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OPTIMALITY AND DUALITY FOR NONSMOOTH SEMIDEFINITE

MULTIOBJECTIVE FRACTIONAL PROGRAMMING PROBLEMS

USING CONVEXIFICATORS

B.B. Upadhyay1, Shubham Kumar Singh2

This paper deals with a class of nonsmooth semide�nite multiobjective frac-
tional programming problems (in short, (NSMFP)). Using the properties of convexi�ca-
tors, we deduce Fritz John type necessary criteria of optimality for the considered prob-
lem (NSMFP). Further, we employ generalized Cottle constraint quali�cation to derive
Karush-Kuhn-Tucker (in short, KKT) type necessary optimality criteria for (NSMFP).
We establish su�cient optimality conditions for (NSMFP) using the assumptions of
∂∗-pseudoconvexity and ∂∗-quasiconvexity on the components of the objective function
and constraints involved. Moreover, related to (NSMFP), we formulate the Mond-Weir
type dual model (in short, (NSMFD)). Furthermore, we establish several duality results
(namely, weak, strong, and strict converse duality) relating (NSMFP) and (NSMFD)
under ∂∗-pseudoconvex and ∂∗-quasiconvex assumptions. To demonstrate the results
derived in this paper, we provide several nontrivial examples. To the best of our knowl-
edge, optimality criteria and duality results for (NSMFP) have not been explored before
using convexi�cators.
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MSC2020: 90C22, 90C46, 90C29, 90C32.

1. Introduction

Multiobjective nonlinear semide�nite programming problem may be considered as a
generalization of multiobjective nonlinear optimization problem, where the decision variable
is considered to be a symmetric positive semide�nite matrix rather than a vector in Eu-
clidean space. Semide�nite programming (in short, (SDP)) has numerous applications in
various modern research �elds, including control theory [5], combinatorial optimization [16],
and eigenvalue optimization [22]. Shapiro [34] derived necessary and su�cient optimality
criteria for nonlinear (SDP) problems under convexity assumptions. Forsgren [13] derived
similar results for nonlinear semide�nite programming problems, relaxing the assumption of
convexity. moreover, Sun et al. [35] and Sun [36] developed some algorithms to solve (SDP)
problems. Yamashita and Yabe [41] introduced some numerical methods to solve (SDP)
problems and investigated their algorithmic implications.

Nonsmoothness is a common occurrence in many real-world problems, and as such,
several concepts associated with nonsmoothness have been developed and studied exten-
sively, see, for instance, [7, 20], and references cited therein. In the �eld of optimization, to
deal with the nonsmooth nature of mathematical programming problems, concepts of gen-
eralized derivatives and subdi�erentials have been developed and studied extensively. The
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concept of convexi�cators was introduced by Demyanov [8]. Jeyakumar and Luc [19] intro-
duced a more sophisticated and novel version of convexi�cators, which is a closed set but can
be nonconvex and unbounded. Dutta and Chandra [10] used the term convexifactors instead
of convexi�cators. Further, Dutta and Chandra [11] introduced ∂∗-pseudoconvex functions
by employing the idea of convexi�cators. Golestani and Nobakhtian [17] derived neces-
sary and su�cient optimality criteria for (SDP) problems by employing Abadie's constraint
quali�cation and the notion of convexi�cator. Lai et al. [21] established necessary and suf-
�cient optimality criteria for nonlinear semide�nite multiobjective programming problems
with vanishing constraints using convexi�cators. Recently, optimality criteria and duality
for (SDP) in terms of convexi�cators have been explored by Mishra et al. [30]. Further,
convexi�cators have been used to extend various results in nonsmooth analysis, see, for
instance, [9, 19], and references cited therein.

Fractional programming is a branch of optimization that deals with problems where
the objective functions are expressed as ratios of two functions. Fractional programming
problems are a signi�cant class of such problems, and they have applications in various �elds,
including information theory [24], and engineering design [38]. Bector [4] and Schaible [33]
have studied duality in fractional programming. Chandra [6], Egudo [12] and Weir [40]
explored several dual models for multiobjective fractional programming problems involving
generalized convex functions. For further details and updated survey on fractional program-
ming, we refer the reader to [1, 2, 3, 15, 23, 26, 29, 31, 32], and the references cited therein.
Gadhi [14] has established necessary as well as su�cient optimality criteria for multiobjective
fractional programming problems in terms of convexi�cators. Recently, Suneja and Kohli
[37] have studied duality for multiobjective fractional programming using convexi�cators.

Motivated by [14, 17, 21, 27, 37], we consider a class of (NSMFP) and establish
necessary and su�cient optimality criteria for the considered problem employing the notions
of ∂∗-pseudoconvexity and ∂∗-quasiconvexity on the components of the objective function
and the constraints involved. Moreover, we formulate Mond-Weir type dual problem and
derive weak, strong, and strict converse duality results, that relate the primal and dual
problem under generalized convexity assumptions. The results presented in this paper are
an extension and generalization of various existing results in the literature, from Euclidean
space to the space of symmetric positive semide�nite matrices.

The organization of the article is in the following manner. In Sect. 2, we recall
the basic de�nitions and preliminaries related to semide�nite matrices and convexi�cators,
that will be used in the sequel. In Sect. 3, we establish necessary and su�cient optimality
conditions of the considered problem for a feasible solution to be weakly e�cient under the
assumptions of ∂∗-pseudoconvexity and ∂∗-quasiconvexity. In Sect. 4, we present a formula-
tion of the Mond-Weir type dual problem related to the primal problem and establish weak,
strong, and strict converse duality results relating primal and dual problems. Conclusions
are drawn and some future research directions are discussed in Sect. 5.

2. De�nitions and Preliminaries

Throughout the article, we denote n-dimensional Euclidean space by Rn. Let v, w ∈
Rn (n ≥ 2). We use the following convention for equalities and inequalities:

v = w ⇔ vj = wj , for all j = 1, . . . , n; v < w ⇔ vj < wj , for all j = 1, . . . , n;

v ≤ w ⇔ vj ≤ wj , for all j = 1, . . . , n, and vr < wr for some r ∈ {1, . . . , n}.

The set containing every n× n symmetric matrix is signi�ed by the symbol Sn. Moreover,
symbols Sn+ and Sn++ denote the sets of all symmetric positive semide�nite matrices and
symmetric positive de�nite matrices, respectively. For M ∈ Sn, we adopt the following
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notation:

M ⪰ 0 ⇐⇒ M is positive semi-de�nite, M ≻ 0 ⇐⇒ M is positive de�nite.

For M , N ∈ Sn, the inner product of M and N is de�ned by ⟨M,N⟩ :=M •N = tr(MN).
Corresponding to the inner product which is de�ned above, we deduce the following Frobe-

nius norm, given by ∥ M ∥F= tr(MM)1/2 =
(∑n

i,j=1 |mij |2
)1/2

. Let D be a nonempty

subset of Sn, then by clD, coD, and coneD, we denote the closure of D, convex hull of D,
and the convex cone (including the origin) generated by D, respectively.
The negative polar cone of D is de�ned as D− := {V ∈ Sn|⟨V,M⟩ ≤ 0, ∀M ∈ D} . The
strictly negative polar cone of D is de�ned as Ds := {V ∈ Sn|⟨V,M⟩ < 0, ∀M ∈ D} . The
contingent cone T (D,M), is de�ned as

T (D,M) := {U ∈ Sn|∃βn ↓ 0 and Un → U, such that M + βnUn ∈ D, ∀n} .

The following de�nitions are from [11] and [17].

De�nition 2.1. For any function Θ : Sn → R∪{∞}, we de�ne dom(Θ) = {Z ∈ Sn|Θ(Z) ̸=
∞}. Let Z ∈ dom(Θ). Then upper and lower Dini derivatives of function Θ at Z in the
direction V ∈ Sn are de�ned in the following manner

Θ+(Z;V ) := lim sup
t↓0

Θ(Z + tV )−Θ(Z)

t
, Θ−(Z;V ) := lim inf

t↓0

Θ(Z + tV )−Θ(Z)

t
.

De�nition 2.2. Let us consider a function Θ : Sn → R∪{∞}. We say that Θ has an upper
convexi�cator ∂∗Θ(Z) ⊂ Sn at the point Z, if ∂∗Θ(Z) is closed and for every V ∈ Sn, we
have Θ−(Z;V ) ≤ sup

ξ∈∂∗Θ(Z)

⟨ξ, V ⟩.

De�nition 2.3. Let Θ : Sn → R ∪ {∞} be any function. We say that Θ has a lower
convexi�cator ∂∗Θ(Z) ⊂ Sn at Z, if ∂∗Θ(Z) is closed and for each V ∈ Sn, we have
Θ+(Z;V ) ≥ inf

ξ∈∂∗Θ(Z)
⟨ξ, V ⟩.

De�nition 2.4. The function Θ : Sn → R ∪ {∞} is said to have a convexi�cator ∂∗Θ(Z)
at Z, if it is both an upper and lower convexi�cator of Θ at Z.

De�nition 2.5. The function Θ : Sn → R∪{∞} is said to have upper regular convexi�cator
∂∗Θ(Z) ⊂ Sn at Z, if ∂∗Θ(Z) is an upper convexi�cator of Θ at Z and for each V ∈ Sn, we
have Θ+(Z;V ) = sup

ξ∈∂∗Θ(Z)

⟨ξ, V ⟩.

De�nition 2.6. The function Θ : Sn → R∪{∞} is said to have lower regular convexi�cator
∂∗Θ(Z) ⊂ Sn at Z, if ∂∗Θ(Z) is an lower convexi�cator of Θ at Z and for each V ∈ Sn, we
have Θ+(Z;V ) = inf

ξ∈∂∗Θ(Z)
⟨ξ, V ⟩.

Proposition 2.1. Let ∂∗Θ(Z) be a convexi�cator of Θ : Sn → R at Z. Then, for every
ρ ∈ R, ρ∂∗Θ(Z) is a convexi�cator of ρΘ at Z.

We recall the following results and de�nitions from [19].

Proposition 2.2. Suppose that the functions Θ,F : Sn → R admit upper convexi�cators
∂∗Θ(Z) and ∂∗F(Z) at Z ∈ Sn, respectively. Further, assume that one of the convexi�cators
is upper regular at Z. Then ∂∗Θ(Z) + ∂∗F(Z) is an upper convexi�cator of Θ+ F at Z.

Proposition 2.3. Let B be a Banach space and Θ = (Θ1, . . . ,Θn) : B → Rn, F : Rn → R
are continuous functions. Moreover, we assume that for each i = 1, 2, . . . , n, Θi admits
a bounded convexi�cator ∂∗Θi

(
Z
)
and F admits a bounded convexi�cator ∂∗F(Θ

(
Z
)
) at
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Θ
(
Z
)
. If for each i = 1, . . . , n, ∂∗Θi is upper semicontinuous at Z and ∂∗F is upper semi-

continuous at Θ
(
Z
)
, then the set ∂∗(F ◦Θ)

(
Z
)
:= ∂∗F(Θ

(
Z
)
)(∂∗Θ1

(
Z
)
, . . . , ∂∗Θn

(
Z
)
),

is a convexi�cator of F ◦Θ at Z.

De�nition 2.7. Let Θ : Sn → R∪{∞} be any function. Assume that for every Z ∈ dom(Θ)
and admits a convexi�cator ∂∗Θ(Z). Then, Θ is said to be ∂∗-pseudoconvex at Z if and
only if for each V ∈ Sn, Θ(V ) < Θ(Z) =⇒ ⟨ξ, V − Z⟩ < 0, ∀ξ ∈ ∂∗Θ(Z).

De�nition 2.8. Let Θ : Sn → R∪{∞} be any function. Assume that for every Z ∈ dom(Θ)
and admits a convexi�cator ∂∗Θ(Z) at Z. Then, Θ is said to be strictly ∂∗-pseudoconvex at
Z if and only if for all V (̸= Z) ∈ Sn, Θ(V ) ≤ Θ(Z) =⇒ ⟨ξ, V − Z⟩ < 0, ∀ξ ∈ ∂∗Θ(Z).

De�nition 2.9. Let Θ : Sn → R∪{∞} be any function. Assume that for every Z ∈ dom(Θ)
and admits a convexi�cator ∂∗Θ(Z) at Z. Then, Θ is said to be ∂∗-quasiconvex at Z if and
only if for all V ∈ Sn, Θ(V ) ≤ Θ(Z) =⇒ ⟨ξ, V − Z⟩ ≤ 0, ∀ξ ∈ ∂∗Θ(Z).

The following de�nition and results are from [14], which will be used in the sequel.

De�nition 2.10. Let S be a convex cone with non-empty interior of a Banach space B.
Then, ∆S : B → R is de�ned as ∆S(z) = d(z, S) − d(z,B \ S), where d(z, S) denotes the
distance between z and S. It can be easily veri�ed that

∆S(z) =

{
d(z, S), if z ∈ B \ S
−d(z,B \ S), if z ∈ S

where d(z, S) = inf{∥ u− z ∥: u ∈ S}.

Proposition 2.4. Let S ⊊ B be a closed convex cone with non-empty interior of a Banach
space B. Then the function ∆S is convex, positively homogeneous and Lipschitz. Moreover,
it is negative on the interior of S, null on the boundary of S and positive on the exterior of
S. That is ∆S(z) > 0 if z ∈ B \ S, ∆S(z) < 0 if z ∈ Int(S) and ∆S(z) = 0 if z ∈ bd(S).

Proposition 2.5. Let S ⊂ B be a nonempty closed convex cone of Banach space B with
nonempty interior. Then for all z ∈ B, 0 ̸∈ ∂∆S(z).

Proposition 2.6. Let Θ : Sn → R ∪ {∞} be continuous and Z ∈ dom(Θ). Suppose
that ∂∗Θ

(
Z
)
is closed and that ∂∗Θ is upper semicontinuous at Z. Then, ∂∗f

(
Z
)
is a

convexi�cator of Θ at Z.

Corollary 2.1. Let Θ : B → Rn be any continuous function and for every i = 1, 2, . . . , n,
the function Θi admits a upper semicontinuous and bounded convexi�cator ∂∗Θi

(
Z
)
at Z.

Let us de�ne P(Z) = max{Θi(Z) : i = 1, . . . , n} and A
(
Z
)
=

{
i : Θi

(
Z
)
= P

(
Z
)}
, Then,

co{∂∗Θi

(
Z
)
: i ∈ A

(
Z
)
} is a convexi�cator of P at Z.

3. Optimality conditions for (NSMFP)

In this section, we formulate a nonsmooth semide�nite multiobjective fractional pro-
gramming problem (NSMFP) and establish Fritz John type necessary optimality condition
for (NSMFP). Moreover, we establish KKT type necessary and su�cient optimality condi-
tion. We consider the following multiobjective fractional programming problem:

(NSMFP) Minimize K(Z) =

(
Θ1(Z)

F1(Z)
, . . . ,

Θk(Z)

Fk(Z)

)
,

subject to Gj(Z) ≤ 0, j ∈ J := {1, 2, . . . ,m},
where, Θi : Sn → R, Fi : Sn → R, i ∈ I := {1, 2, . . . , k} and Gj : Sn → R, j ∈ J are
continuous functions. We de�ne the set of all feasible solutions of (NSMFP) as F := {Z ∈
Sn : Gj(Z) ≤ 0, j ∈ J}. We assume that for each Z ∈ F and for every i ∈ I, Θi(Z) ≥ 0 and
Fi(Z) > 0.
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Now, we provide the de�nition of weak e�cient and local weak e�cient solution of (NSMFP),
which is a generalization of the de�nitions given in Miettinen [25] and Suneja and Kohli [37].

De�nition 3.1. Let Z ∈ F be any arbitrary feasible solution of (NSMFP). Then, Z is
known as a weak e�cient solution of (NSMFP), if there does not exist any Z ∈ F , such
that Ki (Z) < Ki

(
Z
)
, ∀i ∈ I.

De�nition 3.2. Let Z ∈ F be any arbitrary feasible solution of (NSMFP). Then, Z ∈ F
is said to be a local weak e�cient solution of (NSMFP), if there exists a neighbourhood N

of Z, such that for any Z ∈ N ∩ F , Ki (Z) < Ki

(
Z
)
, ∀i ∈ I cannot hold.

In the following theorem, we establish Fritz John type necessary optimality criteria
for (NSMFP).

Theorem 3.1. Let Z be a local weak e�cient solution of (NSMFP). Further, suppose that
Θi : Sn → R, Fi : Sn → R and Gj : Sn → R are continuous and admit bounded convexi�cator

∂∗Θi

(
Z
)
, ∂∗Fi

(
Z
)
and ∂∗Gj

(
Z
)
at Z, respectively. Moreover, we assume that for all i ∈ I

and j ∈ J, ∂∗Θi

(
Z
)
, ∂∗Fi

(
Z
)
and ∂∗Gj

(
Z
)
are upper semicontinuous at Z. Then, there

exists multipliers (β∗
1 , . . . , β

∗
k) ∈ Rk

+ and (µ∗
1, . . . , µ

∗
m) ∈ Rm

+ , such that

0 ∈
k∑

i=1

β∗
i

(
∂∗Θi

(
Z
)
−Ki

(
Z
)
∂∗Fi

(
Z
))

+

m∑
j=1

µ∗
j∂

∗Gj

(
Z
)
, (1)

µ∗
jGj

(
Z
)
= 0, j ∈ J, (2)

µ∗
j ≥ 0 and Gj

(
Z
)
≤ 0, j ∈ J. (3)

Proof. From the given hypotheses Z ∈ F is a local weak e�cient solution of (NSMFP).
Therefore, there exists a neighbourhoodN of Z, such thatK(Z)−K

(
Z
)
∈ Rk\−IntRk

+, ∀Z ∈
N ∩ F . Let us consider the following auxiliary problem (P1):

(P1) Minimize
(
Θ1(Z)−K1

(
Z
)
F1(Z), . . . ,Θk(Z)−Kk

(
Z
)
Fk(Z)

)
,

subject to Z ∈ F , where Ki

(
Z
)
=

Θi

(
Z
)

Fi

(
Z
) , i ∈ I.

We show that Z is also a local weak e�cient solution of (P1). On contrary, we assume that
there exists Z1 ∈ N∩F , such that

(
Θi (Z1)−Ki

(
Z
)
Fi(Z1)

)
−
(
Θi

(
Z
)
−Ki

(
Z
)
Fi

(
Z
))
<

0. Since Θi

(
Z
)
−Ki

(
Z
)
Fi

(
Z
)
= 0, we have, Θi(Z1)

Fi(Z1)
− Θi(Z)

Fi(Z)
< 0, which contradicts the fact

that Z is a local weak e�cient solution of (NSMFP). Now we formulate another auxiliary
problem (P2) and show that Z is a local weak e�cient solution of (P2).

(P2) Minimize ∆−Int Rk
+

(
ψ1(Z)− ψ1

(
Z
)
, . . . , ψk(Z)− ψk

(
Z
))
,

subject to Z ∈ F , where ψi := Θi −Ki

(
Z
)
Fi for all i ∈ I.

Since Z is a local weak e�cient solution of (P1), there exists a neighbourhood N of Z,
such that

(
ψ1(Z)− ψ1

(
Z
)
, . . . , ψk(Z)− ψk

(
Z
))

∈ Rk \ −Int Rk
+, for all Z ∈ N ∩ F .

Hence, by Proposition 2.4, we have ∆−Int Rk
+
(ψ1(Z) − ψ1

(
Z
)
, . . . , ψk(Z) − ψk

(
Z
)
) ≥ 0.

Since ∆−Int Rk
+
(0) = 0, it follows that Z is a local weak e�cient solution of (P2). Now

we consider one more auxiliary problem (P3) and show that an e�cient solution of (P2) is
also an e�cient solution of

(P3) Minimize h(Z) = max
(
G0(Z)− G0

(
Z
)
,G1(Z), . . . ,Gm(Z)

)
subject to Z ∈ Sn,
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where G0 := ∆−Int Rk
+

(
ψ1 − ψ1

(
Z
)
, . . . , ψk − ψk

(
Z
))

and G0

(
Z
)
= 0. From Proposition

4.1 in [19], we have 0 ∈ co(∂∗h
(
Z
)
). Let us consider the following set J

(
Z
)
:= {j ∈ J :

Gj

(
Z
)
= 0}. Using Corollary 2.1, there exist µ0, . . . , µm ≥ 0, such that µ0 +

∑
j∈J(Z) µj =

1, and 0 ∈ µ0∂
∗G0

(
Z
)
+

∑
j∈J(Z) µj∂

∗Gj

(
Z
)
. From Proposition 2.3, there exists τ∗ ∈

∂∗∆−Int Rk
+
(0), such that 0 ∈ µ0τ

∗◦
(
∂∗ψ1

(
Z
)
, . . . , ∂∗ψk

(
Z
))
+
∑

j∈J(Z) µj∂
∗Gj

(
Z
)
. Since

∆−Int Rk
+
is a convex Lipschitz function, we get a convex subdi�erential ∂∆−Int Rk

+
(0) as a

convexi�cator of ∆−Int Rk
+
at 0. Hence, we have ∆−Int Rk

+
(τ)−∆−Int Rk

+
(0) ≥ ⟨τ∗, τ⟩, ∀τ ∈

Rk. Since∆−Int Rk
+
(0) = 0, we have ⟨τ∗, τ⟩ ≤ ∆−Int Rk

+
(τ) = −d(τ,Rk\−Int Rk

+) ≤ 0, ∀τ ∈
−Rk

+. Consequently, τ
∗ ∈ Rk

+. From Proposition 2.5, we deduce that τ∗ ∈ Rk
+ \ {0}. Setting

µj = 0 for j ̸∈ J
(
Z
)
, we get

0 ∈ µ0

k∑
i=1

ρi
(
∂∗Θi

(
Z
)
−Ki

(
Z
)
∂∗Fi

(
Z
))

+

m∑
i=1

µj∂
∗Gj

(
Z
)
, µ0 +

m∑
i=1

µj = 1.

For (ρ1, . . . , ρk) ∈ Rk
+\{0} and (µ0, µ1, . . . , µm) ∈ Rm

+ . We set (β∗
1 , . . . , β

∗
k) := µ0(ρ1, . . . , ρk),

which completes the proof. □
Now we recall the Generalized Cottle constraint quali�cation from Mishra [30].

De�nition 3.3. Let Z ∈ F . Then the generalized Cottle constraint quali�cation (in short,
(GCCQ)) is satis�ed at Z if( ⋃

i∈I
p
K

co ∂∗Θi

(
Z
))s ⋂( ⋃

j∈J(Z)

co ∂∗Gj

(
Z
))s

∩ Sn+ ̸= ∅, ∀p ∈ I,

where IpK := {1, . . . , k} \ {p}, and J
(
Z
)
= {j ∈ J|Gj

(
Z
)
= 0}.

In the following theorem, we establish that under (GCCQ) assumption β∗ ̸= 0, which
is, in fact, KKT type necessary optimality conditions.

Theorem 3.2. Let us assume that Z ∈ F is a weak e�cient solution of (NSMFP) and all
the assumptions of Theorem 3.1 hold. Then, there exists multipliers β∗ ∈ Rk

+ and µ∗ ∈ Rm
+ ,

(β∗, µ∗) ̸= 0, such that (1),(2) and (3) hold. Moreover, if (GCCQ) satis�es at Z, then
β∗ ̸= 0.

Proof. Assuming, β1 = 0 without loss of generality. Then, from (1) there exists ξi ∈
∂∗Θi

(
Z
)
−Ki

(
Z
)
∂∗Fi

(
Z
)
, i ∈ I1K, ζj ∈ ∂∗Gi

(
Z
)
, j ∈ J∗

(
Z
)
, such that∑

i∈I1
K

β∗
i ξi +

∑
j∈J∗(Z)

µ∗
jζj = 0. (4)

As (GCCQ) satis�es at Z, we get a V ∈ Sn+, such that

〈∑
i∈I1

K

β∗
i ξi +

∑
j∈J∗(Z)

µ∗
jζj , V

〉
< 0,

which is contradiction to (4). Thus β∗
1 > 0. Proceeding with similar arguments for each

i ∈ I, we can conclude that β∗ ̸= 0. □
To establish su�cient optimality criteria, we shall require few additional assumptions

on the objective function and constraints.

Theorem 3.3. Let Z ∈ F and
(1) The functions ψi as de�ned in Theorem 3.1 are ∂∗-pseudoconvex for every i ∈ I,
(2) The functions µjGj are ∂

∗-quasiconvex for all j ∈ J,

(3) The assumptions of Theorem 3.1 hold at Z.
Then, Z is a weakly e�cient solution of (NSMFP).
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Proof. On the contrary, we assume that Z is not a weakly e�cient solution of (NSMFP).
Following the arguments similar to those in Theorem 3.1, Z is not a weakly e�cient solution
of (P1). Then, there exists Z1 ∈ F , such that

(
ψ1(Z1)− ψ1

(
Z
)
, . . . , ψk(Z1)− ψk

(
Z
))

∈
−Int Rk

+, Gj(Z1) ≤ 0, ∀j ∈ J. Consequently, for every i ∈ I, we have ψi(Z1)− ψi

(
Z
)
< 0.

Since ψi is ∂
∗-pseudoconvex at Z, therefore we get

〈
ξ∗i , Z1 − Z

〉
< 0, ∀ξ∗i ∈ ∂∗ψi

(
Z
)
.

Since ρ ∈ Rk
+ \ {0}, we have

〈
p∑

i=1

ρiξ
∗
i , Z1 − Z

〉
< 0, ∀ξ∗i ∈ ∂∗ψi

(
Z
)
. (5)

On the other hand, from (1), there exits ξ∗i ∈ ∂∗ψi

(
Z
)
and ζ∗j ∈ ∂∗Gj

(
Z
)
, such that∑p

i=1 βiξ
∗ +

∑m
j=1 µjζ

∗
j = 0. Now, from (2) and (3), we get µjGj(Z1) ≤ µjGj

(
Z
)
. By em-

ploying the ∂∗-quasiconvexity of µjGj , j ∈ J, we get
〈
ζ ′j , Z1 − Z

〉
≤ 0, ∀ζ ′j ∈ ∂∗(µjGj)

(
Z
)

and from Proposition 2.1, it implies that ⟨µjζ
∗
j , Z1 − Z⟩ ≤ 0, ∀ζ∗j ∈ ∂∗Gj

(
Z
)
, j ∈ J.

Since µj ≥ 0, we have

〈
m∑
j=1

µjζ
∗
j , Z1 − Z

〉
≤ 0, ∀ζ∗j ∈ ∂∗Gj

(
Z
)
. (6)

Adding (5) and (6), we get

〈 p∑
i=1

ρiξ
∗
i +

m∑
j=1

µjζ
∗
j , Z1 − Z

〉
< 0, which is a contradiction.

□

Remark 3.1. Theorem 3.1 and Theorem 3.3 generalize and extend Theorem 6 and The-
orem 7, respectively, of Gadhi [14], from Euclidean space to space of symmetric positive
semide�nite matrices.

The following example illustrates the signi�cance of Theorem 3.1 and Theorem 3.3.

Example 3.1. Let us consider the following problem:

(P) min K(Z) =

(
Θ1(Z)

F1(Z)
,
Θ2(Z)

F2(Z)
,
Θ3(Z)

F3(Z)

)
, s.t. Gi(Z) ≤ 0 (i = 1, 2), Z =

[
z1 z2
z2 z3

]
∈ S2+,

Θ1(Z) = z1 − z2 + 1, Θ2(Z) = −z12
(
sin 1

z1
− 1,

)
, Θ3(Z) = z1 − z2 + 1,

F1(Z) = −z2 + 1, F2(Z) = e−z2 , F3(Z) = ez2 , G1(Z) = z1(z1 − 1), G2(Z) = z2.

We denote the feasible set of the problem (P) as F =

{
Z =

[
z1 z2
z2 z3

]
: 0 ≤ z1 ≤ 1, z2 ≤ 0

}
.

Now, we consider Z =

[
0 0
0 0

]
. Then, K1

(
Z
)
= 1,K2

(
Z
)
= 0, Θ1(Z) − K1

(
Z
)
F1(Z) =

Z1. Thus, Z is a solution of the problem min{Θ1(Z) − K1

(
Z
)
F1(Z) : Z ∈ F}. Hence,

Z is a solution of the problem min
{

Θ1(Z)
F1(Z) : Z ∈ F

}
. Therefore, Z is a weak e�cient so-

lution of Problem (P4). It can be veri�ed that ∂∗Θ1(0) =

{[
1 −1

2−1
2 0

]}
, ∂∗Θ2(0) ={[

−1 0
0 0

]}
, ∂∗Θ3(0) =

{[
1 −1

2−1
2 0

]}
, ∂∗F1(0) =

{[
0 −1

2−1
2 0

]}
, ∂∗F2(0) =

{[
0 −1

2−1
2 0

]}
,

∂∗F3(0) =

{[
0 1

2
1
2 0

]}
, ∂∗G1(0) =

{[
−1 0
0 0

]}
, ∂∗G2(0) =

{[
0 1

2
1
2 0

]}
. We can verify that

(GCCQ) is satis�ed at Z. Moreover, for the multipliers β1 = 1, β2 = 1, β3 = 1, and µ1 =
1, µ2 = 2, all the hypothesis of Theorem 3.2 are satis�ed. It is worthwhile to note that Z
is a local weak e�cient solution of the problem (P).
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4. Duality

In this section, we formulate a Mond-Weir type dual model (NSMFD) related to
(NSMFP). Moreover we derive weak, strong and strict converse duality results relating
(NSMFD) and (NSMFP). The Mond-Weir type dual problem (NSMFD) is given as follows:

Maximize K(U) =

(
Θ1(U)

F1(U)
,
Θ2(U)

F2(U)
, . . . ,

Θk(U)

Fk(U)

)
,

subject to 0 ∈
k∑

i=1

ρi(∂
∗Θi(U)− σi∂

∗Fi(U)) +

m∑
i=1

γj∂
∗Gj(U), γjGj(U) ≥ 0, ∀j ∈ J,

where ρ ∈ Rk
+ \ {0}, γ ∈ Rm

+ , σi = (K)i(U) = Θi(U)
Fi(U) , ∀i ∈ I. The set containing all feasible

solutions of the problem (NSMFD) is denoted by FD and de�ned as FD = {(U, ρ, γ, σ) ∈
Sn×Rk

+×Rm
+×Rk : 0 ∈

∑k
i=1 ρi(∂

∗Θi(U)−σi∂∗g(U))+
∑m

i=1 γj∂
∗Gj(U), γjGj(U) ≥ 0, ∀j ∈

J}.
In the following theorem, we establish the weak duality result for (NSMFD).

Theorem 4.1. Let Z ∈ F and (U, ρ, γ, σ) ∈ FD. Further, for every i ∈ I, we assume
that ∂∗Θi(U) is an upper regular convexi�cator of Θi at U and ∂∗Fi(U) is a lower regular
convexi�cator of Fi at U . If for i ∈ I, functions Θi −σiFi are ∂

∗-pseudoconvex at U and for
j ∈ J, functions γjGj are ∂

∗-quasiconvex at U , then K(Z) < K(U) can not hold.

Proof. Using the assumptions of the given theorem and Propositions 2.1 and 2.2, it follows
that ∂∗Θi(U) − σi∂

∗Fi(U) is a convexi�cator of Θi − σiFi at U , for every i ∈ I. Now,
let us assume to the contrary that K(Z) < K(U). Then, Θi(Z) − σiFi(Z) < 0, ∀i ∈
I, where σi = Ki(U) = Θi(U)

Fi(U) , ∀i ∈ I. Since (U, ρ, γ, σ) ∈ FD, therefore, there exists

ξi ∈ ∂∗Θi(U)− σi∂
∗Fi(U), ζj ∈ ∂∗Gj(U), such that

k∑
i=1

ρiξi +

m∑
j=1

γjζj = 0. (7)

Since Z ∈ F and (U, ρ, γ, σ) ∈ FD, it follows that

Θi(Z)− σiFi(Z) < 0 = Θi(U)− σiFi(U), ∀i ∈ I, (8)

γjGj(Z) ≤ 0 ≤ γjGj(U), ∀j ∈ J. (9)

Since Θi−σiFi is ∂
∗-pseudoconvex at U , from (8), we get ⟨ξi, Z−U⟩ < 0, ∀ξi ∈ ∂∗Θi(U)−

σi∂
∗Fi(U), ∀i ∈ I.

Since ρ ∈ Rk
+ \ {0},

〈
k∑

i=1

ρiξi, Z − U

〉
< 0, ∀ξi ∈ ∂∗Θi(U)− σi∂

∗Fi(U), ∀i ∈ I. (10)

Again using ∂∗-quasiconvexity of γjGj and (9), we have ⟨ζ ′j , Z −U⟩ ≤ 0,∀ζ ′j ∈ ∂∗(γjGj)(U),
∀j ∈ J. From Proposition 2.1, it follows that ⟨γjζj , Z − U⟩ ≤ 0, ∀ζj ∈ ∂∗Gj(U), ∀j ∈ J.

Since γj ≥ 0, for all j ∈ J, hence

〈
m∑
j=1

γjζj , Z − U

〉
≤ 0, ∀ζj ∈ ∂∗Gj(U), ∀j ∈ J. (11)

Adding (10) and (11) gives us

〈
k∑

i=1

ρiξi +

m∑
j=1

γjζj , Z − U

〉
< 0, which contradicts (7).

□
In the following theorem, we derive a strong duality result for (NSMFD).
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Theorem 4.2. Let Z∗ be a weak e�cient solution of (NSMFP). Moreover, we assume that
all the assumptions of Theorem 3.2 are satis�ed. Then, there exists (ρ∗, γ∗, σ∗) ∈ Rk×Rm×
Rk, such that (Z∗, ρ∗, γ∗, σ∗) ∈ FD. If for every Z ∈ F and for every (U, ρ, γ, σ) ∈ FD,
Theorem 4.1 hold, then (Z∗, ρ∗, γ∗, σ∗) is a weak e�cient solution of (NSMFD).

Proof. Since Z∗ is a weak e�cient solution of (NSMFP) and all the hypotheses of Theorem
3.2 are satis�ed, there exist vectors ρ∗ ∈ Rk

+ \ {0} and γ∗ ∈ Rm
+ , such that (1), (2), and (3)

hold. That is,

0 ∈
k∑

i=1

ρ∗i (∂
∗Θi(Z

∗)−Θi(Z
∗)∂∗Fi(Z

∗)) +

m∑
j=1

γ∗j ∂
∗Gj(Z

∗),

γ∗j Gj(Z
∗) = 0, ∀j ∈ J, γ∗j ≥ 0, Gj(Z

∗) ≤ 0, ∀j ∈ J, Ki(Z
∗) =

Θi(Z
∗)

Fi(Z∗)
, ∀i ∈ I.

Hence, (Z∗, ρ∗, γ∗, σ∗) ∈ FD. On contrary, we assume that (Z∗, ρ∗, γ∗, σ∗) is not a weak
e�cient solution of (NSMFD). Then, there exists (U, ρ, γ, σ) ∈ FD, such that K(Z∗) <
K(U), which is a contradiction to Theorem 4.1. □

Remark 4.1. Theorem 4.1 and Theorem 4.2 generalize and extend Theorem 4.1 and The-
orem 4.2, respectively, of Suneja and Kohli [37] from Euclidean space to space of symmetric
semide�nite matrices.

In the following theorem, we derive strict converse duality for the problem (NSMFD).

Theorem 4.3. Let Z ∈ F and (U, ρ, γ, σ) ∈ FD, such that σ = K
(
Z
)
. Further, we

assume that
∑p

i=1 ρi(Θi − σiFi) is ∂∗-quasiconvex and for every j ∈ J, γjGj is strictly

∂∗-pseudoconvex and Θi(U)− σiFi(U) ≥ 0, i ∈ I. Then Z = U .

Proof. Let Z ̸= U . Since (U, ρ, γ, σ) ∈ FD, we have

0 ∈
k∑

i=1

ρi(∂
∗Θi(U)− σi∂

∗Fi(U)) +

m∑
j=1

γj∂
∗Gj(U), γjGj(U) ≥ 0, ∀j ∈ J. (12)

Since γj ≥ 0 and Gj

(
Z
)
≤ 0. Therefore, γjGj

(
Z
)
≤ γjGj(U). Since γjGj is assumed to be

strictly ∂∗-pseudoconvex at U , it follows that
〈
ζ ′j , Z − U

〉
< 0, ∀ζ ′j ∈ ∂∗(γjGj)(U),∀j ∈ J.

Now, using Proposition 2.1, it implies that ⟨γjζj , Z −U⟩ < 0, ∀ζj ∈ ∂∗Gj(U), ∀j ∈ J. Since
γj ≥ 0, j ∈ J, it follows that〈

m∑
j=1

γjζj , Z − U

〉
< 0, ∀ζj ∈ ∂∗Gj(U), ∀j ∈ J. (13)

From (12) and (13), we get
〈∑k

i=1 ρiξi, Z − U
〉
> 0, ∀ξi ∈ ∂∗Θi(U) − σi∂

∗Fi(U), ∀i ∈ I.

Then by the ∂∗-quasiconvexity of
∑p

i=1 ρi(Θi − σiFi), we have
p∑

i=1

ρi(Θi

(
Z
)
− σiFi

(
Z
)
) >

p∑
i=1

ρi(Θi(U)− σiFi(U)). (14)

Since Θ
(
Z
)
= σ, the left hand side of (14) becomes zero. Therefore,

∑p
i=1 ρi(Θi(U) −

σiFi(U)) < 0, which is a contradiction to Θi(U)− σiFi(U) ≥ 0. Hence, Z = U . □
We present the following example to demonstrate the importance of weak and strong

duality results.

Example 4.1. Let us consider the following problem

(NP) Minimize

(
Θ1(Z)

F1(Z)
,
Θ2(Z)

F2(Z)

)
, s.t. Gi(Z) ≤ 0 (i = 1, 2), where, Z =

[
z1 z2
z2 z3

]
∈ S2+,
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Θ1(Z) = z1 − z2 + 1, Θ2(Z) = −z12
(
sin 1

z1
− 1

)
, F1(Z) = ez1 , F2(Z) = e−z2 , G1(Z) =

z1(1 + z1), G2(Z) = z2. The feasible set of (NP) is F =

{
Z =

[
z1 z2
z2 z3

]
: z1 = 0, z2 ≤ 0

}
.

The Mond-Weir type dual (NPD) corresponding to the problem (NP) is given by

(NPD) Maximize

(
Θ1(Z)

F1(Z)
,
Θ1(Z)

F1(Z)

)
,

subject to 0 ∈
2∑

i=1

ρi(∂
∗Θi(U)− σi∂

∗Fi(U)) +
2∑

j=1

γj∂
∗Gj(U), γjGj(U) ≥ 0 (j = 1, 2),

where ρi > 0, γi ≥ 0 and σi =
Θi(U)
Fi(U) , (i = 1, 2). It can be veri�ed that (U, ρ1, ρ2, γ1, γ2) =

(0, 1, 1, 1, 1) is feasible solution for (NPD), and ∂∗Θ1(0) =

{[
1 −1

2−1
2 0

]}
, ∂∗Θ2(0) ={[

−1 0
0 0

]}
∂∗F1(0) =

{[
1 0
0 0

]}
, ∂∗F2(0) =

{[
0 −1

2−1
2 0

]}
, ∂∗G1(0) =

{[
1 0
0 0

]}
,

∂∗G2(0) =

{[
0 1

2
1
2 0

]}
. Moreover, for v1 = Θ1(U)

F1(U) = 1, v2 = Θ1(U)
F1(U) = 0, functions Θ1 − v1F1

and Θ2−v2F2 are ∂
∗-pseudoconvex at U = 0, and γ1G1 and γ2G2 are ∂

∗-quasiconvex at U =
0. We can verify that, for the feasible solution Z ∈ F and (U, ρ1, ρ2, γ1, γ2) = (0, 1, 1, 1, 1),

the following holds
(

Θ1(Z)
F1(Z) ,

Θ2(Z)
F2(Z)

)
̸<

(
Θ1(U)
F1(U) ,

Θ2(U)
F2(U)

)
.

5. Conclusions and Future Research Directions

This paper is devoted to the study of a class of (NSMFP). We have established 
the KKT-type necessary and su�cient optimality conditions for (NSMFP) under the ∂∗-
pseudoconvexity and ∂∗-quasiconvexity assumptions. The necessary and su�cient optimal-
ity conditions deduced in this paper extend the necessary as well as su�cient optimality 
conditions derived by Gadhi [14], from the vector (Rn) to the symmetric positive semidef-
inite matrix (Sn+). Moreover, Mond-Weir type dual model (NSMFD) related to (NSMFP) 
has been formulated. Further, we have established the weak, strong, and strict converse 
duality results. The duality results deduced in this paper are generalizations of the cor-
responding results derived by Suneja and Kohli [37] from the setting of Euclidean spaces 
to the framework of the space of all symmetric positive semide�nite matrices. Non-trivial 
examples have been presented to demonstrate the signi�cance of the results derived in this 
paper.

For future work, it would be interesting to explore optimality conditions and duality 
for (NSMFP) with mixed constraints. Moreover, we intend to study constraint quali�cations 
and optimality conditions for semi-in�nite semide�nite programming problems.
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