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CONSEQUENCES OF APPLYING KLEIN-GORDON 
EQUATION ON AN ASSOCIATED WAVE-TRAIN 

Ezzat BAKHOUM1, Alexandru TOMA2 

By applying Klein-Gordon equation upon a wave-function described by a 
product of an envelope function R and a phase factor (a complex number) 
corresponding to an alternating function with almost constant frequency and 
wavelength and using formula connecting energy, linear momentum p and rest mass 
from special relativity, it results for the envelope function the three dimensional wave 
equation for a wave with light speed c. This aspect is similar to the result obtained 
using the Hamiltonian formalism for electron speed. For didactical purposes, this 
implies the necessity of adding an internal dynamics to the particle/wave-function.. 
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1. Introduction 

The Klein–Gordon equation is second-order differential equation in space-
time. It is a differential equation version of the relativistic energy–momentum 
relation, obtained through substitution of energy and momentum with 
corresponding energy and momentum operators within relativistic formula 
connecting rest mass connecting rest mass m0, energy E and linear momentum p. 
 However, certain problems regarding its interpretation have been 
encountered very soon. Using the Hamiltonian formalism 

𝑖𝑖ℏ 𝜕𝜕Ψ
𝜕𝜕𝜕𝜕

= 𝐻𝐻�Ψ             (1) 
and the Ehrenfest theorem 

𝑑𝑑〈𝐴𝐴〉
𝑑𝑑𝑑𝑑

= 𝑖𝑖
ℏ
�𝐻𝐻�, 𝐴̂𝐴�          (2) 

for the expectation 〈𝐴𝐴〉 value of an operator 𝐴̂𝐴 not depending explicitly of time, for  
the case when 𝐴𝐴⏞ is substituted with 𝑥𝑥� (the position operator) and 𝐻𝐻� with 

𝐻𝐻� = 𝑐𝑐 ∑ 𝛼𝛼𝑖𝑖𝑝𝑝𝚤𝚤� + 𝛽𝛽𝑚𝑚0𝑐𝑐2𝑖𝑖           (3) 
(the relativistic Hamiltonian written in the cuadridimensional form, 𝑝𝑝𝚤𝚤�  being the 
momentum operator, 𝑐𝑐 -light speed, 𝑚𝑚0 - rest mass and  

𝛼𝛼𝑖𝑖 = �𝜎𝜎𝑖𝑖 0
0 𝜎𝜎𝑖𝑖

�, 𝛽𝛽 = �𝐼𝐼 0
0 −𝐼𝐼�, 𝜎𝜎𝑖𝑖 the Pauli matrixes,  𝐼𝐼  the 2x2unit matrix), it results  

that  
𝑥̇𝑥 = 1

𝑖𝑖ℏ
�𝑥𝑥,𝐻𝐻�� = 𝑐𝑐𝛼𝛼𝑥𝑥           (4) 
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This could suggest that the speed of an electron along 𝑂𝑂𝑂𝑂 axis equals the speed of 
light 𝑐𝑐. Similar results can be obtained for 𝑦̇𝑦, 𝑧̇𝑧. There are numerous and recent 
attempts in trying to improve the understanding of Klein-Gordon equation, see [1]. 
Internal dynamics (Zitterbewegung) and time derivatives of 𝛼𝛼 matrixes were also 
taking into consideration, being briefly exposed in [2]. The model of an electron as 
a massless charge spinning at light speed has been recently proposed (see [3]). An 
oscillatory velocity has been also suggested. Its maximum value could be equal to 
the speed of light, yet it does not contribute to the electronic momentum (see [4]. 
 This study will show that a similar result can be obtained by applying Klein-
Gordon equation to an associated wave supposed to have (in a limit case) constant 
frequency and wavelength, implying the necessity of an inner dynamics as 
alternating coordinate-momentum representation (see [5]). 

2. Klein-Gordon equation and the associated wave function for a free-
moving particle 

According to special relativity theory, the formula connecting energy E, 
linear momentum p and rest mass m0 is 

𝐸𝐸2 = 𝑝𝑝2𝑐𝑐2 + (𝑚𝑚0𝑐𝑐2)2          (5) 
Substituting energy and momentum with quantum mechanics operators 

𝐸𝐸� = 𝑖𝑖ℏ 𝜕𝜕
𝜕𝜕𝜕𝜕

, 𝑝̂𝑝 = −𝑖𝑖ℏ∇           (6)  
and using ∇2=  ∆, which means 

𝑝̂𝑝2 = 𝑝̂𝑝𝑥𝑥2 + 𝑝̂𝑝𝑦𝑦2 + 𝑝̂𝑝𝑧𝑧2 = (−𝑖𝑖ℏ)2 � 𝜕𝜕2

𝜕𝜕𝑥𝑥2
+ 𝜕𝜕2

𝜕𝜕𝑦𝑦2
+ 𝜕𝜕2

𝜕𝜕𝑧𝑧2
�            (7) 

and 
𝐸𝐸�2 = (𝑖𝑖ℏ)2 𝜕𝜕2

𝜕𝜕𝑡𝑡2
             (8)  

it results 
−ℏ2 𝜕𝜕2

𝜕𝜕𝑡𝑡2
= −ℏ2𝑐𝑐2 � 𝜕𝜕2

𝜕𝜕𝑥𝑥2
+ 𝜕𝜕2

𝜕𝜕𝑦𝑦2
+ 𝜕𝜕2

𝜕𝜕𝑧𝑧2
� + 𝑚𝑚0

2𝑐𝑐4         (9)  
(the last term corresponding to a multiplication of a certain wave function Ψ written 
to the right). By dividing all terms to ℏ2𝑐𝑐2 and by moving all terms Right-Hand-
Side it results the Klein-Gordon equation (with partial derivatives) 

0 = 1
𝑐𝑐2

𝜕𝜕2Ψ
𝜕𝜕𝑡𝑡2

− �𝜕𝜕
2Ψ
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2Ψ
𝜕𝜕𝑦𝑦2

+ 𝜕𝜕2Ψ
𝜕𝜕𝑧𝑧2

� + 𝑚𝑚0
2𝑐𝑐2

ℏ2
Ψ        (10) 

For a free-moving particle it is admitted that the associated wave Ψ should 
be described by an amplitude factor 𝑅𝑅(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡) multiplying a phase factor (written 
as a complex number) 𝑒𝑒𝑖𝑖𝑖𝑖/ℏ. The function 𝑆𝑆 = 𝑆𝑆(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) is considered as action 
within Feynman theory upon path integral. Yet without taking into account 
Feynman interpretation, for a free-moving particle along 𝑂𝑂𝑂𝑂 axis with almost 
constant energy and linear momentum it is accepted that  

𝑆𝑆 = 𝑝𝑝𝑥𝑥𝑥𝑥 − 𝐸𝐸𝐸𝐸         (11)  
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implying the eigenvalues 𝑝𝑝𝑥𝑥 for 𝑝̂𝑝  and 𝐸𝐸 for 𝐸𝐸� (the measured values) if function 𝑅𝑅 
is set to a constant quantity (usually determined using the normalization condition). 

However, if 𝑅𝑅 is set to a constant value and 𝑝𝑝𝑥𝑥 and 𝐸𝐸 are also considered as 
constant quantities, Ψ would simply correspond to an infinitely extended (in space 
and time) propagating wave with constant frequency and wavelength. Yet this 
aspect is in disagreement with the interpretation of particles as wave-packets, 
according to wave-particle dualism. For this reason the amplitude of these 
oscillations should be significant only on limited space-time intervals. A possible 
solution consists in considering Ψ as a sum of oscillations centered around 𝑘𝑘𝑥𝑥 (wave 
vector projection along propagating direction 𝑂𝑂𝑂𝑂) and 𝜔𝜔, with unity amplitude and 
with the same differences Δ𝑘𝑘 and Δ𝜔𝜔 when passing from central 
frequency/wavelength to higher frequencies/lower wavelengths. In this case 
function 𝑅𝑅 is represented by 𝑅𝑅 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑌𝑌)/𝑌𝑌, where 𝑌𝑌 = (Δ𝑘𝑘𝑥𝑥)𝑥𝑥 − (Δ𝜔𝜔)𝑡𝑡 (a direct 
wave-packet moving with group velocity 𝑣𝑣𝑔𝑔 = Δ𝜔𝜔/Δ𝑘𝑘 ). A major advantage 
consists in the fact that 𝑅𝑅 varies from unity to zero when 𝑌𝑌 varies from 0 to ±𝜋𝜋. 
However, when |𝑌𝑌| exceeds 𝜋𝜋, function 𝑅𝑅 will increase again (in disagreement with 
standard model of a decreasing amplitude when we "move far" from the center of 
the wave-train).  

3. Applying Klein-Gordon equation upon a wave-train with almost 
constant frequency/wavelength 

Let us consider the function Ψ as 
Ψ = 𝑅𝑅(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖(𝑥𝑥,𝑦𝑦,𝑧𝑧,𝑡𝑡)/ℏ        (12) 

It results 
𝜕𝜕Ψ
𝜕𝜕𝜕𝜕

= �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑒𝑒𝑖𝑖𝑖𝑖/ℏ� + �𝑅𝑅 𝑖𝑖

ℏ
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑒𝑒𝑖𝑖𝑖𝑖/ℏ�       (13) 

ð2Ψ
𝜕𝜕𝑥𝑥2

= �
𝜕𝜕2𝑅𝑅
𝜕𝜕𝑥𝑥2

𝑒𝑒𝑖𝑖𝑖𝑖/ℏ +
𝑖𝑖
ℏ
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑒𝑒𝑖𝑖𝑖𝑖/ℏ�

+ �
𝑖𝑖
ℏ
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑒𝑒𝑖𝑖𝑖𝑖/ℏ +
𝑖𝑖
ℏ
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2

𝑅𝑅𝑒𝑒𝑖𝑖𝑖𝑖/ℏ +
𝑖𝑖
ℏ
𝜕𝜕2𝑆𝑆
𝜕𝜕𝑥𝑥2

𝑅𝑅𝑒𝑒𝑖𝑖𝑖𝑖/ℏ� 

= �𝜕𝜕
2𝑅𝑅
𝜕𝜕𝑥𝑥2

𝑒𝑒𝑖𝑖𝑖𝑖/ℏ − 𝑅𝑅
ℏ2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2
𝑒𝑒𝑖𝑖𝑖𝑖/ℏ� + 𝑖𝑖 �2

ℏ
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑒𝑒𝑖𝑖𝑖𝑖/ℏ + 𝑅𝑅

ℏ
𝜕𝜕2𝑆𝑆
𝜕𝜕𝑥𝑥2

𝑒𝑒𝑖𝑖𝑖𝑖/ℏ�       (14) 
and (in a similar manner) 

ð2Ψ
𝜕𝜕𝑦𝑦2

= �𝜕𝜕
2𝑅𝑅

𝜕𝜕𝑦𝑦2
𝑒𝑒𝑖𝑖𝑖𝑖/ℏ − 𝑅𝑅

ℏ2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2
𝑒𝑒𝑖𝑖𝑖𝑖/ℏ� + 𝑖𝑖 �2

ℏ
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑒𝑒𝑖𝑖𝑖𝑖/ℏ + 𝑅𝑅

ℏ
𝜕𝜕2𝑆𝑆
𝜕𝜕𝑦𝑦2

𝑒𝑒𝑖𝑖𝑖𝑖/ℏ�  
ð2Ψ
𝜕𝜕𝑧𝑧2

= �𝜕𝜕
2𝑅𝑅
𝜕𝜕𝑧𝑧2

𝑒𝑒𝑖𝑖𝑖𝑖/ℏ − 𝑅𝑅
ℏ2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2
𝑒𝑒𝑖𝑖𝑖𝑖/ℏ� + 𝑖𝑖 �2

ℏ
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑒𝑒𝑖𝑖𝑖𝑖/ℏ + 𝑅𝑅

ℏ
𝜕𝜕2𝑆𝑆
𝜕𝜕𝑧𝑧2

𝑒𝑒𝑖𝑖𝑖𝑖/ℏ�       (15) 
1
𝑐𝑐2

ð2Ψ
𝜕𝜕𝑡𝑡2

= 1
𝑐𝑐2
�𝜕𝜕

2𝑅𝑅
𝜕𝜕𝑡𝑡2

𝑒𝑒𝑖𝑖𝑖𝑖/ℏ − 𝑅𝑅
ℏ2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2
𝑒𝑒𝑖𝑖𝑖𝑖/ℏ� + 𝑖𝑖 1

𝑐𝑐2
�2
ℏ
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑒𝑒𝑖𝑖𝑖𝑖/ℏ + 𝑅𝑅

ℏ
𝜕𝜕2𝑆𝑆
𝜕𝜕𝑡𝑡2

𝑒𝑒𝑖𝑖𝑖𝑖/ℏ�        (16) 
Substituting in Klein-Gordon equation 
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0 = 1
𝑐𝑐2

𝜕𝜕2Ψ
𝜕𝜕𝑡𝑡2

− �𝜕𝜕
2Ψ
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2Ψ
𝜕𝜕𝑦𝑦2

+ 𝜕𝜕2Ψ
𝜕𝜕𝑧𝑧2

� + 𝑚𝑚0
2𝑐𝑐2

ℏ2
Ψ                  (17) 

and grouping terms situated in the same position in the above brackets, it results  
0 = (𝑇𝑇𝐴𝐴 + 𝑇𝑇𝐵𝐵 + 𝑇𝑇𝐶𝐶 + 𝑇𝑇𝐷𝐷) + 𝑇𝑇𝐸𝐸       (18) 

where  
1
𝑐𝑐2

𝜕𝜕2𝑅𝑅
𝜕𝜕𝑡𝑡2

𝑒𝑒𝑖𝑖𝑖𝑖/ℏ − 𝜕𝜕2𝑅𝑅
𝜕𝜕𝑥𝑥2

𝑒𝑒
𝑖𝑖𝑖𝑖
ℏ − 𝜕𝜕2𝑅𝑅

𝜕𝜕𝑦𝑦2
𝑒𝑒
𝑖𝑖𝑖𝑖
ℏ − 𝜕𝜕2𝑅𝑅

𝜕𝜕𝑥𝑥2
𝑒𝑒
𝑖𝑖𝑖𝑖
ℏ = 𝑇𝑇𝐴𝐴  

− 𝑅𝑅
𝑐𝑐2ℏ2

�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2
𝑒𝑒
𝑖𝑖𝑖𝑖
ℏ + 𝑅𝑅

ℏ2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2
𝑒𝑒
𝑖𝑖𝑖𝑖
ℏ + 𝑅𝑅

ℏ2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2
𝑒𝑒
𝑖𝑖𝑖𝑖
ℏ + 𝑅𝑅

ℏ2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2
𝑒𝑒
𝑖𝑖𝑖𝑖
ℏ = 𝑇𝑇𝐵𝐵  

2𝑖𝑖
ℏ𝑐𝑐2

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑒𝑒𝑖𝑖𝑖𝑖/ℏ − 2𝑖𝑖

ℏ
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑒𝑒
𝑖𝑖𝑖𝑖
ℏ − 2𝑖𝑖

ℏ
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑒𝑒
𝑖𝑖𝑖𝑖
ℏ − 2𝑖𝑖

ℏ
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑒𝑒
𝑖𝑖𝑖𝑖
ℏ = 𝑇𝑇𝐶𝐶  

𝑖𝑖
ℏ𝑐𝑐2

𝜕𝜕2𝑆𝑆
𝜕𝜕𝑡𝑡2

𝑅𝑅𝑒𝑒𝑖𝑖𝑖𝑖/ℏ − 𝑖𝑖
ℏ
𝜕𝜕2𝑆𝑆
𝜕𝜕𝑥𝑥2

𝑅𝑅𝑒𝑒𝑖𝑖𝑖𝑖/ℏ − 𝑖𝑖
ℏ
𝜕𝜕2𝑆𝑆
𝜕𝜕𝑦𝑦2

𝑅𝑅𝑒𝑒
𝑖𝑖𝑖𝑖
ℏ − 𝑖𝑖

ℏ
𝜕𝜕2𝑆𝑆
𝜕𝜕𝑧𝑧2

𝑅𝑅𝑒𝑒
𝑖𝑖𝑖𝑖
ℏ = 𝑇𝑇𝐷𝐷      (19) 

and 
𝑚𝑚0
2𝑐𝑐2

ℏ2
Ψ = 𝑚𝑚0

2𝑐𝑐2

ℏ2
𝑅𝑅𝑒𝑒

𝑖𝑖𝑖𝑖
ℏ = 𝑇𝑇𝐸𝐸         (20) 

In a more compact manner, it can be written 

� 1
𝑐𝑐2

𝜕𝜕2𝑅𝑅
𝜕𝜕𝑡𝑡2

− 𝜕𝜕2𝑅𝑅
𝜕𝜕𝑥𝑥2

− 𝜕𝜕2𝑅𝑅
𝜕𝜕𝑦𝑦2

− 𝜕𝜕2𝑅𝑅
𝜕𝜕𝑥𝑥2

� 𝑒𝑒
𝑖𝑖𝑖𝑖
ℏ = 𝑇𝑇𝐴𝐴  

1
ℏ2
�− 𝑅𝑅

𝑐𝑐2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2

+ 𝑅𝑅 �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2

+ 𝑅𝑅 �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2

+ 𝑅𝑅 �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2
� 𝑒𝑒𝑖𝑖𝑖𝑖/ℏ = 𝑇𝑇𝐵𝐵  

2𝑖𝑖
ℏ
� 1
𝑐𝑐2

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑒𝑒𝑖𝑖𝑖𝑖/ℏ − 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑒𝑒
𝑖𝑖𝑖𝑖
ℏ − 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑒𝑒
𝑖𝑖𝑖𝑖
ℏ − 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝑒𝑒𝑖𝑖𝑖𝑖/ℏ = 𝑇𝑇𝐶𝐶  

𝑖𝑖
ℏ
�

1
𝑐𝑐2
𝜕𝜕2𝑆𝑆
𝜕𝜕𝑡𝑡2

−
𝜕𝜕2𝑆𝑆
𝜕𝜕𝑥𝑥2

−
𝜕𝜕2𝑆𝑆
𝜕𝜕𝑦𝑦2

−
𝜕𝜕2𝑆𝑆
𝜕𝜕𝑧𝑧2

�𝑅𝑅𝑒𝑒
𝑖𝑖𝑖𝑖
ℏ = 𝑇𝑇𝐷𝐷 

𝑚𝑚0
2𝑐𝑐2

ℏ2
𝑅𝑅𝑒𝑒

𝑖𝑖𝑖𝑖
ℏ = 𝑇𝑇𝐸𝐸         (21) 

In the limit case when 𝑝𝑝𝑥𝑥 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,  𝑝𝑝𝑦𝑦 = 𝑝𝑝𝑧𝑧 = 0, 𝐸𝐸 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑆𝑆 =
𝑝𝑝𝑥𝑥𝑥𝑥 − 𝐸𝐸𝐸𝐸 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝐸𝐸, 𝜕𝜕
2𝑆𝑆
𝜕𝜕𝑡𝑡2

= 0, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑝𝑝𝑥𝑥, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0, 𝜕𝜕2𝑆𝑆
𝜕𝜕𝑥𝑥2

=   𝜕𝜕
2𝑆𝑆

𝜕𝜕𝑦𝑦2
=  𝜕𝜕

2𝑆𝑆
𝜕𝜕𝑧𝑧2

= 0       (22) 
Thus  

𝑇𝑇𝐴𝐴 = � 1
𝑐𝑐2

𝜕𝜕2𝑅𝑅
𝜕𝜕𝑡𝑡2

− 𝜕𝜕2𝑅𝑅
𝜕𝜕𝑥𝑥2

− 𝜕𝜕2𝑅𝑅
𝜕𝜕𝑦𝑦2

− 𝜕𝜕2𝑅𝑅
𝜕𝜕𝑥𝑥2

� 𝑒𝑒
𝑖𝑖𝑖𝑖
ℏ                     (23) 

(the same form) 
𝑇𝑇𝐵𝐵 = 1

ℏ2
�− 1

𝑐𝑐2
(−𝐸𝐸)2 + 𝑝𝑝𝑥𝑥2 + 0 + 0� 𝑅𝑅𝑒𝑒𝑖𝑖𝑖𝑖/ℏ = 1

ℏ2
�𝑝𝑝𝑥𝑥2 −

𝐸𝐸2

𝑐𝑐2
�𝑅𝑅𝑒𝑒𝑖𝑖𝑖𝑖/ℏ  (24) 

Yet (according to special relativity theory) 
𝐸𝐸2 = 𝑝𝑝2𝑐𝑐2 + 𝑚𝑚0

2𝑐𝑐4     (25) 
implying 

𝑚𝑚0
2𝑐𝑐4 = 𝐸𝐸2 − 𝑝𝑝2𝑐𝑐2  

𝑚𝑚0
2𝑐𝑐2 = 𝐸𝐸2

𝑐𝑐2
− 𝑝𝑝2  
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𝑚𝑚0
2𝑐𝑐2

ℏ2
= 1

ℏ2
�𝐸𝐸

2

𝑐𝑐2
− 𝑝𝑝2�  

𝑚𝑚0
2𝑐𝑐2

ℏ2
𝑅𝑅𝑒𝑒𝑖𝑖𝑖𝑖/ℏ = 1

ℏ2
�𝐸𝐸

2

𝑐𝑐2
− 𝑝𝑝2� 𝑅𝑅𝑒𝑒𝑖𝑖𝑖𝑖/ℏ    (26) 

The Left-Hand-Side corresponds to 𝑇𝑇𝐸𝐸, the Right-Hand-Side corresponds to (−𝑇𝑇𝐵𝐵), 
according to previous formulae. It results 

𝑇𝑇𝐵𝐵 =  − 𝑇𝑇𝐸𝐸       (27) 
For 𝑇𝑇𝐶𝐶 and 𝑇𝑇𝐷𝐷 it results by substituting with previously written partial derivatives  
in this limit case 

𝑇𝑇𝐶𝐶 = 2𝑖𝑖
ℏ
� 1
𝑐𝑐2

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(−𝐸𝐸) − 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑝𝑝𝑥𝑥 − 0 − 0� 𝑒𝑒𝑖𝑖𝑖𝑖/ℏ  

𝑇𝑇𝐶𝐶 = −2𝑖𝑖
ℏ
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝐸𝐸
𝑐𝑐2

+ 𝑝𝑝𝑥𝑥
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝑒𝑒𝑖𝑖𝑖𝑖/ℏ  

𝑇𝑇𝐷𝐷 = 𝑖𝑖
ℏ
� 1
𝑐𝑐2

. 0 − 0 − 0 − 0� 𝑅𝑅𝑒𝑒𝑖𝑖𝑖𝑖/ℏ = 0       (28) 
Inserting the above expressions (for the limit case when  𝑝𝑝𝑥𝑥 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,  𝑝𝑝𝑦𝑦 = 𝑝𝑝𝑧𝑧 =
0, 𝐸𝐸 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) into  

0 = (𝑇𝑇𝐴𝐴 + 𝑇𝑇𝐵𝐵 + 𝑇𝑇𝐶𝐶 + 𝑇𝑇𝐷𝐷) + 𝑇𝑇𝐸𝐸        (29) 
(the Klein-Gordon equation applied upon Ψ = 𝑅𝑅𝑒𝑒𝑖𝑖𝑖𝑖/ℏ, with partial derivatives 

grouped into 𝑇𝑇𝐴𝐴.𝑇𝑇𝐵𝐵,,𝑇𝑇𝐶𝐶  ,𝑇𝑇𝐷𝐷 , the term 𝑇𝑇𝐸𝐸  corresponding to (𝑚𝑚0
2𝑐𝑐2/ℏ2) 𝑅𝑅𝑒𝑒

𝑖𝑖𝑖𝑖
ℏ  ), and 

taking into account that 𝑇𝑇𝐸𝐸 = −𝑇𝑇𝐵𝐵, 𝑇𝑇𝐷𝐷 = 0 it results 
𝑇𝑇𝐴𝐴 + 𝑇𝑇𝐶𝐶 = 0  

� 1
𝑐𝑐2

𝜕𝜕2𝑅𝑅
𝜕𝜕𝑡𝑡2

− 𝜕𝜕2𝑅𝑅
𝜕𝜕𝑥𝑥2

− 𝜕𝜕2𝑅𝑅
𝜕𝜕𝑦𝑦2

− 𝜕𝜕2𝑅𝑅
𝜕𝜕𝑥𝑥2

� 𝑒𝑒
𝑖𝑖𝑖𝑖
ℏ − 2𝑖𝑖

ℏ
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝐸𝐸
𝑐𝑐2

+ 𝑝𝑝𝑥𝑥
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝑒𝑒

𝑖𝑖𝑖𝑖
ℏ = 0  

�� 1
𝑐𝑐2

𝜕𝜕2𝑅𝑅
𝜕𝜕𝑡𝑡2

− 𝜕𝜕2𝑅𝑅
𝜕𝜕𝑥𝑥2

− 𝜕𝜕2𝑅𝑅
𝜕𝜕𝑦𝑦2

− 𝜕𝜕2𝑅𝑅
𝜕𝜕𝑥𝑥2

� − 2𝑖𝑖
ℏ
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝐸𝐸
𝑐𝑐2

+ 𝑝𝑝𝑥𝑥
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�� 𝑒𝑒𝑖𝑖𝑖𝑖/ℏ = 0      (30) 

Since 𝑒𝑒𝑖𝑖𝑖𝑖/ℏ is not a null function, the previous equation implies that 
� 1
𝑐𝑐2

𝜕𝜕2𝑅𝑅
𝜕𝜕𝑡𝑡2

− 𝜕𝜕2𝑅𝑅
𝜕𝜕𝑥𝑥2

− 𝜕𝜕2𝑅𝑅
𝜕𝜕𝑦𝑦2

− 𝜕𝜕2𝑅𝑅
𝜕𝜕𝑥𝑥2

� − 2𝑖𝑖
ℏ
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝐸𝐸
𝑐𝑐2

+ 𝑝𝑝𝑥𝑥
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� = 0       (31) 

This equality holds if both real and imaginary parts Left-Hand-Side are null. This 
implies  

     1
𝑐𝑐2

𝜕𝜕2𝑅𝑅
𝜕𝜕𝑡𝑡2

− 𝜕𝜕2𝑅𝑅
𝜕𝜕𝑥𝑥2

− 𝜕𝜕2𝑅𝑅
𝜕𝜕𝑦𝑦2

− 𝜕𝜕2𝑅𝑅
𝜕𝜕𝑥𝑥2

= 0         (32) 
2
ℏ
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝐸𝐸
𝑐𝑐2

+ 𝑝𝑝𝑥𝑥
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� = 0         (33) 

Briefly analyzing the first equation  
1
𝑐𝑐2

𝜕𝜕2𝑅𝑅
𝜕𝜕𝑡𝑡2

− 𝜕𝜕2𝑅𝑅
𝜕𝜕𝑥𝑥2

− 𝜕𝜕2𝑅𝑅
𝜕𝜕𝑦𝑦2

− 𝜕𝜕2𝑅𝑅
𝜕𝜕𝑥𝑥2

= 0          (34) 
it can be noticed that it corresponds to the three dimensional wave equation for a 
wave with light speed 𝑐𝑐. Yet this result is in contradiction with the assumption that 
the amplitude of the propagating wave-train (corresponding to a free-moving 
particle) should be centered in a point (where the amplitude presents a maximum) 
which moves with speed 𝑣𝑣 (the speed of the particle) along a certain direction (let 
us suppose 𝑂𝑂𝑂𝑂 axis). 
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4. Conclusions 

This study has shown that by applying Klein-Gordon equation upon a wave-
function described by a product of an envelope function R and a phase factor (a 
complex number) corresponding to an alternating function with almost constant 
frequency and wavelength and using formula connecting energy, linear momentum 
p and rest mass from special relativity, it results for the envelope function the three 
dimensional wave equation for a wave with light speed c. This aspect is similar to 
the result obtained using the Hamiltonian formalism for electron speed. There are 
two main possibilities to solve this contradiction: 

a) the function 𝑅𝑅(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) is propagating in zig-zag trajectories, with speed 
𝑐𝑐 along each linear segment (similar to light within optical fibers with a very narrow 
section), BUT the main speed (the average speed) of this function 𝑅𝑅(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) is 
represented by 𝑣𝑣 (the velocity of the particle along the propagating direction, 
supposed to be represented by 𝑂𝑂𝑂𝑂 axis), similar to fractional vibrations connected 
to beams presented in [6] or to response at sinusoidal forces [7], [8]  

b) there is ALWAYS a certain inner dynamics of the associated wave-train, 
implying that the space-time positions and moments when the wave is passing 
through zero are not equally spaced (otherway ANY function with equally spaced 
zeros can be written as an envelope function multiplying a space-time sinusoidal 
function). 
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