method are validated by simulation using Matlab/Simulink. The generalization of 

this approach to N levels without any difficulty (increase of the level of inverter and 

therefore of the number of voltage vectors to be selected) gives the reinforcement 

learning method an appreciable advantage. It makes it possible to determine the 

switching table automatically regardless of the number of voltage levels of the 

inverter used. 

 

Keywords: Direct torque control, multi-level inverter, voltage balancing, control 

of switching frequency, reinforcement learning, Q-learning. 

1. Introduction 

The direct control techniques were originally based on a qualitative and 

simplified knowledge of the behavior of the machine. Their characteristics are 

based on the elimination of the modulation block in Pulse Width, the definition of 

switchboards from which are chosen "directly" the voltage vectors and the 

hysteresis adjustment of the torque and the stator flux [1]. The implementation of 

these algorithms was therefore simpler, at a time when the computer resources 

continued to grow in power and speed. 
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Simultaneously, new and promising static multilevel conversion 

topologies have been proposed and increasingly used in high power variable 

speed drive applications. Compared to conventional 2-level structures, in which 

the output voltage can be modulated only by varying the duration of use of the 

high and low state, Pulses Width Modulation (PWM). Multilevel structures indeed 

open a new dimension to the amplitude modulation. So, in the present study, our 

main objective is to propose new strategies of the direct control type, compatible 

with multilevel voltage inverters more particularly the Neutral Point Clamped 

(NPC) having any number of levels. 

The development of the switching table consists of formulating linguistic 

rules in which the process will be controlled. However, there is no general 

principle to determine them systematically determining them. This problem can 

be addressed into two ways. The first is called natural extraction, is done through 

a human expert familiar within the system. As part of this study, the formulation 

of the rules is thus based on a qualitative analysis of the vector diagram of the 

(DTC). 

However, this analysis becomes rapidly imprecise and complex as the 

number of voltage levels increases and the problem of the optimized choice of 

inverter voltage vectors must therefore be studied more precisely and deeply. 

The second approach is used when natural extraction is not feasible in its 

entirety. It consists of using learning methods. In our research paper, we have 

focused on reinforcement learning methods that actively explore all states and 

receive criticism in the form of rewards and punishments. Reinforcement learning 

means routing from situation to action in a way that the numerical reward of the 

action is in the maximum. In this method the learner is not told what to do, but he 

tries to discover the action with maximum reward [2]. Therefore, reinforcement 

learning methods is signified by Q-Learning algorithm [3]. This algorithm is used 

by the agent to learn through experience or training. 

Every repetition equals a training course. Its aim is to create the brain of 

the agent, which is displayed by Q matrix. More training will lead to a better Q 

matrix that can be used by the agent to move in the optimal direction. In this way, 

by having a Q matrix, the agent can choose the best state by referring to the state 

matrix and selecting the maximum choice, rather than doing a lot of exploration 

and searching [4].  

To designate this system, the study will deal with controlling induction 

motor drive. It is assumed that the agent has no information about the drive 

system. It means the agent can collect states and actions of the system during the 

real behavior of the motor. 

The structure of the presented work is organized as follow: the description 

of the proposed approach is set in section 2. The physical modeling and control of 

different part of our system with their equations model is set in section 3, 4, 5, 6, 7 
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and 8. The simulation results of the studied are presented in section 9. Section 10 

summarizes the work done in the conclusion. 

2. Proposed approach 

In any generalization of direct control strategies, the problem of the 

optimized choice of inverter voltage vectors must therefore be studied more 

precisely and more thoroughly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Schematic diagram of the proposed Q learning approach 

 

We propose in this study, a method of learning based on the method of 

reinforcement which makes it possible to determine the optimal vector of tension 

for the tables of commutation used in the direct control of the torque of an 

asynchronous machine fed by a multilevel inverter. We will show the interest of 

this approach for a five-level inverter as show in Fig. 1. 

3. Dynamic Model of IM 

The state space representation of the induction motor with the stator 

currents and the rotor flux linkages components as state variables can be written 

as [5]: 
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 (1) 
where: 

rT  : is the rotor time constant; 

  : is the leakage coefficient. 

The electromagnetic torque and the rotor speed are given by: 

3
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where: 

sR , rR : are the stator and rotor winding resistances (Ω); 

L , sL , rL : are the mutual, stator and rotor inductance (H); 

p : is the number of pole pairs; 

e , r , 
sl

 : are the synchronous, rotor and slip speed in electrical (rad/s); 

sd
v , sqv : are the stator voltage (d-q) components in the rotor flux oriented 

reference frame (V) ; 

sd
i , sqi : are the stator current (d-q) components in the rotor flux-oriented 

reference frame (A); 

rd
 , rq : are the rotor flux (d-q) components in the rotor flux-oriented reference 

frame (Wb);  

em  : is the electromagnetic torque (N.m); 
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l
 : is the load torque (N.m); 

J  : is the motor inertia (Kg.m2); 
B : is the viscous friction coefficient respectively (N.m/rad/sec).  

The induction machine parameters used in this system is shown in table 1. 
 

Table 1 

Induction Motor Parameters 

Components Rating values 

Voltage V 400 V 

Sample period Te 50 µs 

Rated power 7.5 kW 

Rated voltage 460 V 

Rated speed 1760 rpm  

Rated frequency 60 Hz 

Rotor resistance 0.451 Ω 

Stator resistance 0.6837 Ω 

Stator inductance 0.004152 H 

Rotor inductance 0.004152 H 

Magnetizing Inductance 0.1486 H 

Number of poles 2 

Rotor inertia 0.05 Kg.m2 

Friction Coefficient 0.008141 N.m.s/rd 

4. Modeling of Five Level Inverter 

The Q-Learning algorithm is used to determine the optimal actions for 

each state, it is then determined deterministically and non-randomly (difference 

with the previous flowchart) according to an exploitation term (the quality of the 

action) and an exploration term based on a counter measuring the frequency of 

application of actions in the states and the apprentice then favors actions little 

tested. 

A two-level inverter is only able to produce six non-zero voltage vectors and two 

zero vectors [6, 7]. The representation of the space voltage vectors of a five-level 

inverter for all switching states forming a four-layer hexagon centered at the 

origin of the (d, q) plane and a zero-voltage vector at the origin of the plane, as 

depicted in Fig. 2. According to the magnitude of the voltage vectors, we divide 

them into nine groups:  

(V0); (V1, V11, V21, V31, V41, V51); (V7, V17, V27, V37, V47, V57) ; (V2, V12, V22, 

V32, V42, V52); (V6, V9, V16, V19, V26, V29, V36, V39, V46, V49, V56, V59); (V3, V13, 

V23, V33, V43, V53); (V8, V18, V28, V38, V48, V58); (V5, V10, V15, V120, V25, V30, V35, 

V40, V45, V50, V55, V60); (V4, V14, V24, V34, V44, V54). 
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Fig. 2. Five level inverter 

 

The Zero Voltage Vector (ZVV) has five switching states, the Large Voltage 

Vector (LVV) have only one [8]. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Topology of the 61 vectors generated by a NPC structured five level inverter 
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Table 2 

Switch states of the five levels NPC inverter  

State S11 S S S S S S S V 

2 ON ON ON ON OFF OFF OFF OFF 
4

dE
 

1 OFF ON ON ON ON OFF OFF OFF 
2

dE
 

0 OFF OFF ON ON ON ON OFF OFF 0 

5. Flux and torque Estimator 

The (d-q) axes stator flux linkage is estimated by computing the integral of 

difference between the respective (d-q) input voltage and the voltage drop across 

the stator resistance. 

( )ssd sd sdR i v dt = − +      (4)
 

( )sq s sq sqR i v dt = − +
 

    (5) 

The resultant stator flux linkage can be expressed as: 
2 2

sqsd = +       (6) 

The location of the stator flux linkage should be known so that the appropriate 

voltage vector is selected depending upon the flux location. 
 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Torque and flux estimation 

6. Torque and flux control 

The main objective is to define optimal selection rules for voltage vectors 

based on the torque and flux error defined as follows: 

ssref  = −       (7) 
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emref =  −       (8) 

For the control of the flux, the error (  ) is localized in one of the three 

associated intervals and which are fixed by the constraints: 

max

maxmin

min

 

 

 

 
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 



 


     (9) 

The level of the suitable flux is bounded between ( min ) and ( max ), 

is therefore controlled by a two-level hysteresis comparator. The electromagnetic 

torque is equal to the load torque in the steady state. It is then the most important 

variable for the electromagnetic considerations of training. Therefore, high 

performance for torque control is required. To improve the control of the torque, 

we associate with the error of the pair ( ) five regions defined by the following 

constraints: 
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The torque control is here ensured by a hysteresis comparator with two 

upper bands ( )2max1max ,    and two lower bands ( )2min1min ,    illustrated 

by the Fig. 5.  
 

 

 

 

 

 

 

 
 

Fig. 5. Hysteresis blocks of the DTC with NPC inverter  
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The best margin of the control of the pair is that localized by ( )1max1min ,    and 

the region bounded by ( )2max2min ,    should give useful values of the couple. 

7. Proposed Q Learning Algorithm 

Q-Learning is the most used reinforcement learning algorithm. Three main 

functions participate in Q-Learning: an evaluation function, a reinforcement 

function and an update function (Fig. 6). From the current situation as it is 

perceived by the system, the "evaluation function" proposes an action based on 

the knowledge available within the internal memory. This knowledge is stored as 

an utility value associated with a pair (situation, action). The selected action is the 

one with the best probability of positive reinforcement (reward). This proposal 

action proposal is however altered to allow the exploration of the space of the 

situation-action pairs [9, 10]. 

Here the flux and torque estimators are used to determine the actual value of 

torque and flux linkages. In this block, the VSI voltage vector is entered in and it is 

transformed to the d-q stationary reference frame. The three variable phases are 

transformed into the (d-q) axes variables [11]. 

 

 

 

 

 

 

 

 

 
Fig. 6. Principle of the Q-Learning method 

8. Application Q Learning Algorithm 

The Q-Learning algorithm is used to determine the optimal actions for each state, 

it is determined deterministically and non-randomly (difference with conventional 

methods) according to an exploitation term (quality of the action) and an 

exploration term based on a counter measuring the frequency of application of the 

actions in the states and the apprentice then favors the actions little tested. We use 

three inputs (torque error, flux error and sector) each input having respectively 

nine, three and six states, the output contains 61 vector voltages (actions) and 

initially the switching table is empty and the objective of the learning method to 

fill the states where we must find the actions are as follows: 

If (ccpl is Ai) et (cflx is Bj) and (N is Ck) So (The output is Vii) 

where: 
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Situatio
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Ai : is the state of the torque error (4,3,2, 1, 0, -1, -2,-3,-4)(i=1 :9) 

Bj : is the state of the flux error (1,0,-1) (j=1 :3) 

Ck :  is the sector where the flux vector is (k=1 : 6) 

Vii  is the action elected in each rule from a set A of available actions (distinct 

vectors) (ii=1 :61) 

• Possible states 

There are totally 162 possible states (9 × 3 × 6), whose learning method should 

find their optimal actions. In this case it has a new switching table that has not yet 

studied in our work. 

• The reinforcement function 

The first reinforcement function used is defined as follows: 

if (error_flux<=0.1) & (error_flux>=-0.1) & (error_torque<=3) & 

(error_torque>=-3) 

Reward= 10; 

else 

Reward= -1; 

End 

9. Simulation Results 

9.1. The switching table found 

The tables (θ1 to θ6) give the actions chosen for each state after the learning has 

been completed. The policy consists in choosing only the actions with the 

maximum qualities (t-optimal actions). 
 

Table 3 

Switching table found by the Q Learning method 

1  2  3  
 

     εψ  

εT      
1 0 -1 

4 V14 V14 V22 

3 V51 V51 V12 

2 V51 V2 V51 

1 V12 V  V22 

0 V4 V28  40 

-1 V1 V2 V  

-  V11 V21 V3  

-3 V11 V41 V12 

-4 V4 V 4 V40 

 

      εψ  

εT      
1 0 -1 

4  24 V29 V39 

3  13 V42 V52 

2 V42 V21 V42 

1 V3 V51 V43 

0 V20 V29 V43 

-1 V51 V11 V13 

-2 V21 V21 V22 

-3 V21 V41 V2 

-4 V8 V37 V60 

 

     εψ 

εT      
1 0 -1 

4  26 V32  43 

3 V 1  31 V52 

2 V1  V21 V52 

1 V12 V31 V53 

0 V24 V22 V54 

-1 V1 V48 V33 

-2 V11 V1 V51 

-3 V11 V1 V51 

-4 V53 V23 V2 
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4  5  6  
 

    εψ  

εT      
1 0 -1 

4 V37 V5  V3 

3 V11 V3  51 

2 V 1 V33 V 1 

1 V31 V11 V5  

0 V34 V33 V14 

-1 V 1 V1 V31 

-2 V59 V11 V11 

-3 V1 V11 V8 

-4 V33 V21 V0 

 

     εψ   

εT       
1 0 -1 

4 V54 V50 V4 

3 V53 V52 V3 

2 V52 V22 V2 

1 V51 V51 V1 

0 V49 V46 V17 

-1 V31 V31 V21 

-2 V32 V1 V22 

 3 V33 V32 V23 

-4 V34  44 V2  

 

     εψ     

εT     
1 0 -1 

4 V54 V8  18 

3 V57 V23 V52 

2 V51 V53 V3 

1 V1 V 1 V26 

0 V42 V 2 V24 

-1 V1 V41 V21 

-2 V1 V11 V1 

-3 V1 V1 V1 

-4 V41 V4 V21 

9.2. Validation of obtained switching table and discussions 

To verify the technique proposed in this paper, digital simulations based on 

Matlab/Simulink have been implemented.  

A step change of reference torque was applied between different times 0.2 s, 0.4 s, 

0.6 s and 0.8 s. Motor started up by no-load then after 0.1 s, a different values of 

torque are applied respectively 35 N.m, 65 N.m, 50 N.m, -35 N.m and 50 N.m. 

Torque, flux amplitude, three phase currents and stator voltage according to time 

are showed in Fig. 7 and Fig. 8. Fig. 7 shows that switching states has become 

more regular and also torque ripple is less using Q learning algorithm. 
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Fig. 7. Simulations results of DTC based Q learning algorithm 
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Fig. 8. Simulations results of conventional DTC 

 

The simulation results in Fig .8 shows that the current's stator ripples obtained 

with Q learning method is significantly reduced compared to (DTC) conventional 

Fig.10. The ripple of torque with Q learning strategy is significantly reduced. 
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    Fig. 9. Spectrum of current (DTC based Q learning)        Fig. 10. Spectrum of current (DTC conventional 
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It’s noticed that the statorique currents obtained with Q learning method 

presented a good THD 23.73% in fig. 9 compared with the results obtained with 

(DTC) conventional Fig.10. The behavior of induction motor fed by a five-level 

inverter, using the switching table found by the reinforcement learning method 

(Q-Learning) reduces advantage the harmonics of currents and the ripple of torque 

and flux. 

10. Conclusions 

Reinforcement Learning is a type of Machine Learning. It allows 

machines and software agents to automatically determine the ideal behaviour 

within a specific context, in order to maximize its performance. The reinforcement 

learning method (RL) trains algorithms using a system of reward and punishment. 

By interacting with its environment, the agent receives a delayed reward in the 

next time step to evaluate its previous action. Indeed, its effectiveness has been 

shown in the context of (DTC) with multilevel inverters to find their switching 

tables. So the Q-Learning algorithm applied to (DTCs) makes it possible to make 

the optimal choice for each situation of one of several discrete actions available. 

The results obtained by the reinforcement learning method in case of 5 levels of 

inverter show the excellent dynamic performance of torque and flux control 

compared to conventional approaches. The generalization of this approach to N 

levels without any difficulty (increase in the level of inverter). Therefore, the 

number of voltage vectors to be selected gives the reinforcement learning method 

an appreciable advantage. In other words, it determines the switching table 

automatically regardless to the number of voltage levels of the inverter used. 

Contrary to the methods presented previously, when this number of levels 

increases; all of them are based on a qualitative analysis with the whole 

inaccuracies. 
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