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BIDIMENSIONAL BROUWERIAN ALGEBRAS 

Mircea SULARIA1 

Noţiunea de D-algebrǎ Brouwerianǎ (BrD-algebrǎ) este introdusǎ printr-o 
algebrǎ de tip (2, 2, 2, 2, 0, 0)Dτ = cu patru operaţii binare , , ,∨ ∧ → −  şi douǎ 

constante 0, 1. O BrD-algebrǎ este o algebrǎ ( , , , , 0,1)A= ∨ ∧ → −A  de tip Dτ  

dintr-o varietate specialǎ D. Introducem o definiţie ecuaţionalǎ şi un principiu al 
dualitǎţii pentru varietatea D. Se prezintǎ proprietǎţi esenţiale pentru D. Orice 
BrD-algebrǎ A este izomorfǎ cu un produs subdirect al unei perechi de algebre 
( ),H B  de tip Dτ   termen echivalente respectiv cu o algebrǎ Heyting H şi cu o 

algebrǎ Heyting dualǎ B. Clasa D este o varietate minimalǎ de algebre incluzând 
algebrele Heyting şi algebrele Heyting duale. Varietatea D a BrD-algebrelor este 
aritmeticǎ şi obiectele sale injective sunt algebrele Boole complete. 

 
The notion of Brouwerian D-algebra (BrD-algebra) is introduced by an 

algebra of type (2, 2, 2, 2, 0, 0)Dτ = with four binary operations , , ,∨ ∧ → −  and two 

constants 0, 1. A BrD-algebra is an algebra ( , , , , 0,1)A= ∨ ∧ → −A  of type Dτ   

from a special variety D. We introduce an equational definition and a duality 
principle for the variety D. Basic algebraic properties of D are presented. Every 

BrD-algebra A is isomorphic to a subdirect product of a pair of algebras ( ),H B  of  

type Dτ   termwise definitionally equivalent respectively to a Heyting algebra H and 

a dual Heyting algebra B. The class D is a minimal variety of algebras including 
Heyting algebras and dual Heyting algebras. The variety D of all BrD-algebras  is 
arithmetical and its injective objects are complete Boolean algebras. 
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1. Introduction 

The notion of D-algebra is introduced in [37, 38] to express properties of a 
Kolmogorov calculus of problems [23] with two components. This structure will 
be called a Brouwerian D-algebra (BrD-algebra). Any BrD-algebra is a 
bidimensional Brouwerian algebra in the sense that it is an algebra isomorphic to 
a subdirect product of a couple of structures associated respectively with a 
Heyting algebra and a dual Heyting algebra. In this paper some basic properties of 
BrD-algebras are presented. 

We will use notions of universal algebra and lattice theory [3,5,7,12,13,22, 
24,31-36]. Let K be the class of algebras with a finite sequence of binary 
operations, operators and constants. A type τ of algebras in K is a decreasing 
finite sequence of integer numbers of the set {0, 1, 2}. Let t(K) be the set of all 
types τ of algebras in K. The class of all algebras of type τ is denoted by K(τ), for 
all ( )t Kτ ∈ . For any algebra ( )K τ∈A , we denote by ( )Con A  the set of all 
congruences of A. We present now basic definitions and notations. 

Definition 1.1. A Boolean algebra is an algebra ( , , , ,0,1)cB= ∨ ∧B  of 
type (2, 2,1,0,0)Bτ =  such that the reduct ( ) ( , , ,0,1)L B= ∨ ∧B  is a bounded 
distributive lattice and for all , 0 and 1c cx B x x x x∈ ∧ = ∨ = . 

Definition 1.2. A Heyting algebra is an algebra ( , , , ,0,1)H= ∨ ∧ →H  of 
type (2, 2, 2,0,0)Hτ =  such that the reduct ( ) ( , , ,0,1)L H= ∨ ∧H  is a bounded 
lattice and the following condition holds, for all , ,x y z H∈ : 

(H)  if and only if z x y z x y≤ → ∧ ≤ . 
Definition 1.3. A dual Heyting algebra (Brouwer algebra) is an algebra 

( , , , ,0,1)B= ∨ ∧ −B  of type Hτ  such that the reduct ( ) ( , , ,0,1)L B= ∨ ∧B  is a 
bounded lattice and the following condition holds, for all , ,x y z B∈ : 

(Ho)  if and only if x y z x y z− ≤ ≤ ∨ . 
Let B, H and Br be respectively the varieties of Boolean algebras, Heyting 

algebras and Brouwer algebras. For any type τ and every class C ⊆ K(τ), let C  

be the variety generated by C. 

2. An equational definition 

Let (2, 2, 2, 2,0,0)Dτ =  be the type of algebras with binary operations 

, , ,∨ ∧ → −  and constants 0, 1. We introduce a variety D ⊆ K( Dτ ) of algebras 
called Brouwerian D-algebras (BrD-algebras). 
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Definition 2.1. For any ( , , , ,0,1)cB= ∨ ∧ ∈B B , define   
( , , , , ,0,1) ( )DB K τ= ∨ ∧ → − ∈B , 

where for all , ,  and c cx y B x y x y x y x y∈ → = ∨ − = ∧ . 

Definition 2.2. For any ( , , , ,0,1)H= ∨ ∧ → ∈H H , define 
( , , , , ,0,1) ( )DH K τ= ∨ ∧ → − ∈H , 

where for all , ,  and ( ) 0x y H x y x y x y x y∈ → = → − = → → . 

Definition 2.3. For any ( , , , ,0,1)B r= ∨ ∧ → ∈B B , define 
( , , , , ,0,1) ( )DB K τ= ∨ ∧ → − ∈B , 

where for all , , 1 ( ) and x y B x y x y x y x y∈ → = − − − = − . 

Remarks 2.4. Define the classes: 
{ } { } { }/ , /  and /r r= ∈ = ∈ = ∈B B H H B BB B H H B B . 

Then the following conditions hold: 
(i) r= ∩B H B . 
(ii) The three classes ,   and rB H B  are varieties of algebras from K( Dτ ) 

termwise definitionally equivalent respectively to ,   and rB H B . 

Notations 2.5. For any ( , , , , ,0,1) ( )DA K τ= ∨ ∧ → − ∈A , we introduce the 
following notations, for all ,x y A∈ : 

(1) ( ) 1x xλ = → ,  (2) ( ) 0x xρ = − ,  (3) 0x x¬ = → ,   
(4) ( )ox y x yλ∧ = ∧ ,  (5) ( )x y x yρ∨ = ∨ ,   (6) { }( ) ( ) /A x x Aλ λ= ∈ , 

(7) { }( ) ( ) /A x x Aρ ρ= ∈ . 

An equational definition of D is given. Then different rules of computation 
are derived in order to prove that D is the variety of algebras in K( Dτ ) generated 

by the class r∪H B . 
Definition 2.6. Let D be the variety of all algebras A of type Dτ  satisfying 

the following conditions: 

(i) The reduct ( ) ( , , ,0,1)L A= ∨ ∧A  is a bounded distributive lattice with 
zero 0 and one 1. 

(ii) The following equations hold, for all ,x y A∈ : 

(d1) ( ) 1x x y→ ∨ =  ; (d2) ( ) ( ) ( )x y x yλ λ λ∨ = ∨  
(d3) ( ( )) ( )x x y x yλ λ∧ → = ∧  ; (d4) ( ) ( )x y z x y z→ → = ∧ →  
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(d5) ( )x y x yλ→ = →  ;  (d6) ( ) 1 ( ( ))x y z x y z→ − = − ∧ →  
(d7) ( ) ( ( ) )x x x xλ ρ= ∨ ∧¬  ;  (d1o) ( ) 0x y y∧ − =  

(d2o) ( ) ( ) ( )x y x yρ ρ ρ∧ = ∧  ;  (d3o) (( ) ) ( )x y y x yρ ρ− ∨ = ∨  
(d4o) ( ) ( )x y z x y z− − = − ∨  ;  (d5o) ( )x y x yρ− = −  
(d6o) ( ) (( ) )x y z x y z→ − = ¬ − ∨  ;(d7o) ( ) ( ( ) (1 ))x x x xρ λ= ∧ ∨ −  

The equations (d1o)-(d7o) are called dual of (d1) − (d7). 

Definition 2.7. (i) A Brouwerian D-algebra (BrD-algebra) is an algebra 
( , , , , ,0,1)A= ∨ ∧ → − ∈A D . 

(ii) For any ( )DK τ∈A , let ( , , , , ,0,1) ( )DA K τ= ∨ ∧ → − ∈A  such that for 
all , ,x y A∈  

, , , ,0 1,1 0x y x y x y x y x y y x x y y x∨ = ∧ ∧ = ∨ → = − − = → = = . 
(iii) For any ∈A D , let ≤ be the order relation on A corresponding to the 

lattice reduct L(A). 

The next lemma follows from Definition 2.6. A duality principle for the 
variety D is derived. Then the exact relation between BrD-algebras and the two 
kind of structures of Heyting algebra and Brouwer algebra is established. 

Lemma 2.8. ∈A D  implies ∈A D . 

A duality principle. 
Let DL  be the language of BrD-algebras , , , ,0,1∨ ∧ → − , V be the set of 

variables and [ ]T DL  be the set of terms. The corresponding algebra of terms 
[ ] ( [ ], , , , ,0,1)T= ∨ ∧ → −T D DL L  is an algebra in ( )DK τ  with the free generating 

set V. Let [ ] ( [ ], , , , ,0,1)T= ∨ ∧ → −T D DL L  be the algebra of type Dτ  defined using 
Definition 2.7 (ii). Then there exists a unique extension of the identitity function 

:Vid V V→  to an isomorphism o: [ ] [ ]→T TD DL L . The following conditions hold, 
for all , [ ]Tσ τ ∈ DL : 

(1) oσ  coincides with σ , if Vσ ∈ , 
(2) o o0  (1 )  is the constant 1 (0), 
(3) o( )σ τ∨ , o( )σ τ∧ , o( )σ τ→  and o( )σ τ−  are respectively the terms 

o oσ τ∧ , o oσ τ∨ , o oτ σ−  and o oτ σ→ . 
A duality principle follows from Lemma 2.8: for all terms , [ ]Tσ τ ∈ DL , if 

the equation σ τ=  is valid in D then the equation o oσ τ=  is valid in D. 

Lemma 2.9. Let ∈A D . Then, for all ,x y A∈ : 
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(i) x y≤  implies ( ) ( )x yλ λ≤ ,  (ii) ( ( )) ( )x x xλ λ λ= ≤ ,  (iii) (0) 0λ = , 
(iv) 1x x→ = ,  (v) (1) 1λ = ,   
(vi) ( ) ( ) ( ) ( )x y x y x y x yλ λ λ λ→ = → = → = → , 
(vii) ( ) ( ( ) ) ( ( ) ( ))x y x y x yλ λ λ λ λ λ∧ = ∧ = ∧ , 
(viii) 0 ( ) 0 1x x xλ→ = → = − , 
(ix) ( ) ( ) (( ( ) 0) ( )) 0x y x yλ λ λ λ− = → ∨ → . 

Proof. (i) If x y≤  then x y y∨ = , thus using equation (d2) one obtains 
( ) ( )x yλ λ≤ . 

(ii) From equation (d4) and (d7) one derives 
( ( )) 1 (1 ) (1 1) 1 ( )x x x x x xλ λ λ= → → = ∧ → = → = ≤ . 

(iii)-(v) From (ii) and equation (d1) setting y = 0 one derives (iii) and (iv). 
The condition (v) follows from (iv). 

(vi) Equations (d4) and (d5) imply 
( ) ( ) ( ) (1 )x y x y x yλ λ λ→ = → = → → =  

( 1) 1 ( ) ( )x y x y x y x yλ∧ → = → = → → = → . 
(vii) Relations (vi), equation (d3) and Definition 2.6 (i) imply: 

( ) ( ( )) ( ( ( )))x y x x y x x yλ λ λ λ∧ = ∧ → = ∧ → =  
( ( )) ( ( ) ( ( ) ))x y y y xλ λ λ λ λ∧ = ∧ → =  
( ( ) ( ( ) ( ))) ( ( ) ( ))y y x x yλ λ λ λ λ λ λ∧ → = ∧ . 

(viii) Equation (d1o) for y = x implies 0x x− = . Then equations (d5), (d6) 
and (iv) imply 

0 ( ) 0x xλ→ = → , 
0 ( ) 1 ( ( )) 1 ( 1) 1x x x x x x x x x→ = → − = − ∧ → = − ∧ = − . 

(ix) From equations (d6o) and (viii) one derives: 
( ) ( ) (1 ) ( ) ((1 ) ( ))x y x y x yλ λ λ λ− = → − =¬ − ∨ =  

(( ( ) 0) ( )) 0x yλ λ→ ∨ → . ■ 

Consequence 2.10. For any ∈A D , the following conditions hold: 
(i) The operator λ is an interior operator of the bounded poset ( , ,0,1)A ≤ . 

(ii) The set λ(A) is a subalgebra of ( , , ,0,1)A ∨ → . 
(iii) The system ( ) ( ( ), , , ,0,1)oAλ λ= ∨ ∧ →A  is a Heyting algebra. 

Proof. (i) This property is expressed by Lemma 2.9 (i), (ii) and (v). 
(ii) This fact follows from axiom (d2) and Lemma 2.9 (vi), (iii) and (v). 
(iii) From equation (d2) and Lemma 2.9 (iii), (v), (vii) it follows that 

( ( ), , ,0,1)oAλ ∨ ∧  is a bounded distributive lattice. Then equations (d3)-(d5) and 
Lemma 2.9 (vi) imply 
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( ) ( ( ) ( )) ( ) ( )o ox x y x yλ λ λ λ λ∧ → = ∧ , 
( ) ( ( ) ( )) ( ( ) ( )) ( )ox y z x y zλ λ λ λ λ λ→ → = ∧ → . 

Thus ( )λ ∈HA . ■ 

Lemma 2.9o. Let ∈A D . Then, for all ,x y A∈ : 
(i) x y≤  implies ( ) ( )x yρ ρ≤ ,  (ii) ( ) ( ( ))x x xρ ρ ρ≤ = , 
(iii) (1) 1ρ = ,   (iv) 0x x− = ,  (v) (0) 0ρ = , 
(vi) ( ) ( ) ( ) ( )x y x y x y x yρ ρ ρ ρ− = − = − = − , 
(vii) ( ) ( ( ) ) ( ( ) ( ))x y x y x yρ ρ ρ ρ ρ ρ∨ = ∨ = ∨ , 
(viii) 1 1 ( )x xρ− = − , 
(ix) ( ) ( ) 1 ((1 ( )) ( ))x y y xρ ρ ρ ρ→ = − − ∧ . 

Consequence 2.10o. For any ∈A D , the following conditions hold: 
(i) The operator ρ is a closure operator of the bounded poset ( , ,0,1)A ≤ . 

(ii) The set ρ (A) is a subalgebra of ( , , ,0,1)A ∧ − . 
(iii) The system ( ) ( ( ), , , ,0,1)Aρ ρ= ∨ ∧ −A  is a dual Heyting algebra. 

Lemma 2.9o and Consequence 2.10o follow from 2.9 and 2.10 by the 
duality principle. The following lemma presents the result that any BrD-algebra is 
isomorphic to a subalgebra of ×H B , where ( , ) r∈ ×H BH B . 

Lemma 2.11. Let ∈A D  and : ( ) ( )i A A Aλ ρ→ ×  be a function defined by 
( ) ( ( ), ( ))i x x xλ ρ= , for all x A∈ . Let ( )λ ∈HA  and ( ) rρ ∈A B  defined by 

Consequences 2.10 (iii) and 2.10o (iii). Then the following conditions hold: 
(i) The algebra ( )λ ∈HA  is defined by ( ) ( ( ), , , , ,0,1)oAλ λ= ∨ ∧ → −A . 
(ii) The algebra ( ) rρ ∈A B  is defined by ( ) ( ( ), , , , ,0,1)Aρ ρ= ∨ ∧ → −A . 
(iii) The function i is an injective homomorphism from A into the direct 

product ( ) ( )λ ρ×A A  such that the image algebra ( )i A  is a subdirect product of 

the pair ( )( ), ( )λ ρA A . 

Proof. (i) Equations valid in ( )λ ∈HA  and Lemma 2.9 (ix) imply the 
following relations, for all ,x y A∈ , 

(1) ( ( ) ( )) ( ( ) ( ))x y x yλ λ λ λ¬ → =¬ ¬ ∨ , 
(2) ( ) ( ) ( ( ) ( ))x y x yλ λ λ λ− =¬ ¬ ∨ . 

From (1) and (2) one derives 
(3) ( ) ( ) ( ( ) ( ))x y x yλ λ λ λ− =¬ → . 

Equation (3), Definition 2.2 and Consequence 2.10 (iii) imply (i). 
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(ii) Using the duality principle, condition (ii) follows from (i). 
(iii) Lemmas 2.9 and 2.9o imply the fact that i is an homomorphism. 

Suppose that ( ) ( )i x i y= . Definition of i implies ( ) ( )x yλ λ=  and ( ) ( )x yρ ρ= , 
thus from Lemma 2.9 (viii) one derives x y¬ =¬ . Using equation (d7) this implies 

( ) ( ( ) ) ( ) ( ( ) )x x x x y y y yλ ρ λ ρ= ∨ ∧¬ = ∨ ∧¬ = . Thus, the function i is injective. 
Definition of i implies also 1( ( )) ( )i A Aπ λ=  and 2 ( ( )) ( )i A Aπ ρ= , where the 
functions 1 : ( ) ( ) ( )A A Aπ λ ρ λ× →  and 2 : ( ) ( ) ( )A A Aπ λ ρ ρ× →  are the canonical 
projections of the direct product ( ) ( )A Aλ ρ× . Thus (iii) holds. ■ 

The following result is a model theoretical characterization of D . 

Theorem 2.12. r= ∪D H B . 

Proof. Using Definitions 1.2 and 2.2, respectively 1.3 and 2.3, from 
Definition 2.6 it follows that r∪ ⊆H B D , thus r∪ ⊆H B D . Let ( )DK τ⊆V  be 

any variety such that r∪ ⊆H B V . We prove that in this case ⊆D V . Let ∈A D . 
Lemma 2.11 implies that A is isomorphic to a subalgebra of ( ) ( )λ ρ×A A  with 

( )λ ∈ ⊆A H V  and ( ) rρ ∈ ⊆A B V , thus ∈A V . Therefore, the next inclusion 

also holds: r⊆ ∪D H B . ■ 

3. Basic algebraic properties 

Consequences 2.10 and 2.10o express the properties that any BrD-algebra 
includes a subposet which is a Heyting algebra and a subposet which is a dual 
Heyting algebra. We present now a typical example of BrD-algebra. 

Example 3.1. For any topological space U and S U⊆ , let cS  be the 
complement of S, So be the interior of S and S  be the closure of S in U. Let X, Y 
be topological spaces. Let ( )p XO  be the algebra of H  associated with the 
Heyting algebra ( )p XO  of open sets of X and let ( )l YC  be the algebra of rB  
associated with the dual Heyting algebra ( )l YC  of closed sets of Y .  

From Theorem 2.12 it follows that ( , ) ( ) ( )X Y p X l Y= × ∈A O C D , where 
for all ( , ), ( , ) ( , ) ( ) ( )P F Q G A X Y Op X Cl Y∈ = × , 

( , ) ( , ) ( , )P F Q G P Q F G∨ = ∪ ∪ , 
( , ) ( , ) ( , )P F Q G P Q F G∧ = ∩ ∩ , 

( )( , ) ( , ) ( ) , ( )c o c oP F Q G P Q F G→ = ∪ ∪ , 
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( )( , ) ( , ) ,
o

c cP F Q G P Q F G
⎛ ⎞⎟⎜− = ∩ ∩ ⎟⎜ ⎟⎜⎝ ⎠

, 

0 ( , )= ∅ ∅  and 1 ( , )X Y= . 
 

Theorem 3.2. For every ∈A D , there exist a pair of topological spaces 
(X, Y) and an injective homomorphism from A into the algebra ( , )X Y ∈A D  
introduced in Example 3.1. 

Proof. Let ∈A D . From Lemma 2.11 it follows that there exists an injective 
homomorphism i from A into ( ) ( )λ ρ×A A , where ( )λ ∈A H  and ( ) rρ ∈A B . The 
topological representation theorems of Heyting algebras and Brouwer algebras 
imply that there exist a pair of topological spaces (X, Y) and an injective 
homomorphism j from ( ) ( )λ ρ×A A  into ( ) ( ) ( , )p X l Y X Y× =O C A . Then the 
function j i  is an embedding of A into ( , )X YA . ■ 

The following lemma expresses the fact that any BrD-algebra includes a 
subposet which is a Boolean algebra. Then different additional properties of the 
variety D  are obtained. 

Lemma 3.3. Let ∈A D  and { / }A x x A¬ = ¬ ∈ . Then: 
(i) ( ) ( )A A Aλ ρ¬ = ∩ . 
(ii) The subposet ( , ,0,1)A¬ ≤  of ( , ,0,1)A ≤  is a Boolean lattice such that its 
corresponding Boolean algebra is defined by ( ) ( , , , ,0,1)o cB A= ¬ ∨ ∧A , where for 
all u A∈¬ , the complement uc of u in B(A) is cu u=¬ . 
(iii) The algebra ( )B ∈BA  associated with ( )B ∈A B  using Definition 2.1 is 
defined by ( ) ( , , , , ,0,1)oB A= ¬ ∨ ∧ → −A . 

Proof. (i) From Lemmas 2.9 and 2.9o it follows that for all x A∈ : 
(1) 1x x¬ = − , 
(2) ( ) ( )x x xλ λ¬ =¬ =¬ , 
(3) ( ) ( )x x xρ ρ¬ =¬ =¬ , 
(4) ( ( )) ( ( ))x x xλ ρ ρ λ=¬¬ = , 
(5) ( )x Aλ∈  if and only if ( )x xλ = , 
(6) ( )x Aρ∈  if and only if ( )x xρ = . 

The equality (i) follows from equations (1)-(6). 
(ii) For all ,x y A∈ : 
(7) ( )x y x y¬ ∨¬ =¬¬ ¬ ∨¬ , 
(8) ( )ox y x y¬ ∧ ¬ =¬¬ ¬ ∧¬ , 
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(9) 1x x¬ ∨¬¬ = , 
(10) 0ox x¬ ∧ ¬¬ = . 

Thus (ii) holds. 
(iii) For all ,x y A∈ : 
(11) x y x y¬ →¬ =¬¬ ∨¬ , 
(12) ox y x y¬ −¬ =¬ ∧ ¬¬ . 

Then (iii) follows from (11) and (12) using Definition 2.1 and (ii). ■ 

Remark 3.4. Let ∈A D  and a A∈ . Then: 
(i) 0a a∧¬ =  if and only if ( ) 0a aρ ∧¬ = , 
(ii) 0a a∧¬ =  implies ( )a aλ = , 
(iii) 1a a∨¬ =  if and only if ( ) 1a aλ ∨¬ = , 
(iv) 1a a∨¬ =  implies ( )a aρ = , 
(v) ∈HA  if and only if 0x x∧¬ = , for all x A∈ , 
(vi) r∈A B  if and only if 1x x∨¬ = , for all x A∈ , 
(vii) ∈A B  if and only if 0x x∧¬ =  and 1x x∨¬ = , for all x A∈ . 

Notations 3.5. We will denote by C  the algebraic category defined by C , 
for any ( )K τ⊆C  with ( )t Kτ ∈ . For any objects A and B of an algebraic 
category we denote by [ , ]A B  the set of all homomorphisms from A to B. 

The following theorem presents the basic fact that the variety D  is an 
arithmetical variety. The categorical relation of D  with the three subvarieties H , 

rB  and B  is also derived.  

Theorem 3.6. The variety D  is arithmetical i.e. D  is congruence-
distributive and congruence-permutable. 

Proof. We will use Burris and Sankappanavar theorem [7, Theorem 
II.12.5]: a variety V  is arithmetical if there exists a ternary term t(x, y, z) such 
that the following equations are valid in V , 

( ) ( , , ) ( , , ) ( , , )t x y x t x y y t y y x x∗ = = = . 
Define the following ternary terms associated in the language of D  with 

the known ternary terms of the variety B , H  and rB : 
( , , ) ( ) ( ) ( )o o o o o

Bm x y z x z x y z x y z= ¬ ∧ ¬ ∨ ¬ ∧ ¬¬ ∧ ¬¬ ∨ ¬¬ ∧ ¬¬ ∧ ¬ , 
( , , ) (( ) ) (( ) ) ( )o o

Hm x y z x y z z y x x z= → → ∧ → → ∧ ∨ , 
( , , ) ( ( )) ( ( )) ( )Brm x y z z y x x y z x z= − − ∨ − − ∨ ∧ .  

Using the above definitions, Lemmas 3.3 and 2.11 (i), (ii) imply the 
validity in D  of the following relations: 



80                                                                    Mircea Sularia 

( , , ) ( , , ) ( , , ) ( )H H Hm x y x m x y y m y y x xλ= = = , 
( , , ) ( , , ) ( , , ) ( )Br Br Brm x y x m x y y m y y x xρ= = = , 
( , , ) ( , , ) ( , , )B B Bm x y x m x y y m y y x x= = =¬ . 

Using equation 2.6 (d7), the previous relations imply that for the new term 
( , , ) ( , , ) ( ( , , ) ( , , ))H Br Bt x y z m x y z m x y z m x y z= ∨ ∧ , 

the following equations are valid in D : 
( , , ) ( , , ) ( ( , , ) ( , , )) ( ) ( ( ) )H Br Bt x y x m x y x m x y x m x y x x x x xλ ρ= ∨ ∧ = ∨ ∧¬ =

Thus for the ternary term t(x, y, z) the equations ( )∗  are valid in D . ■ 

Theorem 3.7. The three algebraic categories H , rB  and B  are reflective 
full subcategories of D  such that their corresponding reflectors preserve the 
injective homomorphisms.  

Proof. For all , ∈A B D  and [ , ]f ∈ A B , let  
: ( ) ( )Hf A Bλ λ→ , : ( ) ( )Brf A Bρ ρ→  and :Bf A B¬ →¬  

be the functions such that for all x A∈ ,  
( ( )) ( ( ))Hf x f xλ λ= , ( ( )) ( ( ))Brf x f xρ ρ=  and ( ) ( )Bf x f x¬ =¬ . 

Lemmas 2.11 and 3.3 imply that there exists three functors  
:H →D HR , :Br r→R D B  and :B →R D B  

defined by the following conditions: 
( ) ( )H λ= ∈R HA A  and ( ) [ ( ), ( )]H H H Hf f= ∈R R RA B , 

( ) ( )Br rρ= ∈R BA A  and ( ) [ ( ), ( )]Br Br Br Brf f= ∈R R RA B , 

( ) ( )B B= ∈R BA A  and ( ) [ ( ), ( )]B B B Bf f= ∈R R RA B . 
Then HR , BrR  and BR  are reflectors respectively of the full subcategories 

H , rB  and B  of D  preserving injective homomorphisms. ■ 

It is known that injective Heyting (Brouwer) algebras are just complete 
Boolean algebras. The following result is that complete Boolean algebras of B  
are also injective algebras of D .  

Theorem 3.8. An algebra ∈A D  is an injective object of D  if and only if 
∈A B  and the reduct ( )L A  is a complete lattice. 

Proof. Suppose that ∈A B  and the reduct ( )L A  is a complete lattice. 
From Sikorski theorem it follows that A is injective in B . This implies that A is 
injective in D  because of the fact that the functor :B →R D B  introduced in the 
proof of Theorem 3.7 is a reflector preserving injective homomorphisms. Suppose 
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now that ∈A D  is an injective object of D . From Lemma 2.11 (iii) it follows that 
there exists an injective homomorphism [ , ( ) ( )]i λ ρ∈ ×A A A . Any Heyting 
(Brouwer) algebra can be extended to a complete Heyting (Brouwer) algebra by a 
regular extension [18]. Thus, the relations ( )λ ∈A H  and ( ) rρ ∈A B  imply that 
there exist c ∈A D  and a regular embedding [ , ]c ci ∈ A A  such that ( )cL A  is a 
complete lattice. From the condition that A is injective it follows that there exists 

[ , ]cj ∈ A A  such that cj i id= A , where [ , ]id ∈A A A  is the identity morphism of 
A. This implies ( ) ( )(sup ( ( ))) sup ( )

cL c Lj i X X=A A , for any subset X A⊆ . Thus, 
( )L A  is a complete lattice. Arguments similar to those used in the proof of 

Balbes-Horn theorem ([3], theorem IX.5.5) imply  
{ / ( ) 1} {1}x A xρ∈ = = . 

By duality one derives also 
{ / ( ) 0} {0}x A xλ∈ = = . 

The previous relations together with the next equations ( ) 0x xλ ∧¬ =  and 
( ) 1x xρ ∨¬ =  imply 0x x∧¬ =  and 1x x∨¬ = , for all x A∈ . Thus using 

Remark 3.4 (vii) one derives ∈A B . ■ 

The next result presents a factorization condition for BrD-algebras. 

Theorem 3.9. Let r∗H B  be the class of all algebras ( )DK τ∈A  such 

that there exist a pair ( , ) r∈ ×H BH B  and an isomorphism [ , ]f ∈ ×A H B . Let 
∈A D . The following conditions are equivalent: 

(i) r∈ ∗H BA . 
(ii) There exists an element Aα∈  such that for all x A∈ : 

(1) ( )x xλ α α∧ = ∧ , 
(2) ( )x xρ α α∨ = ∨ . 

Proof. ( ) ( )i ii⇒ . Suppose that the condition (i) holds. Thus, there exists 
an isomorphism [ , ]f ∈ ×A H B  with ( , ) r∈ ×H BH B . Let (1,0) H Bα= ∈ × . 
Then the element 1( )f Aα α−= ∈  satisfies both the conditions (1) and (2), for all 
x A∈ , where 1 [ , ]f − ∈ ×H B A  is the inverse of f. Thus (ii) holds. 

( ) ( )ii i⇒ . Suppose that (ii) holds. Define the following subsets of A, 
[0, ] { / }H x A xα α α= = ∈ ≤ , 

[ ,1] { / }B x A xα α α= = ∈ ≤ . 
Let :f A H Bα

α→ ×  be a function such that for all x A∈ ,  
( ) ( , )f x x xα α= ∧ ∨ . 
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We set x α=¬  in (1) and (2). Thus 0α α∧¬ =  and 1α α∨¬ = . Then one can 
verify that the following conditions hold: 

(p1) ( , , , ,0,1 )Hα α α α= ∨ ∧ → ∈HH , where 1α α=  and for all ,x y H α∈ , 
( )x y x yα α→ = → ∧ ; 

(p2) ( , , , ,0 ,1)B rα α α α= ∨ ∧ − ∈B B , where 0α α=  and for all ,x y Bα∈ , 
( )x y x yα α− = − ∨ ; 

(p3) f is bijective and [ , ]f α
α∈ ×A H B . 

The properties (p1)-(p3) imply (i). ■ 

4. Concluding remarks 

In this paper some basic properties of the variety D  are presented. Then 
different properties regarding the study of congruences ( )Con A  and the theory of 
normal filters and ideals for ∈DA  can be established [38]. 

On this basis one can derive that the projective limits and the injective 
limits exist in D . A construction of free objects in D  can be established. One can 
obtain also that the variety D  is a proper extension of r∗H B . 

The notion of symmetric (involutive) Boolean algebra is defined by a 
Boolean algebra together with an involutive (dual) automorphism and it is 
introduced in [25, 26] to express an algebra of electrical circuits with valves. 
Basic results of the theory of symmetric Boolean algebras are presented in [1, 40]. 
An important development of this theory is realized by the study of symmetric 
Heyting algebra in order to improve the algebraic semantics of  Łukasiewicz logic 
[28,6,8-10,15,19-21] and many-valued modal logics [2]. 

A particular notion of bidimensional Brouwerian algebra called involutive 
Brouwerian D-algebra (IBrD-algebra) has been introduced in [39]. An IBrD-
algebra is an algebra ( , , , , , ,0,1)dA= ∨ ∧ → −A  satisfying: 

(1) ( , , , , ,0,1)A ∨ ∧ → − ∈D  (Definition 2.6). 
(2) The operator :d A A→  is a De Morgan negation of the corresponding 

bounded lattice reduct ( , , ,0,1)A ∨ ∧ . 
(3) ( )d d dx y y x− = → , for all ,x y A∈ . 
A basic example of IBrD-algebra is given by the direct product algebra 

( ) ( ) ( )X p X l X= × ∈A O C D  from Example 3.1 associated with a topological 
space X together with the operator : ( ) ( ) ( ) ( )d Op X Cl X Op X Cl X× → ×  such that 
( , ) ( , )d c cP F F P= , for all ( , ) ( ) ( )P F Op X Cl X∈ × . Symmetric Boolean algebras 
are particular structures of IBrD-algebras. Then the study of IBrDalgebras in 
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connection with symmetric Gödel algebras can be also considered in order to 
express an algebraic semantics for a logic of two criteria decision making.  

An interesting special subject is the logic of two criteria optimization in 
fuzzy environment [41, 4, 11, 14, 16, 42, 29, 30, 17]. Then the case of multi-
criteria optimization can be also considered. 
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