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GENERALIZED SWITCHING TABLE OF THE DTC OF AN
INDUCTION MOTOR DETERMINED BY REINFORCEMENT
LEARNING

Abderrahmane BERKANIY, Karim NEGADI?, Tayeb ALLAOUI?, Fabrizio
MARIGNETTI*

This paper proposes a new method of reinforcement learning. (RL) method
based on Q learning algorithm applied to the direct torque control (DTC) of an
induction machine powered by a multilevel inverter. The Q-learning algorithm is
used in direct torque control with multilevel inverters to find optimal actions at data
states off-line among several available discrete actions, updating the action (voltage
vector) awards received. The results obtained by the reinforcement learning (RL)
method are validated by simulation using Matlab/Simulink. The generalization of
this approach to N levels without any difficulty (increase of the level of inverter and
therefore of the number of voltage vectors to be selected) gives the reinforcement
learning method an appreciable advantage. It makes it possible to determine the
switching table automatically regardless of the number of voltage levels of the
inverter used.

Keywords: Direct torque control, multi-level inverter, voltage balancing, control
of switching frequency, reinforcement learning, Q-learning.

1. Introduction

The direct control techniques were originally based on a qualitative and
simplified knowledge of the behavior of the machine. Their characteristics are
based on the elimination of the modulation block in Pulse Width, the definition of
switchboards from which are chosen "directly” the voltage vectors and the
hysteresis adjustment of the torque and the stator flux [1]. The implementation of
these algorithms was therefore simpler, at a time when the computer resources
continued to grow in power and speed.
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Simultaneously, new and promising static multilevel conversion
topologies have been proposed and increasingly used in high power variable
speed drive applications. Compared to conventional 2-level structures, in which
the output voltage can be modulated only by varying the duration of use of the
high and low state, Pulses Width Modulation (PWM). Multilevel structures indeed
open a new dimension to the amplitude modulation. So, in the present study, our
main objective is to propose new strategies of the direct control type, compatible
with multilevel voltage inverters more particularly the Neutral Point Clamped
(NPC) having any number of levels.

The development of the switching table consists of formulating linguistic
rules in which the process will be controlled. However, there is no general
principle to determine them systematically determining them. This problem can
be addressed into two ways. The first is called natural extraction, is done through
a human expert familiar within the system. As part of this study, the formulation
of the rules is thus based on a qualitative analysis of the vector diagram of the
(DTC).

However, this analysis becomes rapidly imprecise and complex as the
number of voltage levels increases and the problem of the optimized choice of
inverter voltage vectors must therefore be studied more precisely and deeply.

The second approach is used when natural extraction is not feasible in its
entirety. It consists of using learning methods. In our research paper, we have
focused on reinforcement learning methods that actively explore all states and
receive criticism in the form of rewards and punishments. Reinforcement learning
means routing from situation to action in a way that the numerical reward of the
action is in the maximum. In this method the learner is not told what to do, but he
tries to discover the action with maximum reward [2]. Therefore, reinforcement
learning methods is signified by Q-Learning algorithm [3]. This algorithm is used
by the agent to learn through experience or training.

Every repetition equals a training course. Its aim is to create the brain of
the agent, which is displayed by Q matrix. More training will lead to a better Q
matrix that can be used by the agent to move in the optimal direction. In this way,
by having a Q matrix, the agent can choose the best state by referring to the state
matrix and selecting the maximum choice, rather than doing a lot of exploration
and searching [4].

To designate this system, the study will deal with controlling induction
motor drive. It is assumed that the agent has no information about the drive
system. It means the agent can collect states and actions of the system during the
real behavior of the motor.

The structure of the presented work is organized as follow: the description
of the proposed approach is set in section 2. The physical modeling and control of
different part of our system with their equations model is set in section 3, 4, 5, 6, 7
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and 8. The simulation results of the studied are presented in section 9. Section 10
summarizes the work done in the conclusion.

2. Proposed approach

In any generalization of direct control strategies, the problem of the
optimized choice of inverter voltage vectors must therefore be studied more
precisely and more thoroughly.

Five Level Inverter
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Fig. 1. Schematic diagram of the proposed Q learning approach

We propose in this study, a method of learning based on the method of
reinforcement which makes it possible to determine the optimal vector of tension
for the tables of commutation used in the direct control of the torque of an
asynchronous machine fed by a multilevel inverter. We will show the interest of
this approach for a five-level inverter as show in Fig. 1.

3. Dynamic Model of IM

The state space representation of the induction motor with the stator
currents and the rotor flux linkages components as state variables can be written
as [5]:
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where:
T, :is the rotor time constant;
o : is the leakage coefficient.
The electromagnetic torque and the rotor speed are given by:
3 L, . .
1—‘em = E pJ_I_r(¢rd Isq _¢rq|sd) (2)
%:Er _Ea)r_Brl (3)

dad J " J J
where:
R,, R, : are the stator and rotor winding resistances (€2);

L. L,, L,: are the mutual, stator and rotor inductance (H);
p: is the number of pole pairs;
w,, o,, o, are the synchronous, rotor and slip speed in electrical (rad/s);

Vg, V- are the stator voltage (d-g) components in the rotor flux oriented

reference frame (V) ;

Iy, Iy, are the stator current (d-q) components in the rotor flux-oriented

reference frame (A);

¢4 @, are the rotor flux (d-q) components in the rotor flux-oriented reference
frame (Wb);

I, :is the electromagnetic torque (N.m);

em
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I, - is the load torque (N.m);

J :is the motor inertia (Kg.m?);
B is the viscous friction coefficient respectively (N.m/rad/sec).
The induction machine parameters used in this system is shown in table 1.

Table 1
Induction Motor Parameters

Components Rating values
Voltage V 400 V
Sample period Te 50 s
Rated power 7.5 kW
Rated voltage 460 V
Rated speed 1760 rpm
Rated frequency 60 Hz
Rotor resistance 0451 Q
Stator resistance 0.6837 Q
Stator inductance 0.004152 H
Rotor inductance 0.004152 H
Magnetizing Inductance 0.1486 H
Number of poles 2
Rotor inertia 0.05 Kg.m?
Friction Coefficient 0.008141 N.m.s/rd

4. Modeling of Five Level Inverter

The Q-Learning algorithm is used to determine the optimal actions for
each state, it is then determined deterministically and non-randomly (difference
with the previous flowchart) according to an exploitation term (the quality of the
action) and an exploration term based on a counter measuring the frequency of
application of actions in the states and the apprentice then favors actions little
tested.

A two-level inverter is only able to produce six non-zero voltage vectors and two
zero vectors [6, 7]. The representation of the space voltage vectors of a five-level
inverter for all switching states forming a four-layer hexagon centered at the
origin of the (d, g) plane and a zero-voltage vector at the origin of the plane, as
depicted in Fig. 2. According to the magnitude of the voltage vectors, we divide
them into nine groups:

(Vo); (V1, V11, Vo1, V31, Va1, Vs1); (V7, V17, Vo7, V37, Vaz, Vs7) 5 (V2, V12, V2o,
V32, Va2, Vs2); (Vs, Vo, Vs, V19, V26, V29, V36, V39, Va6, Va9, V56, V59); (V3, V13,
V23, Va3, Va3, Vs3); (Vs, V18, V2s, V3s, Vg, Vsg); (Vs, V1o, V15, V120, V25, V30, V35,
V40, Vs, V50, Vs, Veo); (Va, V14, V24, V34, Vs, Vsa).
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Fig. 2. Five level inverter

The Zero Voltage Vector (ZVV) has five switching states, the Large Voltage
Vector (LVV) have only one [8].

V44 v45 VA8 V50 V54
Phc

Fig. 3. Topology of the 61 vectors generated by a NPC structured five level inverter
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Table 2
Switch states of the five levels NPC inverter
State S S S S S S S S V
E
2 ON ON | ON ON OFF OFF OFF OFF Td
Ed
1 OFF | ON | ON ON ON OFF OFF OFF 7
0 OFF | OFF | ON ON ON ON OFF OFF 0

5. Flux and torque Estimator

The (d-g) axes stator flux linkage is estimated by computing the integral of
difference between the respective (d-q) input voltage and the voltage drop across

the stator resistance.
¢sd = I(_Rsisd Vg )dt (4)
(5)

¢sq :I(_Rsisq +Vsq )dt

The resultant stator flux linkage can be expressed as:

b=+ (6)

The location of the stator flux linkage should be known so that the appropriate
voltage vector is selected depending upon the flux location.
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Fig. 4. Torque and flux estimation

6. Torque and flux control

The main objective is to define optimal selection rules for voltage vectors
based on the torque and flux error defined as follows:

g¢ = ¢s ref ¢s (7
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ér = I ref 1ﬂem (8)

For the control of the flux, the error (&) is localized in one of the three
associated intervals and which are fixed by the constraints:

€5 < & pmax

g¢min < ggb < g¢max )
€¢ > gqﬁmin

The level of the suitable flux is bounded between (€ min ) and (€ gmax ),

is therefore controlled by a two-level hysteresis comparator. The electromagnetic
torque is equal to the load torque in the steady state. It is then the most important
variable for the electromagnetic considerations of training. Therefore, high
performance for torque control is required. To improve the control of the torque,

we associate with the error of the pair (€T ) five regions defined by the following
constraints:
ér > gl"minZ

gFminZ < ‘91" < gl"minl

<ér <

gl"minl gl“maxl

(10)
gl"maxl < ‘91“ < gFmaxZ

gl"maxZ < gl“
The torque control is here ensured by a hysteresis comparator with two
upper bands (gl"rraxllgl“rrHXZ) and two lower bands (gl"ninbgl"rrinz) illustrated
by the Fig. 5.
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Fig. 5. Hysteresis blocks of the DTC with NPC inverter
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The best margin of the control of the pair is that localized by (5rmin1, 5rrrax1) and
the region bounded by (grminz,gr,mxz) should give useful values of the couple.

7. Proposed Q Learning Algorithm

Q-Learning is the most used reinforcement learning algorithm. Three main
functions participate in Q-Learning: an evaluation function, a reinforcement
function and an update function (Fig. 6). From the current situation as it is
perceived by the system, the "evaluation function” proposes an action based on
the knowledge available within the internal memory. This knowledge is stored as
an utility value associated with a pair (situation, action). The selected action is the
one with the best probability of positive reinforcement (reward). This proposal
action proposal is however altered to allow the exploration of the space of the
situation-action pairs [9, 10].

Here the flux and torque estimators are used to determine the actual value of
torque and flux linkages. In this block, the VSI voltage vector is entered in and it is
transformed to the d-q stationary reference frame. The three variable phases are
transformed into the (d-q) axes variables [11].

~

|Situation, Action, Values|
4

i ju | Update Function |

| Reinforcement Function
Situatio A

Action

»Environnement|
Fig. 6. Principle of the Q-Learning method
8. Application Q Learning Algorithm

The Q-Learning algorithm is used to determine the optimal actions for each state,
it is determined deterministically and non-randomly (difference with conventional
methods) according to an exploitation term (quality of the action) and an
exploration term based on a counter measuring the frequency of application of the
actions in the states and the apprentice then favors the actions little tested. We use
three inputs (torque error, flux error and sector) each input having respectively
nine, three and six states, the output contains 61 vector voltages (actions) and
initially the switching table is empty and the objective of the learning method to
fill the states where we must find the actions are as follows:

If (ccpl is Ai) et (cflx is Bj) and (N is Ck) So (The output is Vi)

where:
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Ai : is the state of the torque error (4,3,2, 1, 0, -1, -2,-3,-4)(i=1 :9)
Bj : is the state of the flux error (1,0,-1) (j=1 :3)
Ck : is the sector where the flux vector is (k=1 : 6)
Vii is the action elected in each rule from a set A of available actions (distinct
vectors) (ii=1 :61)
e Possible states
There are totally 162 possible states (9 x 3 x 6), whose learning method should
find their optimal actions. In this case it has a new switching table that has not yet
studied in our work.
e The reinforcement function

The first reinforcement function used is defined as follows:
if (error_flux<=0.1) & (error_flux>=-0.1) & (error_torque<=3) &
(error_torque>=-3)

Reward=10;
else

Reward=-1;
End

9. Simulation Results

9.1. The switching table found
The tables (01 to 06) give the actions chosen for each state after the learning has
been completed. The policy consists in choosing only the actions with the
maximum qualities (t-optimal actions).

Table 3
Switching table found by the Q Learning method
61 62 03
U 0 1 U 0 -1 Yol 0 1
&t &7 er
4 V14 | V14 | V22 4 24 | V29 | V39 4 26 | V32 43
3 V51 | V51 | V12 3 13 | V42 | V52 3 V1 31 | V52
2 V51 V2 V51 2 V42 | V21 | V42 2 V1 V21 | V52
1 Vi | V V22 1 V3 V51 | V43 1 V12 | V31 | V53
0 V4 V28 40 0 V20 | V29 | V43 0 V24 | V22 | V54
-1 Vi | V2 |V -1 V51 | V11 | Vi3 -1 V1 | V48 | V33
- V11l | V21 | V3 -2 V21 | V21 | V22 -2 Vil V1 V51
-3 V11l | V41 | V12 -3 V21 | V41 V2 -3 Vil V1 V51
-4 V4 |V 4| V40 -4 V8 V37 | V60 -4 V53 | V23 V2
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04 05 06

&y 1 0 -1 Ey 1 0 -1 &y 1 0 -1
&t &7 er

4 | V37 | V5 V3 4 | V54 | V50 | Va 4 V54 | V8 18
3 | Vil | V3 51 3 V53 | V52 | V3 3 V57 | V23 | V52
2 |V 1|V |V1 2 V52 | V22 | V2 2 V51 | V53 | V3
1 | V3l | Vi1 | V5 1 V51 | V51 | V1 1 Vi |V 1] V26
0 | V34 | V33 | Via 0 V49 | V46 | V17 0 Va2 |V 2 | V24
1 |V 1] v1 | V3l 1 | V3l | v31 | V21 1 V1 | val | va21
2 | V59 | vii | vi1 2 | V32| vi | v22 2 vl | Vil | V1
3 vl | Vi1 | V8 3 | V33 | V32 | V23 3 Vi | VI | Vi
4 | V33 | V21 | VO 4| V34 | 44 | V2 4 | Va4l | va | v21

9.2. Validation of obtained switching table and discussions

To verify the technique proposed in this paper, digital simulations based on
Matlab/Simulink have been implemented.
A step change of reference torque was applied between different times 0.2 s, 0.4 s,
0.6 s and 0.8 s. Motor started up by no-load then after 0.1 s, a different values of
torque are applied respectively 35 N.m, 65 N.m, 50 N.m, -35 N.m and 50 N.m.
Torque, flux amplitude, three phase currents and stator voltage according to time
are showed in Fig. 7 and Fig. 8. Fig. 7 shows that switching states has become
more regular and also torque ripple is less using Q learning algorithm.
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Fig. 7. Simulations results of DTC based Q learning algorithm
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Fig. 8. Simulations results of conventional DTC

The simulation results in Fig .8 shows that the current's stator ripples obtained
with Q learning method is significantly reduced compared to (DTC) conventional
Fig.10. The ripple of torque with Q learning strategy is significantly reduced.
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It’s noticed that the statorique currents obtained with Q learning method
presented a good THD 23.73% in fig. 9 compared with the results obtained with
(DTC) conventional Fig.10. The behavior of induction motor fed by a five-level
inverter, using the switching table found by the reinforcement learning method
(Q-Learning) reduces advantage the harmonics of currents and the ripple of torque
and flux.

10. Conclusions

Reinforcement Learning is a type of Machine Learning. It allows
machines and software agents to automatically determine the ideal behaviour
within a specific context, in order to maximize its performance. The reinforcement
learning method (RL) trains algorithms using a system of reward and punishment.
By interacting with its environment, the agent receives a delayed reward in the
next time step to evaluate its previous action. Indeed, its effectiveness has been
shown in the context of (DTC) with multilevel inverters to find their switching
tables. So the Q-Learning algorithm applied to (DTCs) makes it possible to make
the optimal choice for each situation of one of several discrete actions available.
The results obtained by the reinforcement learning method in case of 5 levels of
inverter show the excellent dynamic performance of torque and flux control
compared to conventional approaches. The generalization of this approach to N
levels without any difficulty (increase in the level of inverter). Therefore, the
number of voltage vectors to be selected gives the reinforcement learning method
an appreciable advantage. In other words, it determines the switching table
automatically regardless to the number of voltage levels of the inverter used.
Contrary to the methods presented previously, when this number of levels
increases; all of them are based on a qualitative analysis with the whole
inaccuracies.
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