

SECOND ORDER (σ, τ) -COHOMOLOGY OF TRIANGULAR BANACH ALGEBRAS

Ali Jabbari¹, Hasan Hosseinzadeh²

Let \mathcal{A} be a Banach algebra. In this paper, we introduce (σ, τ) -2-cocycle and (σ, τ) -coboundary maps on \mathcal{A} , where σ and τ are homomorphisms on \mathcal{A} . By applying these definitions, we introduce the second (σ, τ) -cohomology of triangular Banach algebras.

Keywords: Banach module, Cohomology, Hochschild cohomology, Triangular Banach algebras.

2000 Mathematics Subject Classification: Primary 46H25, Secondary 16E40.

1. Introduction

Let \mathcal{A} be a Banach algebra, and let X be a Banach \mathcal{A} -bimodule. A derivation is a linear map $D : \mathcal{A} \longrightarrow X$ such that

$$D(ab) = a.D(b) + D(a).b \quad (a, b \in \mathcal{A}).$$

For $x \in X$, set $ad_x : a \mapsto a.x - x.a$, $\mathcal{A} \longrightarrow X$. Then ad_x is the inner derivation induced by x .

The linear space of bounded derivations from \mathcal{A} into X denoted by $Z^1(\mathcal{A}, X)$ and the linear subspace of inner derivations denoted by $N^1(\mathcal{A}, X)$. We consider the quotient space $H^1(\mathcal{A}, X) = Z^1(\mathcal{A}, X)/N^1(\mathcal{A}, X)$, called the *first Hochschild cohomology group* of \mathcal{A} with coefficients in X .

Let \mathcal{A} and \mathcal{B} be unital Banach algebras with units $e_{\mathcal{A}}$ and $e_{\mathcal{B}}$, respectively. Suppose that \mathcal{M} is a unital Banach \mathcal{A}, \mathcal{B} -bimodule. We define triangular Banach algebra

$$\mathcal{T} = \begin{bmatrix} \mathcal{A} & \mathcal{M} \\ & \mathcal{B} \end{bmatrix},$$

with the sum and product being giving by the usual 2×2 matrix operations and internal module actions. The norm on \mathcal{T} is

$$\left\| \begin{bmatrix} a & m \\ & b \end{bmatrix} \right\| = \|a\|_{\mathcal{A}} + \|m\|_{\mathcal{M}} + \|b\|_{\mathcal{B}}.$$

¹ Young Researchers and Elite Club, Ardabil Branch, Islamic Azad University, Ardabil, Iran, E-mail: jabbari_al@yahoo.com & ali.jabbari@iauardabil.com

² Department of Mathematics, Ardabil Branch, Islamic Azad University, Ardabil, Iran, E-mail: hasan_hz2003@yahoo.com, corresponding author

The Banach algebra \mathcal{T} as a Banach space is isomorphic to the ℓ^1 -direct sum of \mathcal{A} , \mathcal{B} and \mathcal{M} . Forrest and Marcoux introduced and studied derivation of triangular Banach algebras in [1]. The first Hochschild cohomology group of triangular Banach algebras was studied in [2, 5].

Let \mathcal{A} be a Banach algebra, and let X be a Banach \mathcal{A} -bimodule. By $B^n(\mathcal{A}, X)$, we mean that the space of bounded n -linear maps from \mathcal{A} into X . A 2-linear map $\gamma \in B^2(\mathcal{A}, X)$ is called *2-cocycle* if it satisfies the following equation

$$a.\gamma(b, c) - \gamma(ab, c) + \gamma(a, bc) - \gamma(a, b).c = 0,$$

for every $a, b, c \in \mathcal{A}$. The space of 2-cocycles is a linear subspace of $B^2(\mathcal{A}, X)$, which is denoted by $Z^2(\mathcal{A}, X)$. Let $\varphi \in \Delta(\mathcal{A})$, where $\Delta(\mathcal{A})$ is the carrier space of \mathcal{A} , then a 2-linear map $\gamma \in B^2(\mathcal{A}, X)$ is called *point 2-cocycle* at φ if it satisfies the following equation

$$\varphi(a).\gamma(b, c) - \gamma(ab, c) + \gamma(a, bc) - \gamma(a, b).\varphi(c) = 0,$$

for every $a, b, c \in \mathcal{A}$. For given $T \in B(\mathcal{A}, X)$, we let

$$(\delta^1 T)(a, b) = a.T(b) - T(ab) + T(a).b,$$

for every $a, b \in \mathcal{A}$ and $\delta^1 : B(\mathcal{A}, X) \longrightarrow B^2(\mathcal{A}, X)$. Then $\{\delta^1 T : T \in B(\mathcal{A}, X)\}$ is a linear subspace of $Z^2(\mathcal{A}, X)$. These maps are called *2-coboundaries*. The collection of all 2-coboundaries is denoted by $N^2(\mathcal{A}, X)$. Similar to the first Hochschild cohomology group, the *second Hochschild cohomology group* of \mathcal{A} with coefficients in X is denoted by $H^2(\mathcal{A}, X) = Z^2(\mathcal{A}, X)/N^2(\mathcal{A}, X)$. The second Hochschild cohomology group of triangular Banach algebras is studied in [3], and higher cohomology of these algebras are studied by Moslehian in [9].

Let \mathcal{T} be a triangular Banach algebras defined as above, and let $\gamma \in B^2(\mathcal{T}, \mathcal{T})$. Let $\gamma_1 : \mathcal{T} \longrightarrow \mathcal{A}$, $\gamma_2 : \mathcal{T} \longrightarrow \mathcal{M}$ and $\gamma_4 : \mathcal{T} \longrightarrow \mathcal{B}$ denote the coordinate functions associated to γ . That is

$$\gamma(T_1, T_2) = \begin{bmatrix} \gamma_1(T_1, T_2) & \gamma_2(T_1, T_2) \\ & \gamma_3(T_1, T_2) \end{bmatrix},$$

for $T_1, T_2 \in \mathcal{T}$. Let $\gamma : \mathcal{T} \longrightarrow \mathcal{T}$ be a 2-cocycle. The coordinate function γ_1 is said to correspond to a 2-cocycle (2-coboundary) on \mathcal{A} if there exists a 2-cocycle (2-coboundary) $\tau_{\mathcal{A}}$ on \mathcal{A} such that $\gamma_1(T_1, T_2) = \tau_{\mathcal{A}}(a_1, a_2)$, where $\mathcal{T}_i = \begin{bmatrix} a_i & m_i \\ & b_i \end{bmatrix}$.

Similarly, γ_4 is said to correspond to a 2-cocycle (2-coboundary) on \mathcal{B} if there exists a 2-cocycle (2-coboundary) $\tau_{\mathcal{B}}$ on \mathcal{B} such that $\gamma_4(T_1, T_2) = \tau_{\mathcal{B}}(b_1, b_2)$.

Let \mathcal{A} be a Banach algebra, and let σ, τ be continuous homomorphisms on \mathcal{A} . Suppose that X is a Banach \mathcal{A} -bimodule. A linear mapping $D : \mathcal{A} \longrightarrow X$ is called a (σ, τ) -derivation if

$$D(ab) = \tau(a).D(b) + D(a).\sigma(b) \quad (a, b \in \mathcal{A}).$$

It is clear that if $\sigma = \tau = id_{\mathcal{A}}$, where $id_{\mathcal{A}}$ is the identity mapping on \mathcal{A} , then a (σ, τ) -derivation is nothing else as an ordinary derivation which was defined as above. A linear mapping $d : \mathcal{A} \longrightarrow X$ is called a (σ, τ) -inner derivation if there

exists $x \in X$ such that $d(a) = \tau(a).x - x.\sigma(a)$ for every $a \in \mathcal{A}$. These derivations on Banach algebras are studied by Mirzavaziri and Moslehian in [6, 7, 8].

Let \mathcal{A} be a Banach algebra, and let X be a Banach \mathcal{A} -bimodule. The set of all continuous (σ, τ) -derivations from \mathcal{A} into X is denoted by $Z_{(\sigma, \tau)}^1(\mathcal{A}, X)$ and the set of all (σ, τ) -inner derivations is denoted by $N_{(\sigma, \tau)}^1(\mathcal{A}, X)$. The quotient space $H_{(\sigma, \tau)}^1(\mathcal{A}, X) = Z_{(\sigma, \tau)}^1(\mathcal{A}, X)/N_{(\sigma, \tau)}^1(\mathcal{A}, X)$, called the *first (σ, τ) -cohomology group* of \mathcal{A} with coefficients in X .

Let \mathcal{T} be a triangular Banach algebra and let \mathcal{X} be a unital Banach \mathcal{T} -bimodule, then we use these notations in this paper: $\mathcal{X}_{\mathcal{A}\mathcal{A}} = e_{\mathcal{A}}.\mathcal{X}.e_{\mathcal{A}}$, $\mathcal{X}_{\mathcal{B}\mathcal{B}} = e_{\mathcal{B}}.\mathcal{X}.e_{\mathcal{B}}$, $\mathcal{X}_{\mathcal{A}\mathcal{B}} = e_{\mathcal{A}}.\mathcal{X}.e_{\mathcal{B}}$, and $\mathcal{X}_{\mathcal{B}\mathcal{A}} = e_{\mathcal{B}}.\mathcal{X}.e_{\mathcal{A}}$. If \mathcal{X} replaced by \mathcal{T} , we have $\mathcal{X}_{\mathcal{A}\mathcal{A}} = \mathcal{A}$, $\mathcal{X}_{\mathcal{B}\mathcal{B}} = \mathcal{B}$, $\mathcal{X}_{\mathcal{A}\mathcal{B}} = \mathcal{M}$, and $\mathcal{X}_{\mathcal{B}\mathcal{A}} = 0$. Many results concerning the first (σ, τ) -cohomology of triangular Banach algebras are considered in [4].

Let σ and τ be two homomorphisms on \mathcal{T} with the following properties (see [4]):

$$\begin{aligned} \sigma(e_{\mathcal{A}} \oplus 0) &= e_{\mathcal{A}} \oplus 0, & \tau(e_{\mathcal{A}} \oplus 0) &= e_{\mathcal{A}} \oplus 0; \\ \sigma(0 \oplus e_{\mathcal{B}}) &= 0 \oplus e_{\mathcal{B}}, & \tau(0 \oplus e_{\mathcal{B}}) &= 0 \oplus e_{\mathcal{B}}. \end{aligned}$$

The above relations imply that $\sigma(\mathcal{A}) \subseteq \mathcal{A}$, $\sigma(\mathcal{B}) \subseteq \mathcal{B}$ and $\sigma(\begin{bmatrix} 0 & \mathcal{M} \\ 0 & 0 \end{bmatrix}) \subseteq \mathcal{M}$.

$$\text{Then } \sigma(\begin{bmatrix} a & m \\ b & \end{bmatrix}) = \begin{bmatrix} \sigma(a) & \sigma(m) \\ & \sigma(b) \end{bmatrix}.$$

2. Main Results

In this section, at first we introduce some new definitions and after those we will consider the second (σ, τ) -cohomology of triangular Banach algebra. Note that in the whole of this paper, by \mathcal{T} and \mathcal{X} we mean that triangular Banach algebra as defined in Section one and a Banach \mathcal{T} -bimodule, respectively.

Definition 2.1. Let \mathcal{A} be a Banach algebra, let X be a Banach \mathcal{A} -bimodule, and let σ, τ be continuous homomorphisms from \mathcal{A} into X . We say that $f \in B^2(\mathcal{A}, X)$ is a (σ, τ) -2-cocycle if it is satisfies the following equation:

$$\tau(a).f(b, c) - f(ab, c) + f(a, bc) - f(a, b).\sigma(c) = 0,$$

for every $a, b, c \in \mathcal{A}$. We denote all of these mappings by $Z_{(\sigma, \tau)}^2(\mathcal{A}, X)$. For given $T \in B(\mathcal{A}, X)$ let

$$(\delta^1 T)(a, b) = \tau(a).T(b) - T(ab) - T(a).\sigma(b),$$

for every $a, b \in \mathcal{A}$. The maps $\{\delta^1 T : T \in B(\mathcal{A}, X)\}$ is a linear subspace of $Z_{(\sigma, \tau)}^2(\mathcal{A}, X)$. We call these maps (σ, τ) -2-coboundries, and we denote all of these maps by $N_{(\sigma, \tau)}^2(\mathcal{A}, X)$. Finally, we define the second (σ, τ) -cohomology group of \mathcal{A} with coefficient in X to be the linear space

$$H_{(\sigma, \tau)}^2(\mathcal{A}, X) = Z_{(\sigma, \tau)}^2(\mathcal{A}, X)/N_{(\sigma, \tau)}^2(\mathcal{A}, X).$$

By the following Example we show that the space of (σ, τ) -2-cocycle $((\sigma, \tau)$ -2-coboundries) maps is wider than 2-cocycle (2-coboundries) maps.

Example 2.1. Let \mathcal{A} be a Banach algebra, and let X be a Banach \mathcal{A} -bimodule.

- (i) Let $\mathcal{A} = X$. Then every 2-cocycle is an $(id_{\mathcal{A}}, id_{\mathcal{A}})$ -2-cocycle, where $id_{\mathcal{A}}$ is the identity map on the algebra \mathcal{A} .
- (ii) Let $\mathcal{A} = \mathbb{C}$ and $\varphi \in \Delta(\mathcal{A})$. A (φ, φ) -2-cocycle is nothing than a point 2-cocycle at φ .

Definition 2.2. Let $\gamma \in B^2(\mathcal{T}, \mathcal{T})$, $\gamma_1 : \mathcal{T} \rightarrow \mathcal{A}$, $\gamma_2 : \mathcal{T} \rightarrow \mathcal{M}$ and $\gamma_4 : \mathcal{T} \rightarrow \mathcal{B}$ denote the coordinate functions associated to γ . That is

$$\gamma(T_1, T_2) = \begin{bmatrix} \gamma_1(T_1, T_2) & \gamma_2(T_1, T_2) \\ & \gamma_3(T_1, T_2) \end{bmatrix},$$

for $T_1, T_2 \in \mathcal{T}$. Let $\gamma \in B^2(\mathcal{T}, \mathcal{T})$ be a (σ, τ) -2-cocycle $((\sigma, \tau)$ -2-coboundries). We say that γ_1 corresponds to a (σ, τ) -2-cocycle $((\sigma, \tau)$ -2-coboundries) on \mathcal{A} if there exists a (σ, τ) -2-cocycle $((\sigma, \tau)$ -2-coboundries) $\tau_{\mathcal{A}}$ on \mathcal{A} such that $\gamma_1(T_1, T_2) = \tau_{\mathcal{A}}(a_1, a_2)$, where $\mathcal{T}_i = \begin{bmatrix} a_i & m_i \\ & b_i \end{bmatrix}$.

Similarly, we say that γ_4 corresponds to a (σ, τ) -2-cocycle $((\sigma, \tau)$ -2-coboundries) on \mathcal{B} if there exists a (σ, τ) -2-cocycle $((\sigma, \tau)$ -2-coboundries) $\tau_{\mathcal{B}}$ on \mathcal{B} such that $\gamma_4(T_1, T_2) = \tau_{\mathcal{B}}(b_1, b_2)$.

Lemma 2.2. Let $\delta \in B^2(\mathcal{T}, \mathcal{T})$ be a (σ, τ) -2-cocycle $((\sigma, \tau)$ -2-coboundary). Then there are corresponding (σ, τ) -2-cocycles $((\sigma, \tau)$ -2-coboundries) on \mathcal{A} and \mathcal{B} .

Proof. Define $\delta_{\mathcal{A}} : \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$ and $\delta_{\mathcal{B}} : \mathcal{B} \times \mathcal{B} \rightarrow \mathcal{B}$ as follows

$$\delta_{\mathcal{A}}(a_1, a_2) = e_{\mathcal{A}} \delta \left(\begin{bmatrix} a_1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} a_2 & 0 \\ 0 & 0 \end{bmatrix} \right) e_{\mathcal{A}},$$

and

$$\delta_{\mathcal{B}}(b_1, b_2) = e_{\mathcal{B}} \delta \left(\begin{bmatrix} 0 & 0 \\ b_1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & b_2 \end{bmatrix} \right) e_{\mathcal{B}}.$$

It is easy to check that $\delta_{\mathcal{A}}$ and $\delta_{\mathcal{B}}$ are (σ, τ) -2-cocycle $((\sigma, \tau)$ -2-coboundary). \square

Lemma 2.3. Let \mathcal{X} be \mathcal{T} -bimodule, $\delta_{\mathcal{A}} : \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{X}_{\mathcal{A}\mathcal{A}}$, $\delta_{\mathcal{B}} : \mathcal{B} \times \mathcal{B} \rightarrow \mathcal{X}_{\mathcal{B}\mathcal{B}}$ be (σ, τ) -2-cocycles, and $\mathcal{X}_{\mathcal{A}\mathcal{B}} = 0$. Then there exists a (σ, τ) -2-cocycle mapping from \mathcal{T} into \mathcal{X} .

Proof. For every $\begin{bmatrix} a_1 & m_1 \\ b_1 & \end{bmatrix}, \begin{bmatrix} a_2 & m_2 \\ b_2 & \end{bmatrix} \in \mathcal{T}$, define $D : \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{X}$ by

$$D \left(\begin{bmatrix} a_1 & m_1 \\ b_1 & \end{bmatrix}, \begin{bmatrix} a_2 & m_2 \\ b_2 & \end{bmatrix} \right) = \delta_{\mathcal{A}}(a_1, a_2) + \delta_{\mathcal{B}}(b_1, b_2).$$

We claim that D is a (σ, τ) -2-cocycle. Because for every $T_1 = \begin{bmatrix} a_1 & m_1 \\ b_1 & \end{bmatrix}$, $T_2 = \begin{bmatrix} a_2 & m_2 \\ b_2 & \end{bmatrix}$, $T_3 = \begin{bmatrix} a_3 & m_3 \\ b_3 & \end{bmatrix} \in \mathcal{T}$, we have

$$\begin{aligned}
& \tau(T_1).D(T_2, T_3) - D(T_1T_2, T_3) + D(T_1, T_2T_3) - D(T_1, T_2).\sigma(T_3) \\
&= \tau(T_1).(\delta_{\mathcal{A}}(a_2, a_3) + \delta_{\mathcal{B}}(b_2, b_3)) - \delta_{\mathcal{A}}(a_1a_2, a_3) - \delta_{\mathcal{B}}(b_1b_2, b_3) \\
&\quad + \delta_{\mathcal{A}}(a_1, a_2a_3) + \delta_{\mathcal{B}}(b_1, b_2b_3) - (\delta_{\mathcal{A}}(a_1, a_2) + \delta_{\mathcal{B}}(b_1, b_2))\sigma(T_3) \\
&= \tau(T_1)\tau(e_{\mathcal{A}})\delta_{\mathcal{A}}(a_2, a_3) - \delta_{\mathcal{A}}(a_1a_2, a_3) + \delta_{\mathcal{A}}(a_1, a_2a_3) - \delta_{\mathcal{A}}(a_1, a_2)\tau(e_{\mathcal{A}})\sigma(T_3) \\
&\quad + \tau(T_1)\tau(e_{\mathcal{B}})\delta_{\mathcal{B}}(b_2, b_3) - \delta_{\mathcal{B}}(b_1b_2, b_3) + \delta_{\mathcal{B}}(b_1, b_2b_3) - \delta_{\mathcal{B}}(b_1, b_2)\sigma(e_{\mathcal{B}})\sigma(T_3) \\
&= \tau(a_1)\delta_{\mathcal{A}}(a_2, a_3) - \delta_{\mathcal{A}}(a_1a_2, a_3) + \delta_{\mathcal{A}}(a_1, a_2a_3) - \delta_{\mathcal{A}}(a_1, a_2)\sigma(a_3) \\
&\quad + \tau(b_1)\delta_{\mathcal{B}}(b_2, b_3) - \delta_{\mathcal{B}}(b_1b_2, b_3) + \delta_{\mathcal{B}}(b_1, b_2b_3) - \delta_{\mathcal{B}}(b_1, b_2)\sigma(b_3) \\
&= 0.
\end{aligned}$$

This proves our claim. \square

Lemma 2.4. *Let $\delta_{\mathcal{A}}$ and $\delta_{\mathcal{B}}$ be (σ, τ) -2-coboundaries on \mathcal{A} and \mathcal{B} , respectively. Then there exists a (σ, τ) -2-coboundaries δ on \mathcal{T} such that δ_1 corresponds to $\delta_{\mathcal{A}}$ and δ_2 corresponds to $\delta_{\mathcal{B}}$, where δ_1 and δ_2 are coordinate functions associated to δ .*

Proof. According to our assumption $\delta_{\mathcal{A}}$ and $\delta_{\mathcal{B}}$ are (σ, τ) -2-coboundaries, therefore there are bounded linear maps $R : \mathcal{A} \rightarrow \mathcal{A}$ and $S : \mathcal{B} \rightarrow \mathcal{B}$ such that $\delta_{\mathcal{A}} = \delta^1 R$ and $\delta_{\mathcal{B}} = \delta^1 S$. Consider the map $\delta : \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{T}$ defined by

$$\delta\left(\begin{bmatrix} a_1 & m_1 \\ b_1 & \end{bmatrix}, \begin{bmatrix} a_2 & m_2 \\ b_2 & \end{bmatrix}\right) = \begin{bmatrix} \delta_{\mathcal{A}}(a_1, a_2) & \tau(m_1)S(b_2) + R(a_1)\sigma(m_2) \\ \delta_{\mathcal{B}}(b_1, b_2) & \end{bmatrix}.$$

We will show it is the required map. Let $F : \mathcal{T} \rightarrow \mathcal{T}$ such that

$$F\left(\begin{bmatrix} a & m \\ b & \end{bmatrix}\right) = \begin{bmatrix} R(a) & 0 \\ S(b) & \end{bmatrix}.$$

Then F is a both linear and bounded map. Also, for every $T_1, T_2 \in \mathcal{T}$ we have

$$\begin{aligned}
(\delta^1 F)(T_1, T_2) &= (\delta^1 F) \left(\left[\begin{array}{cc} a_1 & m_1 \\ b_1 & \end{array} \right], \left[\begin{array}{cc} a_2 & m_2 \\ b_2 & \end{array} \right] \right) \\
&= \tau(T_1)F(T_2) - F \left(\left[\begin{array}{cc} a_1 a_2 & a_1 m_2 + m_2 b_2 \\ b_1 b_2 & \end{array} \right] \right) + F(T_1)\sigma(T_2) \\
&= \left[\begin{array}{cc} \tau(a_1) & \tau(m_1) \\ \tau(b_1) & \end{array} \right] \left[\begin{array}{cc} R(a_2) & 0 \\ S(b_2) & \end{array} \right] - \left[\begin{array}{cc} R(a_1 a_2) & 0 \\ S(b_1 b_2) & \end{array} \right] \\
&\quad + \left[\begin{array}{cc} R(a_1) & 0 \\ S(b_1) & \end{array} \right] \left[\begin{array}{cc} \sigma(a_2) & \sigma(m_2) \\ \sigma(b_2) & \end{array} \right] \\
&= \left[\begin{array}{cc} \tau(a_1)R(a_2) - R(a_1 a_2) + R(a_1)\sigma(a_2) & \tau(m_1)S(b_2) + R(a_1)\sigma(m_2) \\ \tau(b_1)S(b_2) - S(b_1 b_2) + R(b_1)\sigma(b_2) & \end{array} \right] \\
&= \left[\begin{array}{cc} (\delta^1 R)(a_1, a_2) & \tau(m_1)S(b_2) + R(a_1)\sigma(m_2) \\ (\delta^1 S)(b_1, b_2) & \end{array} \right] \\
&= \delta \left(\left[\begin{array}{cc} a_1 & m_1 \\ b_1 & \end{array} \right], \left[\begin{array}{cc} a_2 & m_2 \\ b_2 & \end{array} \right] \right) = \delta(T_1, T_2).
\end{aligned}$$

Thus, there exists a linear map F such that $\delta^1 F = \delta$. This means that δ is a (σ, τ) -2-coboundary. \square

Now, we are ready to prove our main Theorem.

Theorem 2.5. *Let $\mathcal{M} = 0$. Then*

$$H_{(\sigma, \tau)}^2(\mathcal{T}, \mathcal{T}) = H_{(\sigma, \tau)}^2(\mathcal{A}, \mathcal{A}) \oplus H_{(\sigma, \tau)}^2(\mathcal{B}, \mathcal{B}). \quad (2.1)$$

Proof. Consider the map $\alpha : Z_{(\sigma, \tau)}^2(\mathcal{T}, \mathcal{T}) \longrightarrow H_{(\sigma, \tau)}^2(\mathcal{A}, \mathcal{A}) \oplus H_{(\sigma, \tau)}^2(\mathcal{B}, \mathcal{B})$ defined by

$$\delta \mapsto \left(\delta_{\mathcal{A}} + N_{(\sigma, \tau)}^2(\mathcal{A}, \mathcal{A}), \delta_{\mathcal{B}} + N_{(\sigma, \tau)}^2(\mathcal{B}, \mathcal{B}) \right), \quad (2.2)$$

where $\delta_{\mathcal{A}}$ and $\delta_{\mathcal{B}}$ are (σ, τ) -2-cocycles that obtained from Lemma 2.2.

For given $\delta_{\mathcal{A}} \in Z_{(\sigma, \tau)}^2(\mathcal{A}, \mathcal{A})$ and $\delta_{\mathcal{B}} \in Z_{(\sigma, \tau)}^2(\mathcal{B}, \mathcal{B})$, by Lemma 2.3, $D : \mathcal{T} \times \mathcal{T} \longrightarrow \mathcal{T}$ defined as follows is (σ, τ) -2-cocycle:

$$D \left(\left[\begin{array}{cc} a_1 & 0 \\ b_1 & \end{array} \right], \left[\begin{array}{cc} a_2 & 0 \\ b_2 & \end{array} \right] \right) = \delta_{\mathcal{A}}(a_1, a_2) + \delta_{\mathcal{B}}(b_1, b_2).$$

Then

$$\begin{aligned}
\alpha(D) &= \left(D_{\mathcal{A}} + N_{(\sigma, \tau)}^2(\mathcal{A}, \mathcal{A}), D_{\mathcal{B}} + N_{(\sigma, \tau)}^2(\mathcal{B}, \mathcal{B}) \right) \\
&= \left(\delta_1 + N_{(\sigma, \tau)}^2(\mathcal{A}, \mathcal{A}), \delta_2 + N_{(\sigma, \tau)}^2(\mathcal{B}, \mathcal{B}) \right),
\end{aligned} \quad (2.3)$$

where

$$D_{\mathcal{A}}(a_1, a_2) = e_{\mathcal{A}}(\delta_1(a_1, a_2) + \delta_2(0, 0))e_{\mathcal{A}} = \delta_1(a_1, a_2),$$

and

$$D_{\mathcal{B}}(b_1, b_2) = e_{\mathcal{B}}(\delta_1(0, 0) + \delta_2(b_1, b_2))e_{\mathcal{B}} = \delta_2(b_1, b_2).$$

Hence, α is onto. Now, we will show that $\ker \alpha$ is $N_{(\sigma, \tau)}^2(\mathcal{T}, \mathcal{T})$. Let $\delta \in \ker \alpha$, then by (2.2), $\delta_{\mathcal{A}} \in N_{(\sigma, \tau)}^2(\mathcal{A}, \mathcal{A})$ and $\delta_{\mathcal{B}} \in N_{(\sigma, \tau)}^2(\mathcal{B}, \mathcal{B})$. Then by Lemma 2.4, there exists $D : \mathcal{T} \rightarrow \mathcal{T}$ defined as follows

$$D \left(\begin{bmatrix} a_1 & 0 \\ b_1 & \end{bmatrix}, \begin{bmatrix} a_2 & 0 \\ b_2 & \end{bmatrix} \right) = \delta_{\mathcal{A}}(a_1, a_2) + \delta_{\mathcal{B}}(b_1, b_2),$$

is (σ, τ) -2-coboundary, and thereupon $D \in N_{(\sigma, \tau)}^2(\mathcal{T}, \mathcal{T})$. We claim that $D = \delta$. For proving this assertion we use the following statements that obtaining of these relations are depend on δ , which it is (σ, τ) -2-cocycle:

- (1) $\delta \left(\begin{bmatrix} e_{\mathcal{A}} & 0 \\ 0 & \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & \end{bmatrix} \right) = \delta \left(\begin{bmatrix} 0 & 0 \\ 0 & \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ e_{\mathcal{B}} & \end{bmatrix} \right) = \begin{bmatrix} 0 & 0 \\ 0 & \end{bmatrix};$
- (2) $e_{\mathcal{B}} \delta \left(\begin{bmatrix} a_1 & 0 \\ 0 & \end{bmatrix}, \begin{bmatrix} a_2 & 0 \\ 0 & \end{bmatrix} \right) e_{\mathcal{B}} = \begin{bmatrix} 0 & 0 \\ 0 & \end{bmatrix};$
- (3) $e_{\mathcal{A}} \delta \left(\begin{bmatrix} 0 & 0 \\ b_1 & \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ b_2 & \end{bmatrix} \right) e_{\mathcal{A}} = \begin{bmatrix} 0 & 0 \\ 0 & \end{bmatrix};$
- (4) $e_{\mathcal{A}} \delta \left(\begin{bmatrix} a_1 & 0 \\ 0 & \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ b_2 & \end{bmatrix} \right) e_{\mathcal{A}} = \begin{bmatrix} 0 & 0 \\ 0 & \end{bmatrix};$
- (5) $e_{\mathcal{B}} \delta \left(\begin{bmatrix} a_1 & 0 \\ 0 & \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ b_2 & \end{bmatrix} \right) e_{\mathcal{B}} = \begin{bmatrix} 0 & 0 \\ 0 & \end{bmatrix};$
- (6) $e_{\mathcal{A}} \delta \left(\begin{bmatrix} 0 & 0 \\ b_1 & \end{bmatrix}, \begin{bmatrix} a_2 & 0 \\ 0 & \end{bmatrix} \right) e_{\mathcal{A}} = \begin{bmatrix} 0 & 0 \\ 0 & \end{bmatrix};$
- (7) $e_{\mathcal{B}} \delta \left(\begin{bmatrix} 0 & 0 \\ b_1 & \end{bmatrix}, \begin{bmatrix} a_2 & 0 \\ 0 & \end{bmatrix} \right) e_{\mathcal{B}} = \begin{bmatrix} 0 & 0 \\ 0 & \end{bmatrix}.$

In addition for given $T_1 = \begin{bmatrix} a_1 & 0 \\ b_1 & \end{bmatrix}, T_2 = \begin{bmatrix} a_2 & 0 \\ b_2 & \end{bmatrix} \in \mathcal{T}$, we can write

$$\delta(T_1, T_2) = e_{\mathcal{A}} \delta(T_1, T_2) e_{\mathcal{A}} + e_{\mathcal{B}} \delta(T_1, T_2) e_{\mathcal{B}}. \quad (2.4)$$

Since δ is a (σ, τ) -2-cocycle and bilinear, so relations (1)-(7) and (2.4), imply

$$\begin{aligned} (\delta - D)(T_1, T_2) &= \delta \left(\begin{bmatrix} a_1 & 0 \\ 0 & \end{bmatrix}, \begin{bmatrix} a_2 & 0 \\ b_2 & \end{bmatrix} \right) + \delta \left(\begin{bmatrix} 0 & 0 \\ b_1 & \end{bmatrix}, \begin{bmatrix} a_2 & 0 \\ b_2 & \end{bmatrix} \right) \\ &\quad - e_{\mathcal{A}} \delta \left(\begin{bmatrix} a_1 & 0 \\ 0 & \end{bmatrix}, \begin{bmatrix} a_2 & 0 \\ 0 & \end{bmatrix} \right) e_{\mathcal{A}} - e_{\mathcal{B}} \delta \left(\begin{bmatrix} 0 & 0 \\ b_1 & \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ b_2 & \end{bmatrix} \right) e_{\mathcal{B}} \\ &= \delta \left(\begin{bmatrix} a_1 & 0 \\ 0 & \end{bmatrix}, \begin{bmatrix} a_2 & 0 \\ 0 & \end{bmatrix} \right) + \delta \left(\begin{bmatrix} 0 & 0 \\ b_1 & \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ b_2 & \end{bmatrix} \right) \\ &\quad + \delta \left(\begin{bmatrix} a_1 & 0 \\ 0 & \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ b_2 & \end{bmatrix} \right) + \delta \left(\begin{bmatrix} 0 & 0 \\ b_1 & \end{bmatrix}, \begin{bmatrix} a_2 & 0 \\ 0 & \end{bmatrix} \right) \\ &\quad - e_{\mathcal{A}} \delta \left(\begin{bmatrix} a_1 & 0 \\ 0 & \end{bmatrix}, \begin{bmatrix} a_2 & 0 \\ 0 & \end{bmatrix} \right) e_{\mathcal{A}} - e_{\mathcal{B}} \delta \left(\begin{bmatrix} 0 & 0 \\ b_1 & \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ b_2 & \end{bmatrix} \right) e_{\mathcal{B}} \\ &= \begin{bmatrix} 0 & 0 \\ 0 & \end{bmatrix}. \end{aligned}$$

Therefore $\delta = D$, and this means that δ is (σ, τ) -2-coboundary. Conversely, let $\delta \in N_{(\sigma, \tau)}^2(\mathcal{T}, \mathcal{T})$. Then by Lemma 2.2 there are (σ, τ) -2-coboundaries $\delta_{\mathcal{A}}$ and $\delta_{\mathcal{B}}$ on \mathcal{A} and \mathcal{B} , respectively. Therefore $\delta \in \ker \alpha$. This means that $\ker \alpha = N_{(\sigma, \tau)}^2(\mathcal{T}, \mathcal{T})$. Then

$$\begin{aligned} H_{(\sigma, \tau)}^2(\mathcal{T}, \mathcal{T}) &= \frac{Z_{(\sigma, \tau)}^2(\mathcal{T}, \mathcal{T})}{N_{(\sigma, \tau)}^2(\mathcal{T}, \mathcal{T})} = \frac{Z_{(\sigma, \tau)}^2(\mathcal{T}, \mathcal{T})}{\ker \alpha} \\ &= H_{(\sigma, \tau)}^2(\mathcal{A}, \mathcal{A}) \oplus H_{(\sigma, \tau)}^2(\mathcal{B}, \mathcal{B}). \end{aligned}$$

□

REFERENCES

- [1] *B. E. Forrest and L. W. Marcoux*, Derivations of triangular Banach algebras, *Indiana Univ. Math. J.*, **45** (1996), 441-462.
- [2] *B. E. Forrest and L. W. Marcoux*, Weak amenability of triangular Banach algebras, *Trans. Amer. Math. Soc.*, **354** (2001), 1435-1452.
- [3] *B. E. Forrest and L. W. Marcoux*, Second order cohomology of triangular Banach algebras, *Houston J. Math.*, **30** (2004), No. 4, 1157-1176.
- [4] *M. Khosravi, M. S. Moslehian and A. N. Motlagh*, Vanishing of the first (σ, τ) -cohomology group of triangular Banach algebras, *Meth. Funct. Anal. Top.*, **14** (2008), No. 4, 351-360.
- [5] *A. R. Medghalchi, M. H. Sattari and T. Yazdanpanah*, Amenability and weak amenability of triangular Banach algebras, *Bull. Iran. Math. Soc.*, **31** (2005), No. 2, 57-69.
- [6] *M. Mirzavaziri and M. S. Moslehian*, σ -derivations in Banach algebras, *Bull. Iran. Math. Soc.*, **32** (2006), No. 1, 65-78.
- [7] *M. Mirzavaziri and M. S. Moslehian*, Automatic continuity of σ -derivations in C^* -algebras, *Proc. Amer. Math. Soc.*, **134** (2006), No. 11, 3319-3327.
- [8] *M. Mirzavaziri and M. S. Moslehian*, σ -amenability of Banach algebras, *Southeast Asian Bull. Math.*, **33** (2009), 89-99.
- [9] *M. S. Moslehian*, On (co)homology of triangular Banach algebras, *Banach Center Publ.*, **67** (2005), 271-276.