U.P.B. Sci. Bull., Series A, Vol. 69, No. 3,2007 ISSN 1454-2331

SYNCHRONIZATION AND CONTROL IN THE DYNAMICS
OF DOUBLE LAYER CHARGE STRUCTURES.
AUTONOMOUS STOCHASTIC RESONANCE

Cristina STAN?, Constantin P. CRISTESCU?, Dumitru ALEXANDROAEI®

In aceastd lucrare se prezinti obervatii experimentale si rezultate numerice
asupra rezonanfei stocastice autonome in sisteme de sarcini electrice de tip strat
dublu. Structura de acest tip este generatd in spatiul inter-anodic al unei descarcari
duble simetrice. Dinamica sistemului este studiatd prin intermediul luminii emise
din zona de interes a plasmei. Intr-un domeniu restrdns al polarizarii relative inter-
anodice, structura tip strat dublu prezintd o dinamicd de tranzitie intre o stare
stationarda si comporare periodicd. Suprapunerea unui zgomot Gaussian poate
induce o asemenea tranzitie fara aplicarea unui semnal periodic din exterior. Cu
cresterea polarizarii relative, curba raportului semnal/zgomot ca functie de nivelul
zgomotului prezintd un maxim, comportare caracteristicd fenomenului de rezonanta
stocastica autonomd. Modelarea sistemului este realizatd pe baza unui model de
oscilator van der Pol modificat, perturbat de zgomot Gaussian. Valorile numerice
obtinute sunt in bund concordanta cu rezultatele experimentale.

In this paper we present experimental observations and computational
results on autonomous stochastic resonance in a double layer (DL) charge
structure. The DL under investigation is generated in the inter-anode space of a twin
electrical discharge. We investigate the dynamics of this structure as reflected in the
light emission from the DL area of the plasma. In a restricted range of the inter-
anode biasing, the DL shows a transition between steady state and periodical
dynamics. The superposition of Gaussian noise can induce such a transition without
any periodic signal being injected into the system. With increasing of the biasing,
the signal to noise ratio versus the noise level is a curve with a maximum,
characteristic of stochastic resonance. As computational model, we consider a
modified van der Pol oscillator perturbed by Gaussian noise. This model is found to
well reproduce the experimentally observed dynamics.
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1. Introduction

The transition from steady state to periodical dynamics under the influence
of noise in the absence of an injected periodical perturbation is known as
autonomous stochastic resonance (ASR). During the twenty five years since the
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first mention of stochastic resonance (SR) in connection with the apparent
periodicity of ice ages on earth, the subject has received considerable attention
both theoretically and experimentally. The phenomenon can take place in
nonlinear systems only and consists in a noise induced cooperative process
leading to resonance between a weak periodic modulation and the stochastic
signal. As a result, the small, hardly detectable deterministic modulation becomes
clearly observable after the addition of noise. The original and still most popular
model considers a weak periodical signal and a noise (usually Gaussian)
simultaneously injected into a nonlinear system characterized by a two well
potential [1-4]. While the model is applicable for many observed situations,
systems where noise can lead to periodical dynamics without the necessity of
injecting a periodical signal from outside were reported [5, 6]. This phenomenon
was initially described in the last decade of the twentieth century [7-9] and was
named autonomous stochastic resonance.

In this paper we present the analysis of experimental observations on the
stochastically induced harmonic oscillations in a DL charge structure generated in
the inter-anode space of a twin electrical discharge with suitable biasing of one
anode against the other. A computational analysis based on a modified van der Pol
system working with parameters in the range corresponding to a supercritical
Hopf bifurcation is presented. Addition of Gaussian noise under these
circumstances can induce the transition from steady state to periodic dynamics.

2. Experimental set-up and results

A sketch of the experimental device is shown in Fig.1. Two independent
electric discharges at low pressure (80 mTorr) in flowing Argon are running
between the electrodes K1-Al and K2-A2 respectively, placed in the same glass
tube. A dc voltage source maintains a constant biasing U of one anode against the
other. A perturbed regime can be generated if a small variable voltage is
connected in series with the dc biasing. In the present study, the perturbation is
generated by a Gaussian noise supply (denoted U, on Fig.1), with an equivalent
standard deviation Us=10Vms, coupled to the discharge through an attenuation
network. The DL is the source of oscillations in the inter-anode plasma and its
behavior can be efficiently controlled by the characteristics of the biasing [10-12].

In this study, we are interested in a small range of inter-anode biasing
where a transition between steady state and periodical dynamics is taking place.
From the dynamical point of view, in the transition region, a limit cycle can
disappear if the control parameter (related to the biasing voltage) is adjusted
below a critical value. At higher biasing, the DL behavior is more complex and
correspondingly, its dynamics is different showing period doubling sequences and
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chaos. For this range, a system of two coupled van der Pol oscillators was found
to satisfactorily model the experimental dynamics [10].
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Fig. 1. Sketch of the experimental set-up.

We study the dynamics of the DL as reflected in the temporal behavior of
the light emitted from the DL structure, collected by an optical fiber placed in the
neighborhood of the DL region and recorded by a photomultiplier (PMT). Data
acquisitions are analyzed using a personal computer. The main method of
investigation is by spectral analysis of the PMT response. The stability of our
experimental system allowed for a sixteen time repetition of the data acquisition
process and the present analysis is based on the resulting ten sample averaged
power spectra.

We focus on the transition from steady state to periodical oscillations
which takes place for biasing in the range between 17 and 20V where a Hopf
bifurcation is observed.

For values of the biasing below a certain threshold, the DL exists in a
steady state. In this range, the intrinsic oscillation is only present as a transient
behavior corresponding to the evolution of the system towards its steady state.
The addition of Gaussian noise to the system in the steady state can induce the
transition towards a harmonic oscillation through a Hopf bifurcation. For a
particular noise level the regular dynamics shows an optimum degree of
coherence that is interpreted as fingerprint of autonomous stochastic resonance.

The autonomous stochastic resonance behavior can be detected by various
measures [1, 13]. The one we use in the present work is the dependence of the
signal to noise ratio (SNR) on the noise level.

Spectra of the type presented in Fig. 2a where used to generate the
diagram in Fig. 2b that shows the SNR as function of the noise level. The SNR (in
dB) is computed from the power spectra as proportional to the logarithm to base
ten of the ratio between the signal power and the noise power at the frequency of
the harmonic component:

SNR(dB) =101log,, % . (1)
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Here we use the approximate method to estimate S/N illustrated on Fig. 2a.
The signal and the noise level are measured from a common base line. The curves
of the SNR versus the noise level, for different values of the dc voltage in the
range of interest, are shown in Fig.2b. The experimental values are represented by
the marks while the lines are simply drawn for eye guiding. The graphs clearly
show two different responses of the system to the noisy perturbation. Below a
threshold of about 18.5V, the curves show the well-known SR shape presenting a
clear maximum. The amplitude of the generated oscillation is maximal for an
optimum value of the noise. Above the mentioned threshold, the SNR is
continuously decreasing with increasing of the noise level. This is the expected
behavior because above 18.5V the dynamics of the system consists of regular
oscillations and the added noise only degrades the regularity.
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Fig. 2 (a) Power spectrum of the experimental data for the noise level corresponding to the
maximum of the U=18V curve in Fig. 2b (sixteen spectra average); (b) Curves of SNR versus
noise level for the specified experimental values

Stochastic resonance-like behavior in electrical discharges was previously
reported, in weakly ionized radio frequency magnetoplasma [14] as manifested in
the spontaneously generated nonlinear ionization drift waves; it was also observed
in waves of stratification generated by a convective instability of the positive
column in a simple configuration electrical discharge in neon [15].

3. Computational model

As computational model, we consider a slightly modified noise perturbed
van der Pol oscillator adapted to take into account the effect of the biasing as
control parameter. This model is supported by some works (e.g. [16]) that suggest
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that the dynamics of a DL can be described by a van der Pol oscillator.
Accordingly, the following system is analyzed:
X, =ax, —mx; + DE(1) (2)
Xy ==bx, (xf =1) —cx; 3
where a, b, ¢ and D are positive parameters. Here, &(¢) is a Gaussian noise with

zero mean and delta correlation:
<EMEE)>=o(t-1") (4)

In the system (2-3), x; stands for the electric charge distribution across the
DL. As the DL is generated by the biasing, the effect thereof will be mostly
manifest in the charge distribution. This is the reason why, both the dc biasing
term and the noise term are introduced in the charge/current equation (2) rather
than in the current/voltage equation (3).

For the selected range of the parameters and in the absence of noise (D=0),
the system (2-3) presents two distinctive dynamics, depending on the control
parameter m. Below some threshold value the system presents periodic oscillation
while above that value, it evolves by damped oscillation towards a stationary
state.
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Fig.3 Phase portraits of the system (2-3) without noise (D=0) for the values of the parameters
indicated on each graph: a) limit cycle oscillation; b) stationary state (spiral sink).

Fig. 3 shows phase portraits of the system (2-3) without noise for the
values of the parameters indicated on each diagram: limit cycle oscillation (a) and
stationary state (spiral sink) (b). The broken lines represent the nullclines of the
system.

The dynamics of the model system is similar to the behavior of the
experimental one with respect to their control parameters. However, in the
experimental system the transition from steady state to periodic oscillation takes
place with the increasing of the biasing (U), while in the model system, the same
transition takes place for decreasing of the control parameter (m).
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Similarity also exists in the dependence of the fundamental frequency of
oscillation on the control parameter. As presented in a previous work [10], the
fundamental frequency of the DL shows linear dependence on the biasing for a
large range of the values, namely between the threshold Uy ~18.5V and about
30V.
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Fig. 4 Frequency versus control parameter curves: experimental, solid triangles and computed,
open triangles. Inset is shown the m=/{U) dependence; the shaded area represents the range of
interest for this study.

The change of the oscillation frequency of the model system (2-3) with
respect to the control parameter m in the absence of noise is also linear between
the threshold value myn~0.51 and m=0.30. Below this value, the frequency
quickly evolves towards saturation. Based on these facts, we consider a linear
dependence of m on U namely m = p(g-U). By fitting the linear parts of the two
frequency versus the control parameter curves (experimental and computed), as
shown in Fig.4, we find p=0.02 and g=44. Inset on Fig.4 the m=f{U) dependence
is shown.

It should be observed that the range of validity of the model extends over a
considerably larger domain than that used in this study - shaded on this graph. We
consider this wide range correspondence as solid argument to justify the extension
of the model for the region of stationary state dynamics.

Fig. 5 shows the behavior of the model with respect to the injected noise,
corresponding to the experimental curves in Fig. 2. For values of m in the
stationary state range (m>0.51) the curves of the SNR versus the noise level (D)
show a maximum characteristic of stochastic resonance (Fig. 5b). This is in
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agreement with the experimental stochastic resonance curves obtained for values
of U below the oscillation threshold (Fig. 2b). For values of m below the threshold
(m=~0.51), in the oscillatory regime, the curves of the SNR versus the noise level
show the expected monotonous decreasing with increasing of the noise level.
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Fig. 5 Results of the model corresponding to the experimental curves in Fig.2; a) Power spectrum
of the computed data (ten sample average) for the noise level corresponding to the maximum of
the m=0.52 curve in Fig. 4b;( b) Curves of SNR versus the noise level computed for values of m in
the range 0.48-0.53.

This is in agreement with the experimental behavior observed for U larger
than the threshold.

4, Conclusions

We observed that the behavior of a DL dynamics with respect to injected
noise is changing as the inter-anode biasing transcends a certain threshold value
that separates stationary and oscillatory dynamics. Although the curves in Fig.2b
are drawn through a reduced number of points, restricted by the possibilities of the
available noise generator, we consider the experimental results fully conclusive.
The numerical treatment of this behavior is based on a modified van der Pol
system working in the range of the parameters corresponding to a supercritical
Hopf bifurcation. Addition of Gaussian noise under these circumstances can cause
the transition from steady state to periodic dynamics. Depending on the value of
the control parameter, in the oscillatory regime, the curves of the SNR versus the
noise level show the expected monotonous decreasing with increasing of the noise
level corresponding to a degrading of the spectrum. In the stationary state, the
curves show a well defined maximum, characteristic of autonomous stochastic
resonance. The good agreement between the experimental data and the dynamical
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treatment demonstrates that a properly modified van der Pol oscillator represents a
suitable model for the behavior of the DL charge structure in the considered
circumstances.
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