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Scalar- Weyl structures and their compatible linear connections are introduced
in the setting of generalized Lagrange geometry as a natural generalization of similar
notions from semi-Riemannian and Finsler geometries. As an example, it is discussed
a generalized Lagrange metric used by R. Miron in a geometric framework unifying
gravitation and electromagnetism.
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1. Introduction

Hermann Weyl attempted in [12] an unification of gravitation and electromagnetism
in a model of space-time geometry combining conformal and projective structures. More
precisely, let G be a conformal structure on the smooth manifold M i.e. an equivalence class
of (semi-)Riemannian metrics: g ~ g if there exists a smooth function f € C* (M) such
that g = e2fg. A (semi-Riemannian) Weyl structure is a map W : G — Q! (M) such that
W (g) = W (g) + 2df. In [6] it is proved that for a Weyl manifold (M, G, W) there exists an
unique torsion-free linear connection V on M such that for every g € G:

Vg=WI(9)®g. (1.1)

Two natural extensions of Riemannian metrics are the Finsler and (generalized) La-
grange metrics. The last class of metrics, introduced by Radu Miron around 1983, are
suitable in geometrical approaches of general relativity and gauge theory as it is pointed out
in [9]. The Weyl structures were studied in Finslerian setting by T. Aikou in [1]-[3] and L.
Kozma in [7]-[8] and in the generalized Lagrange geometry by the first author in [5].

There exists also a generalization of Weyl structures provided by a scalar field u €
C>(M) with u # 0. Namely, we call scalar-Weyl structure on (M,G) a map: W : G —
Q! (M) such that W (g) = W (g) + 2udf. In [11, p. 32] it is proved that for a scalar-Weyl
manifold (M,G,u, W) there exists an unique torsion-free linear connection V on M such
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that for every g € G:
uVg=W(g)®g. (1.2)
In this paper we extend the scalar-Weyl structures and their compatible connections
(1.2) in the generalized Lagrangian framework. This setting is introduced in the first section.
The compatibility between a distinguished connection and a scalar-Weyl structure is consid-
ered in the second section where the main result gives the existence and uniqueness of such
a compatible connection under certain horizontal symmetries. When the considered scalar
field w is equal to 1 we obtain the main result of [5] while for the above physical example a
natural scalar field is the square norm of the 1-form defining the given Weyl structure.

2. Generalized Lagrange-Weyl manifolds

Let M be a smooth n-dimensional real manifold and 7 : TM — M the tangent bundle
of M. A local chart x = (xi)KKn of M lifts to a chart (x,y) = (xi, y’) on T'M. A tensor
field of (r,s)-type on TM with law of change, at a change of charts on M, exactly as a
tensor field of (r, s)-type on M, is called d-tensor field of (r,s)-type. The first main notion
of this work is:

Definition 2.1([9]) A d-tensor field of (0,2)-type g = (gi; (z,y)) on T'M is called
generalized Lagrange metric (GL-metric, on short) if:
(i) is symmetric: g;; = gjs,
(ii) is non-degenerate: det (g;;) # 0,
(iii) the quadratic form g;; (z,y) '€’ has a constant signature, £ = (£%) € R™.
The pair (M, g) is a generalized Lagrange manifold.

Definition 2.2 Two GL-metrics g,g are called horizontally conformal equivalent if
there exists f € C* (M) such that g = */¢.

In the following let G be a horizontal conformal structure i.e. an equivalence class of
horizontal conformal equivalent GL-metrics and v € C*° (M) with u # 0. The second main
notion of this paper is:

Definition 2.3 A scalar-Weyl structure (with respect to u) on the generalized La-
grange manifold (M, g) is a map W : G — Q! (M) such that for every g € G one has:

W (g) = W (g) + 2udf. (2.1)
The data (M, G,u, W) will be called generalized Lagrange scalar-Weyl manifold.
Recall that a vector field X = X* () % € X (M) has a vertical lift X¥ € X (TM)

given by XV = X' 82

Because G implies the tangent bundle geometry it seems naturally the following def-
inition: a linear connection V on T'M is vertical-compatible with the generalized Lagrange
scalar-Weyl structure (M, G, u, W) if there exists g € G such that for every X € X (M):

uVxvg =W(g)(X)-g.

But this definition has a great fault: the fact that V is vertical-compatible with a repre-
sentative of G does not yields the vertical-compatibility with another representative of G.
Indeed, using (2.1), we have:

uVxg =uVxe (e g) =u[X" (e¥) g+ e Vxug] = ¥ W (9) (X) g =W (9) (X)7
# W (9) (X)g.
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With this motivation we introduce the next notion, namely nonlinear connections, well-
known in tangent bundle geometry.

3. Compatibility with respect to a nonlinear connection

Definition 3.1([9]) A distribution H on T'M supplementary to the vertical distribu-
tion i.e. TTM = H @&V (T'M) is called a nonlinear connection.

An adapted basis for V (T'M) is (%) and an adapted basis for H has the form

connection H. We obtain a new lift for vector fields; namely, to X = X (z) 6‘21 e X (M)
we associate the horizontal lift X" = X' 2 € H.

Szt

(521‘ = (%7_ Nf ay]) The functions (Nj (x,y)) are called the coefficients of the nonlinear

The nonlinear connection H yields a bundle denoted H(T'M) and called horizontal.
The existence of a nonlinear connection is equivalent to the reduction of the standard almost
tangent structure of TM to a D(GL(n,R))-structure conform [3]; here:

D(GL(n,R™)) = {C = ( én g” ) € GL(2n,R); A,B € GL(n,R)}.

The associated connections are given by:

Definition 3.2 A D(GL(n,R))-connection on T'M is called d-connection or Finsler
connection.

A d-connection V preserves by parallelism both the vertical and horizontal bundles.
Hence, V has a pair of Christoffel coefficients (F;k (x,y), Cjk (z, y)) defined by the relations:

0 _pm 6 I Al
{ v%éa:k =Fhgers V 2 ij@y (3.1)
S _ i b e :
Vﬁ Sk C]k Szt Vayi Ay~ Cké)y

It follows that V yields two algorithms of covariant derivation on d-tensor fields: a
horizontal one, denoted |, and a vertical one, denoted |. For example, on the d-tensor field
g = (gij (z,y)) of (0,2)-type we have:

d9;k 99jk
ikl = 57— Yok b — 9jaFis girli = 8y]i = 9akC5; — 95aChy- (3.2)

Special classes of Finsler connections are provided by:

Definition 3.3 A d-connection is called:
(i) horizontal if all O} = 0,
(ii) horizontal symmetric (h-symmetric on short) if F;k = F’ for all indices 1, j, k,
(iii) totally symmetric if it is h-symmetric and vertical symmetrlc ie. C = =C}. ; 7 0 for all
1,7, k.

For example, if g is a Riemannian metric then the Levi-Civita connection is the unique
d-connection both horizontal and h-symmetric; in this case F’ ;k does not depend of y since
they are the usual Christoffel coefficients.

Returning to our setting it is natural to consider:
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Definition 3.4 If (M,G,u, W) is a generalized Lagrange scalar-Weyl manifold then
a d-connection V is called compatible if there exists g € G such that for every X € X (M)
we have:

uVxng=W(g)(X)-g. (3.3)

An important result concerning this type of compatibility (which can be called as
scalar horizontal-recurrence) is:

Proposition 3.5 If (3.3) holds for a given g € G then V is compatible with the whole
class G.

Proof From (2.1) we get:
uV xrng = uVxn (62" o 7r) g =u[X" (620 o 7r) g+ e*Vxngl =

= u2do (X) €7 g] + €W (9) (X) g = €*g [2udo + W (9) (X)) =W (9) (X) -7
which means the conclusion. O

The pair (g, H) yields four remarkable d-connections ([4]): Cartan, Berwald, Chern-
Rund and Hashiguchi. For our aim, the Chern-Rund connection, denoted V%, is more
convenient because it satisfies ([4]):
I) is horizontal-metrical: Vg =0 for every X € X (M),
II) is totally symmetric with the vertical Christoffel coefficients:

on 1 ia <5gak 99ja agjk)

Cin= 29 oyl oyt oy~

(3.4)

The main result of this paper is the generalization of the results cited in Introduction:

Theorem 3.6 In a generalized Lagrange scalar-Weyl manifold (M,G,u, W) there
exists an unique compatible d-connection which is horizontal and h-symmetric.

Proof Let g € G be fixed and the associated VEE. For arbitrary X,Y € X (M) let
us define Vx+»Y"¥ =0 and:

1 1 1
uV xn Y = V{RYh — sV (9)(X) - Yh— 5V (9) (V) X"+ 59 (x"y")-B (3.5

where:

) o
oz’ dxd
and B € X (I'M) is B = (B'(z,y)) is the g-contravariant version of W (g):

g (X" Y") =g, XY, X =X'(2) Y =Y (z)
B' = g%wj, W (g) = 2w;(z)dz’.
Here (%) is the inverse of (g;;). Then:

UV xng = Vg + W (g) (X) - g 2 W (g) (X) - g

i.e. V is horizontal-compatible with g. Applying the previous result we have the conclusion.
O

Remarks 3.7 i) The case u = 1 of this theorem is the main result of [5] and let us
call classical compatible connection this V. For general u and g a (semi-) Riemannian metric
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it is obtained the connection of (1.2) from Introduction.
ii) The non-null coefficients of V are:

CR
T = - F'jp =8wy, — Spwj + g B |, (3.6)
CR
where ( F) are the horizontal Christoffel coefficients of VEF:

CR
] L, dGak 6gja 6gjk

F' = —g"* : — . 3.7
k=59 ( Swi | Sxk | Gao (87)

Example 3.8 Suppose that W

(9) = 2du; let us call self-scalar Weyl structure such a
type of scalar-Weyl structure. Then (3.

6) becomes:
i 19 ;0(nw)  _, 0(Inu) o O(Inw)

The relation (2.1) reads: W(g) = 2ud(lnu+ f). O

Example 3.9 Suppose that M is endowed with a Riemannian metric v = (v;;(x))
with the Christoffel symbols (F; ). In [10] is given a geometrical setting for gravitation and
electromagnetism based on the generalized Lagrange metric:

1
9ij = Yij + 2 YiYs (3.9)

with ¢ > 0 a real constant considered as the velocity of light and y; = v;;47. It is proved
that ¢ is not reducible to a Lagrange (particularly Finsler) metric and it has the associated
nonlinear connection:

NI =Ti.y". (3.10)
Its Chern-Rund connection has the coefficients:
. ) . 1 .
;k = F}m C;‘k = %'ijyz (3.11)
where:
e e =, 312)
a = 02 9 y ¥ - y yl' .

Let (F';;) be the coefficients of the classical compatible connection for (M,{e*/v;f €
C*(M)}). From (3.6) it results that the compatible connection for (M, g, w) is:

, 1 ¢ 1 .
to=— '+ —vyiy B 3.13
ik~ J +’LLC2nyk ( )

In order to obtain a natural scalar field for this setting we suppose that W(g) is a 1-from
without zeros; hence we can consider as remarkable u its square norm with respect to ~:

u=[W(g)l2 =477 wiw;. (3.14)
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