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BIDIMENSIONAL BROUWERIAN ALGEBRAS

Mircea SULARIA'

Notiunea de D-algebrd Brouweriand (BrD-algebrd) este introdusd printr-o
algebrd de tip 7, =(2,2,2,2,0,0) cu patru operatii binare v,n,—>,~ si doud
constante 0, 1. O BrD-algebrd este o algebrd A= (A4,v,A,— =,0,1) de tip 1,
dintr-o varietate speciald 2 Introducem o definitie ecuationald si un principiu al

dualitdtii pentru varietatea 2 Se prezintd proprietdti esentiale pentru 22 Orice
BrD-algebra A este izomorfd cu un produs subdirect al unei perechi de algebre
(H, é) de tip T, termen echivalente respectiv cu o algebrd Heyting H si cu o

algebrd Heyting duald B. Clasa 2 este o varietate minimald de algebre incluzand

algebrele Heyting si algebrele Heyting duale. Varietatea 22 a BrD-algebrelor este
aritmeticd §i obiectele sale injective sunt algebrele Boole complete.

The notion of Brouwerian D-algebra (BrD-algebra) is introduced by an
algebra of type 1, =(2,2,2,2,0,0) with four binary operations v,A,—>,~ and two
constants 0, 1. A BrD-algebra is an algebra A= (A4,v,A,— =,0,1) of type 7,
from a special variety 2. We introduce an equational definition and a duality
principle for the variety 2. Basic algebraic properties of D are presented. Every
BrD-algebra A is isomorphic to a subdirect product of a pair of algebras ( H, é) of
type t,, termwise definitionally equivalent respectively to a Heyting algebra H and
a dual Heyting algebra B. The class 2 is a minimal variety of algebras including

Heyting algebras and dual Heyting algebras. The variety 2 of all BrD-algebras is
arithmetical and its injective objects are complete Boolean algebras.
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1. Introduction

The notion of D-algebra is introduced in [37, 38] to express properties of a
Kolmogorov calculus of problems [23] with two components. This structure will
be called a Brouwerian D-algebra (BrD-algebra). Any BrD-algebra is a
bidimensional Brouwerian algebra in the sense that it is an algebra isomorphic to
a subdirect product of a couple of structures associated respectively with a
Heyting algebra and a dual Heyting algebra. In this paper some basic properties of
BrD-algebras are presented.

We will use notions of universal algebra and lattice theory [3,5,7,12,13,22,
24.31-36]. Let K be the class of algebras with a finite sequence of binary
operations, operators and constants. A type 7 of algebras in K is a decreasing
finite sequence of integer numbers of the set {0, 1, 2}. Let t(K) be the set of all
types 7 of algebras in K. The class of all algebras of type 7 is denoted by K(7), for
all 7et(K). For any algebra Ae K(r), we denote by Con(A) the set of all

congruences of A. We present now basic definitions and notations.

Definition 1.1. A Boolean algebra is an algebra B =(B,v,A,”,0,1) of
type 7, =(2,2,1,0,0) such that the reduct L(B)=(B,v,A,0,1) is a bounded
distributive lattice and for all xe B,x Ax*=0andxv x° =1.

Definition 1.2. A Heyting algebra is an algebra H =(H,v,A,—,0,1) of
type 7, =(2,2,2,0,0) such that the reduct L(H)=(H,v,A,0,1) is a bounded
lattice and the following condition holds, for all x, y,z e H :

(H)z<x—> yifandonlyifzax<y.

Definition 1.3. A dual Heyting algebra (Brouwer algebra) is an algebra
B=(B8,v,A,—0,1) of type 7, such that the reduct L(B)=(B,v,A,0,1) is a
bounded lattice and the following condition holds, for all x, y,z€ B :

(H°) x—y<zifandonlyifx<yvz.

Let B, 'H and Br be respectively the varieties of Boolean algebras, Heyting
algebras and Brouwer algebras. For any type 7 and every class C C K(7), let <C >

be the variety generated by C.

2. An equational definition

Let 7,=(2,2,2,2,0,0) be the type of algebras with binary operations

V,A,—,~ and constants 0, 1. We introduce a variety D C K(7,) of algebras
called Brouwerian D-algebras (BrD-algebras).
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Definition 2.1. For any B =(B,Vv,A,",0,1) € B, define
B=(B,v,A,—,0,1)eK(z,),
where forall x,ye B,x > y=x"vyandx=y=xA)‘.
Definition 2.2. For any H =(H,v,A,—,0,1) e H , define
H=(H,v,A>,~01)eK(,),
where forall x,ye H,x > y=x—>yandx=-y=(x—>y)—>0.
Definition 2.3. For any B =(B,Vv,A,—,0,1) € Br, define
B=(B,v,A,—>,~0,1)eK(z,),
where forall x,ye B,x > y=1-(x—y)andx~y=x—y.
Remarks 2.4. Define the classes:
B={B/BeB}, H={H/He™M| and Br={B/BeBr}.
Then the following conditions hold:
(i) B=HnNBr.
(ii) The three classes B,H and Br are varieties of algebras from K(z,)
termwise definitionally equivalent respectively to B,’H and Br .

Notations 2.5. For any A=(4,v,A,—,~,0,1)e K(z,), we introduce the
following notations, for all x,y e 4:

(D) Ax)=1>x, 2) p(x)=x=0, 3) ~wx=x—>0,

@) xAy=AxAy), B) xVy=pxvy), (6) A(A4) ={/1(x)/xeA} ,

() p(d)={p(x)/xe 4}

An equational definition of D is given. Then different rules of computation
are derived in order to prove that D is the variety of algebras in K(7,) generated
by the class H UBr.

Definition 2.6. Let D be the variety of all algebras A of type 7,, satisfying
the following conditions:

(1) The reduct L(A)=(4,Vv,A,0,1) is a bounded distributive lattice with
zero 0 and one 1.

(i1) The following equations hold, for all x,y € 4:

dl) x> (xvy)=1;(d2) Axvy)=Ax)VvAy)
(d3) AxA(x> ) =A(xAYy) ;([d) x>y >2)=(xAy)>z
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) x>y=Ax)>y; (d6) x> (y=z)=1=-(xA(y > 2))
(d7) x=A(x)v (p(x) A=x) 5 (d1°) (xA )=y =0
(d2°) p(xAp)=p(x)Ap(y) 5 (d3°) p((x=p)vy)=p(xVy)
(d4°) (x=y)=z=x=(yvz); (d5°) x=y=x=p(y)
(d6%) (x > y)+z==((x =)V 2) ;(d7°) x= p(x) A(A(x) v (1+x))
The equations (d1°)-(d7°) are called dual of (d1) — (d7).
Definition 2.7. (i) A Brouwerian D-algebra (BrD-algebra) is an algebra
A=(4,v,An,—,~0,1)eD.
(ii) For any AeK(z,), let A=(4,7,A,5,=,0,1)eK(r,) such that for
all x,ye A,
x\7y=X/\y,x7\y=xvy,x—~>y=y;x,xly=y—'>x,(~)=1,i=0.
(iii) For any A€ D, let < be the order relation on 4 corresponding to the
lattice reduct L(A).

The next lemma follows from Definition 2.6. A duality principle for the
variety D is derived. Then the exact relation between BrD-algebras and the two

kind of structures of Heyting algebra and Brouwer algebra is established.
Lemma2.8. AcD implies AeD.

A duality principle.
Let L, be the language of BrD-algebras v,n,—>,~,0,1, V be the set of

variables and T[L,] be the set of terms. The corresponding algebra of terms
TIL,1=(T[Ly], VoA, —,=,0,1) is an algebra in K(z,)) with the free generating
set V. Let 'I:[L'@] =(T[L, )V, A, >, =, 0,1) be the algebra of type 7, defined using
Definition 2.7 (i1). Then there exists a unique extension of the identitity function
id, :V =V to an isomorphism °:T[L,]—> T[L,]. The following conditions hold,
forall o,teT[L,]:

(1) o° coincides with o ,if c €V,

(2) 0° (1°) is the constant 1 (0),

3) (ov1)’, (cAT), (0>71)° and (o~71)° are respectively the terms
o’ A, 0°vr®, °~0° and t° > o°.

A duality principle follows from Lemma 2.8: for all terms o,7 € T[L,], if

the equation o =t is valid in D then the equation ¢° =1t° is valid in D.

Lemma 2.9. Let AeD. Then, forall x,y e A4:
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(i) x<y implies A(x) < A(y), (i) AA(x))=A(x)<x, (iii)) A(0)=0,
() x>x=1, (v) A(1)=1,

i) Ax) > A)=x>Ay)=x>y=AUx>y),

(vii) A(x A y)=AAUx) A y) = AUAx) A A(Y)),

viii) x >0=A(x) >0=1+x,

(ix) A(x)=A(y) = ((A(x) > 0) v A(y)) > 0.

Proof. (i) If x <y then xV y =y, thus using equation (d2) one obtains

AX) SA().
(i1) From equation (d4) and (d7) one derives
AMAx))=1=-(1=x)=0AD)=>x=1-x=Ax)<x.
(ii1)-(v) From (ii) and equation (d1) setting y = 0 one derives (iii) and (iv).
The condition (v) follows from (iv).
(vi) Equations (d4) and (d5) imply
AxX) S A =x=2Ap)=x>1> )=
@A) = y=x—y=l-@G—=y)=Mx—y).
(vii) Relations (vi), equation (d3) and Definition 2.6 (i) imply:
AxAY)=AMxA(x = y) = AMxA(x = A(y)) =
AXAAY)) =AM AA(Y) = x)) =
AAWM A AY) = Ax)) = AMAX) AA(Y)) -
(viii) Equation (d1°) for y = x implies x -~ x = 0. Then equations (d5), (d6)
and (iv) imply
x=0=Xx)—=0,
x=>0=x->(x=x)=1-(xxA(x>x)=1-(xAl)=1-x.
(ix) From equations (d6°) and (viii) one derives:
A@)=A(y) =1 =x)=Ay)=(A=x)VA(y) =
(AX)=0)VA(y)—0.1
Consequence 2.10. For any A e D, the following conditions hold:
(i) The operator ) is an interior operator of the bounded poset (A4,<,0,1).
(ii) The set \(A) is a subalgebra of (4,V,—,0,1).
(iii) The system A\(A) = (\(A),V,N°,—,0,1) is a Heyting algebra.
Proof. (i) This property is expressed by Lemma 2.9 (i), (ii) and (v).
(i1) This fact follows from axiom (d2) and Lemma 2.9 (vi), (iii) and (v).
(i) From equation (d2) and Lemma 2.9 (iii), (v), (vii) it follows that
(A(A4),V,A?,0,1) is a bounded distributive lattice. Then equations (d3)-(d5) and
Lemma 2.9 (vi) imply
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A A" (A(X) = A() = M)A A(Y),
A(x) = (A(Y) = A(2)) = AX) A" A(y) = M2) .
Thus A(A)e'H. R
Lemma 2.9°. Let AeD. Then, forall x,ye 4:
() x<y implies p(x)< p(y), (i) x < p(x) = p(p(x)),
(@) ph)=1, (v) x=x=0, (v) p(0)=0,
i) p(x)=p(y)=px)=y=x=y=p(x=y),
(vit) p(xv y)=p(p(x)vy)=p(p(x)v p(y),
ii) 1=x=1= p(x),
(ix) p(x) > p(y)=1=(10=p(M) A p(x)).
Consequence 2.10°. For any Ae D, the following conditions hold:
(i) The operator p is a closure operator of the bounded poset (A,<,0,1).
(if) The set p (A) is a subalgebra of (A,N\,~,0,1).
(iii) The system p(A)= (p(A),V,N,~,0,1) is a dual Heyting algebra.
Lemma 2.9° and Consequence 2.10° follow from 2.9 and 2.10 by the
duality principle. The following lemma presents the result that any BrD-algebra is
isomorphic to a subalgebra of HxB, where (H,B) € HxBr.

Lemma 2.11. Let AeD and i: A— AN(A)x p(A) be a function defined by
i(x)=\(x),p(x)), for all xe A. Let N(A)eH and p(A) € Br defined by
Consequences 2.10 (iii) and 2.10° (iii). Then the following conditions hold.

(i) The algebra A(A) € H is defined by N(A) = (A(A),V,A\’,~>,~,0,1).

(ii) The algebra p(A) € Br is defined by p(A) = (p(A),V,A,~,~,0,1).

(iif) The function i is an injective homomorphism from A into the direct
product MX@ such that the image algebra i(A) is a subdirect product of

the pair (@,@)

Proof. (i) Equations valid in A\(A)€H and Lemma 2.9 (ix) imply the
following relations, for all x,ye 4,

(1) =(A(x) = A() = S(AX)VAY)),

(2) AMx)=A() =(=AX) VAY)) -
From (1) and (2) one derives

(3) A(x) = A(y) = S(A(x) = A(»)) .-
Equation (3), Definition 2.2 and Consequence 2.10 (iii) imply (i).
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(i1) Using the duality principle, condition (ii) follows from (i).

(iii) Lemmas 2.9 and 2.9° imply the fact that i is an homomorphism.
Suppose that i(x) =i(y). Definition of i implies A(x)=A(y) and p(x)=p(y),
thus from Lemma 2.9 (viii) one derives - = -y. Using equation (d7) this implies
x=Ax)V(p(x)A=x)=A»)V(p(y)A=y)=y. Thus, the function i is injective.
Definition of i implies also ,(i(4)) =A(4) and m,(i(A4)) = p(A4), where the
functions 7, : A(4) X p(A4) — A(4) and 7, : \(4) X p(A) — p(A) are the canonical
projections of the direct product A(A4)x p(A4). Thus (iii) holds. B

The following result is a model theoretical characterization of D.

Theorem 2.12. D = <ﬁu§> .

Proof. Using Definitions 1.2 and 2.2, respectively 1.3 and 2.3, from
Definition 2.6 it follows that HUBr C D, thus (HUBr)CD. Let VC K(r,) be

any variety such that HUBrCV. We prove that in this case DC V. Let AeD.
Lemma 2.11 implies that A is isomorphic to a subalgebra of MXm with
m cH CYV and E cBr CYV, thus AeV. Therefore, the next inclusion
also holds: D C <ﬂ UE> .n

3. Basic algebraic properties

Consequences 2.10 and 2.10° express the properties that any BrD-algebra
includes a subposet which is a Heyting algebra and a subposet which is a dual
Heyting algebra. We present now a typical example of BrD-algebra.

Example 3.1. For any topological space U and SCU, let S be the
complement of S, S” be the interior of S and S be the closure of S in U. Let XY
be topological spaces. Let W be the algebra of H associated with the
Heyting algebra Op(X) of open sets of X and let C/(Y) be the algebra of Br
associated with the dual Heyting algebra CI/(Y) of closed sets of Y.

From Theorem 2.12 it follows that A(X,Y)=Op(X)Xx % €D, where
for all (P,F),(Q,G)€ A(X,Y)=Op(X)xCI(Y),

(P,F)V(Q,G)=(PUQ,FUG),
(P,FYN(Q,G)=(PNO,FNG),

(P.F)=(0.G) = (P*UQY . (F* UG’
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(P,F);(Q,G):[(PQQ“’)O,FQGC],
0=(9,9) and 1=(X,Y).

Theorem 3.2. For every A€ D, there exist a pair of topological spaces
(X, Y) and an injective homomorphism from A into the algebra A(X,Y)e D

introduced in Example 3.1.
Proof. Let AeD. From Lemma 2.11 it follows that there exists an injective

homomorphism i from A into A(A)x p(A), where A\(A) € 'H and p(A) € Br. The

topological representation theorems of Heyting algebras and Brouwer algebras
imply that there exist a pair of topological spaces (X, Y) and an injective

homomorphism j from A(A)Xxp(A) into Op(X)xCl(Y)= A(X,Y). Then the
function joi is an embedding of A into A(X,Y). l

The following lemma expresses the fact that any BrD-algebra includes a
subposet which is a Boolean algebra. Then different additional properties of the
variety D are obtained.

Lemma 3.3. Let A€ D and ~A={-x/x¢& A}. Then:

(1) 2A=XA)Np(4).

(i) The subposet (—4,<,0,1) of (A4,<,0,1) is a Boolean lattice such that its
corresponding Boolean algebra is defined by B(A)= (-4,V,\°,,0,1), where for
all u € -4, the complement u‘ of u in B(A) is u‘ = - .

(iii) The algebra B(A) € B associated with B(A) € B using Definition 2.1 is
defined by B(A) = (=4,V,N’,~,=,0,1).

Proof. (i) From Lemmas 2.9 and 2.9° it follows that for all x € A4:

(1) ~wx=1-x,

(2) M) =" ="5A(x),

(3) p(ex) ==x ="p(x),

(4 Ap(x)) = =5x = p(A(x)),

(5) x e M(4) if and only if \(x) = x,

(6) x € p(A) ifand only if p(x)=x.

The equality (i) follows from equations (1)-(6).

(i) Forall x,ye 4:

(7) ~xV 1y = S5(x V),
(8) “x A% =y = 2=(-x Ay),
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9) ~xVaw=1,
(10) “x A 5=x=0.
Thus (ii) holds.
(ii1) For all x,ye 4:
(11) ~x = =y =% V-y,
(12) ==y =-=xA° Sy,
Then (iii) follows from (11) and (12) using Definition 2.1 and (ii). H

Remark 3.4. Let A€ D and a € A. Then:
(i) an-a=0 ifand only if p(a)\N-a=0,
(i) an-a =0 implies \(a)=a,
(iii) aV-a =1 ifand only if M(a)V-a=1,
(iv) aV—a =1 implies p(a)=a,
) AcH ifand only if x A-x=0, forall x€ A,
(i) A€ Br ifand only if xNV-x=1, forall xe A,
(vii) A€B ifand only if xN\-x=0 and xV-x=1, forall xe 4.
Notations 3.5. We will denote by € the algebraic category defined by C,
for any CCK(7) with 7€#(K). For any objects A and B of an algebraic
category we denote by [A, B] the set of all homomorphisms from A to B.

The following theorem presents the basic fact that the variety D is an
arithmetical variety. The categorical relation of D with the three subvarieties H ,
Br and B is also derived.

Theorem 3.6. The variety D is arithmetical i.e. D is congruence-
distributive and congruence-permutable.

Proof. We will use Burris and Sankappanavar theorem [7, Theorem
I1.12.5]: a variety V is arithmetical if there exists a ternary term t(x, y, z) such
that the following equations are valid in ),

(%) t(x, ¥, x) =t(x, y,¥) =1(y,y,X) = x.

Define the following ternary terms associated in the language of D with
the known ternary terms of the variety B, H and Br:

my(x,y,z)=(x A’ 2z) V(X A 5=y A S5z) V(S A° =y A2 z),

my(x,y,2)=((x = y) > 2)N\" (2= y) > )N (xV2),

my, (xX,y,2) = (z=(y=x))V(x=(y=2) V(xAz).
Using the above definitions, Lemmas 3.3 and 2.11 (i), (ii) imply the
validity in D of the following relations:
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My (X, 3,%) = my, (x,y,y) = my (¥, y,%) = \x),

My, (X, ,X) = My, (X, y, y) = My, (y, y,x) = p(x),

my (X, ,%x) = my(x,,y) = my(y,y,X) = x.

Using equation 2.6 (d7), the previous relations imply that for the new term

(X, y,2) = my (x,y,2)V (my, (X, y,2) A\ my(x, 9, 2)),
the following equations are valid in D

1(x, y, ) = my (X, p, X)V (g, (X, p, ) A mg (x, y,x)) = AMx)V (p(X) A =x) = x
Thus for the ternary term t(x, y, z) the equations (x) are validin D. H

Theorem 3.7. The three algebraic categories 5,@ and B are reflective

full subcategories of ® such that their corresponding reflectors preserve the
injective homomorphisms.

Proof. Forall A,BeD and f €[A,B], let
fu IAA) = A(B), fo :p(A) — p(B) and f,: =4 — =B
be the functions such that for all x € 4,
S A=A (X)), [f5(p(x)) = p(f(x)) and f,(-x) ==/ (x).
Lemmas 2.11 and 3.3 imply that there exists three functors
R, ®D—9H, R, :D—Brand R,: D —"B
defined by the following conditions:
Ry (A)=MA) e H and R, (f) = [y €[Ry,(A), Ry (B)],
Ry (A) = p(A) € Br and Ry, (f) = [ €[Ry (A), Ry, (B)],
R,(A)=B(A)€ B and R,(f)= f, €[R,(A)R,(B)].
Then R, , R, and R, are reflectors respectively of the full subcategories

$,Br and B of D preserving injective homomorphisms. l

It is known that injective Heyting (Brouwer) algebras are just complete
Boolean algebras. The following result is that complete Boolean algebras of B
are also injective algebras of D.

Theorem 3.8. An algebra A €D is an injective object of D if and only if
A€ B and the reduct L(A) is a complete lattice.

Proof. Suppose that AeB and the reduct L(A) is a complete lattice.
From Sikorski theorem it follows that A is injective in B. This implies that A is
injective in D because of the fact that the functor R, : D — % introduced in the
proof of Theorem 3.7 is a reflector preserving injective homomorphisms. Suppose
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now that A€ D is an injective object of D. From Lemma 2.11 (iii) it follows that

there exists an injective homomorphism i€[AA(A)xp(A)]. Any Heyting
(Brouwer) algebra can be extended to a complete Heyting (Brouwer) algebra by a
regular extension [18]. Thus, the relations A(A) e H and p(A) e Br imply that
there exist A, €D and a regular embedding i, €[A, A.] such that L(A,) is a
complete lattice. From the condition that A is injective it follows that there exists
Jj €[A.,A] such that joi =id,, where id, €[A, A] is the identity morphism of
A. This implies j(sup, , (. (X))) =sup, (X), for any subset X C 4. Thus,
L(A) is a complete lattice. Arguments similar to those used in the proof of
Balbes-Horn theorem ([3], theorem 1X.5.5) imply

{xed/px)=1}={1}.
By duality one derives also

{xe€ A/ \(x) =0} = {0}.
The previous relations together with the next equations A(xA-x)=0 and

p(xV-x)=1 imply xA-x=0 and xV-x=1, for all x&€ 4. Thus using
Remark 3.4 (vii) one derives Ae B.m

The next result presents a factorization condition for BrD-algebras.

Theorem 3.9. Let H*Br be the class of all algebras A€ K(t,) such

that there exist a pair (H,B) € HxBr and an isomorphism f € [A,ﬁxg] . Let
A e D. The following conditions are equivalent:
(i) Ac H*Br.
(ii) There exists an element o € A such that for all x € A:
(D) AMxNhNa)=xAa,
2) p(xVa)=xVa.

Proof. (i) = (ii) . Suppose that the condition (i) holds. Thus, there exists
an isomorphism f €[A,HxB] with (H,B)e HxBr. Let a=(1,0)€ HxB.
Then the element o= ' (&) € A satisfies both the conditions (1) and (2), for all
x€ A, where /' €[H xB,A] is the inverse of /. Thus (ii) holds.

(it) = (i) . Suppose that (ii) holds. Define the following subsets of A,

H*=[0,a]l={xed/x<a},
B, =[al]l={xcd/a<x}.

Let f:A— H" xB, be a function such that for all xe 4,

f=KxANa,xVa).
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We set x ="« in (1) and (2). Thus a A-a=0 and aV-a =1. Then one can
verify that the following conditions hold:

() H*=(H",V,A\,—",0,1")eH, where 1" =« and for all x,y€ H",
x—="y=x-=yAa;

2 B, =(B,,V,A\,—,,0,,1)€Br, where 0, =« and for all x,y€B,,
x—, y=@=y)Va;

(p3) fis bijective and f €[A,H* xB,].
The properties (p1)-(p3) imply (i). B

4. Concluding remarks

In this paper some basic properties of the variety D are presented. Then
different properties regarding the study of congruences Con(A) and the theory of
normal filters and ideals for A€ D can be established [38].

On this basis one can derive that the projective limits and the injective
limits exist in D. A construction of free objects in D can be established. One can
obtain also that the variety D is a proper extension of H * Br.

The notion of symmetric (involutive) Boolean algebra is defined by a
Boolean algebra together with an involutive (dual) automorphism and it is
introduced in [25, 26] to express an algebra of electrical circuits with valves.
Basic results of the theory of symmetric Boolean algebras are presented in [1, 40].
An important development of this theory is realized by the study of symmetric
Heyting algebra in order to improve the algebraic semantics of Lukasiewicz logic
[28,6,8-10,15,19-21] and many-valued modal logics [2].

A particular notion of bidimensional Brouwerian algebra called involutive
Brouwerian D-algebra (IBrD-algebra) has been introduced in [39]. An IBrD-
algebra is an algebra A=(4,v,A,—,=,,0,1) satisfying:

(1) (4,v,A,—,=,0,1) € D (Definition 2.6).

(2) The operator “: 4 — A is a De Morgan negation of the corresponding
bounded lattice reduct (A4,v,A,0,1).

B) x=y=0O" > x)", forall x,y€ A.
A basic example of IBrD-algebra is given by the direct product algebra
A(X)=0p(X)xCl(X)eD from Example 3.1 associated with a topological

space X together with the operator “: Op(X)x CI(X) — Op(X)xCI(X) such that
(P,F)" =(F°,P%), for all (P,F)<c Op(X)xCI(X). Symmetric Boolean algebras
are particular structures of IBrD-algebras. Then the study of IBrDalgebras in
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connection with symmetric Godel algebras can be also considered in order to
express an algebraic semantics for a logic of two criteria decision making.

An interesting special subject is the logic of two criteria optimization in
fuzzy environment [41, 4, 11, 14, 16, 42, 29, 30, 17]. Then the case of multi-
criteria optimization can be also considered.
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