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OPTIMALITY AND DUALITY FOR NONSMOOTH SEMIDEFINITE
MULTIOBJECTIVE FRACTIONAL PROGRAMMING PROBLEMS
USING CONVEXIFICATORS

B.B. Upadhyay', Shubham Kumar Singh®

This paper deals with a class of nonsmooth semidefinite multiobjective frac-
tional programming problems (in short, (NSMFP)). Using the properties of convezifica-
tors, we deduce Fritz John type necessary criteria of optimality for the considered prob-
lem (NSMFP). Further, we employ generalized Cottle constraint qualification to derive
Karush-Kuhn-Tucker (in short, KKT) type necessary optimality criteria for (NSMFP).
We establish sufficient optimality conditions for (NSMFP) using the assumptions of
0*-pseudoconvezity and 0*-quasiconvezity on the components of the objective function
and constraints involved. Moreover, related to (NSMFP), we formulate the Mond- Weir
type dual model (in short, (NSMFD)). Furthermore, we establish several duality results
(namely, weak, strong, and strict converse duality) relating (NSMFP) and (NSMFD)
under 0*-pseudoconver and 0*-quasiconver assumptions. To demonsirate the results
derived in this paper, we provide several nontrivial examples. To the best of our knowl-
edge, optimality criteria and duality results for (NSMFP) have not been ezplored before
using convezificators.

Keywords: semidefinite programming, multiobjective optimization, fractional program-
ming problem, convexificators.
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1. Introduction

Multiobjective nonlinear semidefinite programming problem may be considered as a
generalization of multiobjective nonlinear optimization problem, where the decision variable
is considered to be a symmetric positive semidefinite matrix rather than a vector in Eu-
clidean space. Semidefinite programming (in short, (SDP)) has numerous applications in
various modern research fields, including control theory [5], combinatorial optimization [16],
and eigenvalue optimization [22]. Shapiro [34] derived necessary and sufficient optimality
criteria for nonlinear (SDP) problems under convexity assumptions. Forsgren [13] derived
similar results for nonlinear semidefinite programming problems, relaxing the assumption of
convexity. moreover, Sun et al. [35] and Sun [36] developed some algorithms to solve (SDP)
problems. Yamashita and Yabe [41] introduced some numerical methods to solve (SDP)
problems and investigated their algorithmic implications.

Nonsmoothness is a common occurrence in many real-world problems, and as such,
several concepts associated with nonsmoothness have been developed and studied exten-
sively, see, for instance, [7, 20], and references cited therein. In the field of optimization, to
deal with the nonsmooth nature of mathematical programming problems, concepts of gen-
eralized derivatives and subdifferentials have been developed and studied extensively. The
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concept of convexificators was introduced by Demyanov [8]. Jeyakumar and Luc [19] intro-
duced a more sophisticated and novel version of convexificators, which is a closed set but can
be nonconvex and unbounded. Dutta and Chandra [10] used the term convexifactors instead
of convexificators. Further, Dutta and Chandra [11] introduced 9*-pseudoconvex functions
by employing the idea of convexificators. Golestani and Nobakhtian [17] derived neces-
sary and sufficient optimality criteria for (SDP) problems by employing Abadie’s constraint
qualification and the notion of convexificator. Lai et al. [21] established necessary and suf-
ficient optimality criteria for nonlinear semidefinite multiobjective programming problems
with vanishing constraints using convexificators. Recently, optimality criteria and duality
for (SDP) in terms of convexificators have been explored by Mishra et al. [30]. Further,
convexificators have been used to extend various results in nonsmooth analysis, see, for
instance, [9, 19], and references cited therein.

Fractional programming is a branch of optimization that deals with problems where
the objective functions are expressed as ratios of two functions. Fractional programming
problems are a significant class of such problems, and they have applications in various fields,
including information theory [24], and engineering design [38]. Bector [4] and Schaible [33]
have studied duality in fractional programming. Chandra [6], Egudo [12] and Weir [40]
explored several dual models for multiobjective fractional programming problems involving
generalized convex functions. For further details and updated survey on fractional program-
ming, we refer the reader to [1, 2, 3, 15, 23, 26, 29, 31, 32|, and the references cited therein.
Gadhi [14] has established necessary as well as sufficient optimality criteria for multiobjective
fractional programming problems in terms of convexificators. Recently, Suneja and Kohli
[37] have studied duality for multiobjective fractional programming using convexificators.

Motivated by [14, 17, 21, 27, 37], we consider a class of (NSMFP) and establish
necessary and sufficient optimality criteria for the considered problem employing the notions
of 9*-pseudoconvexity and 0*-quasiconvexity on the components of the objective function
and the constraints involved. Moreover, we formulate Mond-Weir type dual problem and
derive weak, strong, and strict converse duality results, that relate the primal and dual
problem under generalized convexity assumptions. The results presented in this paper are
an extension and generalization of various existing results in the literature, from Euclidean
space to the space of symmetric positive semidefinite matrices.

The organization of the article is in the following manner. In Sect. 2, we recall
the basic definitions and preliminaries related to semidefinite matrices and convexificators,
that will be used in the sequel. In Sect. 3, we establish necessary and sufficient optimality
conditions of the considered problem for a feasible solution to be weakly efficient under the
assumptions of 0*-pseudoconvexity and 0*-quasiconvexity. In Sect. 4, we present a formula-
tion of the Mond-Weir type dual problem related to the primal problem and establish weak,
strong, and strict converse duality results relating primal and dual problems. Conclusions
are drawn and some future research directions are discussed in Sect. 5.

2. Definitions and Preliminaries

Throughout the article, we denote n-dimensional Euclidean space by R™. Let v,w €
R™ (n > 2). We use the following convention for equalities and inequalities:
v=weuv=w;, forallj=1,...,n v<we v <w;, foralj=1,...,n
v<w<e v <w;, forall j=1,...,n, and v, < w, for some r € {1,...,n}.
The set containing every n X n symmetric matrix is signified by the symbol S"”. Moreover,

symbols S and S}, denote the sets of all symmetric positive semidefinite matrices and
symmetric positive definite matrices, respectively. For M € S™, we adopt the following
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notation:

M =0 <= M is positive semi-definite, M =0 <= M is positive definite.

For M, N € S™, the inner product of M and N is defined by (M, N) := M ¢ N = tr(MN).
Corresponding to the inner product which is defined above, we deduce the following Frobe-

1/2
nius norm, given by || M ||p= tr(MM)Y/? = (szzl \mij|2> . Let D be a nonempty
subset of S™, then by cl D, coD, and cone D, we denote the closure of D, convex hull of D,
and the convex cone (including the origin) generated by D, respectively.
The negative polar cone of D is defined as D~ = {V e S"|{(V, M) <0, VM € D}. The
strictly negative polar cone of D is defined as D* := {V € S"|(V, M) < 0, VM € D}. The

contingent cone T'(D, M), is defined as
T(D,M):={U € S*38, | 0 and U,, — U, such that M + 3,U,, € D, Vn}.
The following definitions are from [11] and [17].

Definition 2.1. For any function © : S* — RU{oc}, we define dom(0) = {Z € S"|0(Z) #
oo}. Let Z € dom(©). Then upper and lower Dini derivatives of function © at Z in the
direction V € S™ are defined in the following manner
0(Z+tV)-0(Z
01 (Z;V) := limsup (Z+ t) (2)
10

O(Z +tV) - 0(2)
g .

, ©7(Z;V) :=liminf
£10

Definition 2.2. Let us consider a function © : S* — RU{occ}. We say that © has an upper
convezificator 0*0O(Z) C S™ at the point Z, if 9*©(Z) is closed and for every V € S”, we
have ©~(Z;V) < sup (&, V).

£€9*0(2)
Definition 2.3. Let © : S* — R U {oc0} be any function. We say that © has a lower
convezificator 0,0(Z) C S™ at Z, if 0,0(Z) is closed and for each V € S™, we have
O (Z:V) > inf (£V),

£€0.06(2)

Definition 2.4. The function © : S — R U {co} is said to have a convezificator 0*©(Z)
at Z, if it is both an upper and lower convexificator of © at Z.

Definition 2.5. The function © : S* — RU{oo} is said to have upper reqular convezificator
0*O(Z) C S™ at Z, if 9*O(Z) is an upper convexificator of © at Z and for each V € S", we
have O1T(Z; V)= sup (¢ V).

£€9+0(2)

Definition 2.6. The function © : S* — RU{oo} is said to have lower regular convezificator
0.0(Z) C S™ at Z, if 9,0(Z) is an lower convexificator of © at Z and for each V € S", we
have ©1T(Z; V)= inf (V).

£€0*0(2)
Proposition 2.1. Let 0*©(Z) be a convexificator of © : S* — R at Z. Then, for every
p € R, p0*O(Z) is a convexificator of pO at Z.

We recall the following results and definitions from [19].

Proposition 2.2. Suppose that the functions ©,F : S* — R admit upper convexificators
0*0(Z) and 0*F(Z) at Z € S™, respectively. Further, assume that one of the convexificators
is upper regular at Z. Then 0*©(Z) + 0*F(Z) is an upper convexificator of © + F at Z.

Proposition 2.3. Let B be a Banach space and © = (04,...,0,,): B - R", F:R*" - R
are continuous functions. Moreover, we assume that for each i = 1,2,...,n, ©; admits

a bounded convexificator 0*©; (Z) and F admits a bounded convexificator 9*F (0 (Z)) at
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© (Z). If for each i = 1,...,n, 9*©; is upper semicontinuous at Z and 9*F is upper semi-
continuous at © (Z), then the set 9*(F 00) (Z) :=9*F(O (£))(9"01 (Z) ,...,0"0, (2)),
is a convexificator of ¥ 0 © at Z.

Definition 2.7. Let O : S — RU{oo} be any function. Assume that for every Z € dom(©)
and admits a convexificator 0*0(Z). Then, © is said to be 0*-pseudoconver at Z if and
only if for each V € ", O(V) < ©(Z) = £,V —Z) <0, Y€ € 0*O(2).

Definition 2.8. Let © : S” — RU{oo} be any function. Assume that for every Z € dom(O)
and admits a convexificator 0*©(Z) at Z. Then, © is said to be strictly 0*-pseudoconvez at
Z ifand only if for all V(#£ Z) € S", (V) < O(Z) = (£,V —Z) <0, YV € 0*O(Z).

Definition 2.9. Let O : S — RU{oo} be any function. Assume that for every Z € dom(©)
and admits a convexificator 9*©(Z) at Z. Then, © is said to be 9*-quasiconvez at Z if and
onlyifforall V € S", ©(V) <0(Z) = (£,V —-2) <0, V§ € 9*O(2).

The following definition and results are from [14], which will be used in the sequel.
Definition 2.10. Let S be a convex cone with non-empty interior of a Banach space B.
Then, Ag : B — R is defined as Ag(z) = d(z,5) — d(z,B \ S), where d(z,S) denotes the
distance between z and S. It can be easily verified that

d(z,S), ifze B\ S .
A = here d(z,S) = inf —z | S}.
s(2) {—d(z,B\S), fres where d(z,S) = inf{|| u—z ||: u € S}

Proposition 2.4. Let S C B be a closed convex cone with non-empty interior of a Banach
space B. Then the function Ag is convex, positively homogeneous and Lipschitz. Moreover,
it is negative on the interior of S, null on the boundary of S and positive on the exterior of
S. That is Ag(z) > 0if z € B\ S, Ag(z) <0if z € Int(S) and Ag(z) =0if z € bd(95).

Proposition 2.5. Let S C B be a nonempty closed convex cone of Banach space B with
nonempty interior. Then for all z € B, 0 € 0Ag(2).

Proposition 2.6. Let © : S” — R U {oo} be continuous and Z € dom(©). Suppose

that 8*© (Z) is closed and that 0*© is upper semicontinuous at Z. Then, 9*f (Z) is a
convexificator of © at Z.

Corollary 2.1. Let © : B — R" be any continuous function and for every i = 1,2,...,n,
the function ©; admits a upper semicontinuous and bounded convexificator 9*0; (Z) at Z.

Let us define P(Z) = maz{©;(2Z) :i=1,...,n} and A (Z) = {i: 0, (Z) =P (Z)}, Then,
c0{0*0; (Z) :i € A(Z)} is a convexificator of P at Z.

3. Optimality conditions for (NSMFP)

In this section, we formulate a nonsmooth semidefinite multiobjective fractional pro-
gramming problem (NSMFP) and establish Fritz John type necessary optimality condition
for (NSMFP). Moreover, we establish KKT type necessary and sufficient optimality condi-
tion. We consider the following multiobjective fractional programming problem:

01(2) @k(Z)>
F(2) T F(2))]
subject to §;(Z) <0, jed:={1,2,...,m},

(NSMFP) Minimize X(Z) = (

where, ©; : S" - R, F, :S" - R, i €J:={1,2,...,k} and §; : S = R, j € J are
continuous functions. We define the set of all feasible solutions of (NSMFP) as .7 := {Z €
S™:G;(Z) <0, j€J}. We assume that for each Z € % and for every i € J, ©,(Z) > 0 and
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Now, we provide the definition of weak efficient and local weak efficient solution of (NSMFP),
which is a generalization of the definitions given in Miettinen [25] and Suneja and Kohli [37].

Definition 3.1. Let Z € . be any arbitrary feasible solution of (NSMFP). Then, Z is
known as a weak efficient solution of (NSMFP), if there does not exist any Z € .%, such
that XK; (2) < K; (Z), Vie .

Definition 3.2. Let Z € .# be any arbitrary feasible solution of (NSMFP). Then, Z € &
is said to be a local weak efficient solution of (NSMFP), if there exists a neighbourhood N
of Z, such that for any Z e NN.Z, X, (Z) < K; ( ) Vi € J cannot hold.

In the following theorem, we establish Fritz John type necessary optimality criteria
for (NSMFP).

Theorem 3.1. Let Z be a local weak efficient solution of (NSMFP). Further, suppose that
0;:S" =R, J;: S" - Rand §; : S” — R are continuous and admit bounded convexificator
0*0; (7), o*F; (7) and 0*§; (7) at Z, respectively. Moreover, we assume that for all i € J
and j € J, 90, (Z), 9*F; (Z) and 0*G; (Z) are upper semicontinuous at Z. Then, there
exists multipliers (87,...,5;) € RE and (uf,...,us,) € R, such that

k
0ed B (070 (2) - %: (2) 0 +Zu*a* (1)
=1
159 (Z) =0, j €4 (2)
p;>0and §; (Z) <0, jed. (3)

Proof. From the given hypotheses Z € % is a local weak efficient solution of (NSMFP).
Therefore, there exists a neighbourhood N of Z, such that K(Z)—X (Z) € RF\—IntRk | VZ €
NN .Z. Let us consider the following auxiliary problem (P1):

(P1) Minimize (01(2) — X1 (Z) F1(Z),...,0x(2) — Ky (2) Fu(2)),

subject to Z € Z, where K; (Z) =

We show that Z is also a local weak efficient solution of (P1). On contrary, we assume that
there exists Z; € NN.Z, such that (0; (Z1) — X; (Z) Fi(Z1)) — (0: (2) — K (2) F: (2)) <
0. Since ©; (Z)—K; (Z) F; (Z) =0, we have, %Egi; igz)) < 0, which contradicts the fact
that Z is a local weak efficient solution of (NSMFP). Now we formulate another auxiliary
problem (P2) and show that Z is a local weak efficient solution of (P2).

(P2) Minimize A 1,y i (¢1(2) — 1 (Z) ... 0(2) —vx (Z)).
subject to Z € ., where ¢; := 0; — X; (Z) F; for all i € J.

Since Z is a local weak efficient solution of (P}), there exists a nelghbourhood N of Z,
such that (Y1(2) —¢1 (Z),...,vk(Z) =i (Z)) € R\ —Int RE, forall Z € NN .Z.
Hence, by Proposition 2.4, we have A_;,, RY (W1(2) — v (2) 7...,z/Jk(Z) -, (Z2)) = 0.
Since A_r,; pr (0) = 0, it follows that Z is a local weak efficient solution of (P2). Now

we consider one more auxiliary problem (P3) and show that an efficient solution of (P2) is
also an efficient solution of

(P3) Minimize h(Z) = maz (So(Z) — S0 (Z) ,51(2), ..., 5m(Z))
subject to Z € S™,
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where Gp = A_;,; RE (wl — (7) e U — Yk (7)) and Gy (7) = 0. From Proposition
4.1 in [19], we have 0 € co(9*h (Z)). Let us consider the following set J (Z) := {j € J :
9, (7) = 0}. Using Corollary 2.1, there exist ug, ..., ttm > 0, such that po + Zjeg(?) wi =
1, and 0 € ppd*Yo (7) + Zjea(f) ;07 G (7) From Proposition 2.3, there exists 7% €
O A4 RY (0), such that 0 € pg7*0 (0*¢1 (Z) ,...,0" ¢k (2)) +Zj€3(7) 1;0*S; (Z) . Since
A rr 18 a convex Lipschitz function, we get a convex subdifferential OA_ 14 RE (0) as a
convexificator of A_j,,, rt at 0. Hence, we have At RY (1) —A_1 RY (0) > (7%, 1), VT €
R*. Since A_;,., R (0) =0, we have (7*,7) < A_;,; R (1) = —d(r,RF\—Int R%) <0, Vr €
—R’i. Consequently, 7* € R’j. From Proposition 2.5, we deduce that 7* € Ri \ {0}. Setting
p; =0for j & d(Z), we get
k m m
0€e qupi (8*91' (7) - X; (7) a*fﬂ» (7)) + Zuja*Sj (7) , Mo+ Z,uj =1.
i=1 i=1 i=1
For (p1,...,pr) € Ri\{()} and (o, pi1, - - - m) € RT'. Weset (87, ..., 5;) == po(p1,-- -, pr),

which completes the proof. O
Now we recall the Generalized Cottle constraint qualification from Mishra [30].

Definition 3.3. Let Z € #. Then the generalized Cottle constraint qualification (in short,
(GCCQ)) is satisfied at Z if

( | co 076, (z))sﬂ ( U co07s; (z))smgz #0, Vpe?d,
€5 i€d(Z)
where I5. ;= {1,... .k} \ {p}, and J (Z) = {j € 4|, (Z) = 0}.

In the following theorem, we establish that under (GCCQ) assumption 8* # 0, which
is, in fact, KKT type necessary optimality conditions.

Theorem 3.2. Let us assume that Z € .% is a weak efficient solution of (NSMFP) and all
the assumptions of Theorem 3.1 hold. Then, there exists multipliers §* € Rﬁ and p* € RT,
(B*,u*) # 0, such that (1),(2) and (3) hold. Moreover, if (GCCQ) satisfies at Z, then
g #0.

Proof. Assuming, 81 = 0 without loss of generality. Then, from (1) there exists & €
8*@i (7) —X; (7) 8*?1 (7) , 1€ jé(’ Cj c 8*91 (7) s j e J* (7) s such that

dYoga+ Y, =0 (4)

€Il i€d3*(Z)

As (GCCQ) satisfies at Z, we get a V € S, such that < Z Bre + Z #5Gjs V> <0,
z‘e%{ jeg*(f)
which is contradiction to (4). Thus 87 > 0. Proceeding with similar arguments for each
i € 3, we can conclude that 5* # 0. a
To establish sufficient optimality criteria, we shall require few additional assumptions
on the objective function and constraints.

Theorem 3.3. Let Z € . and
(1) The functions 1; as defined in Theorem 3.1 are 9*-pseudoconvex for every i € J,
(2) The functions p;G; are 0*-quasiconvex for all j € g,
(3) The assumptions of Theorem 3.1 hold at Z.

Then, Z is a weakly efficient solution of (NSMFP).
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Proof. On the contrary, we assume that Z is not a weakly efficient solution of (NSMFP).
Following the arguments similar to those in Theorem 3.1, Z is not a weakly efficient solution
of (P1). Then, there exists Z; € .7, such that (¢1(Z1) —¢1 (Z),...,0i(Z1) — i (2)) €
—IntRE, G;(Z) <0, Vjed. Eonsequently, for every i € J, we have ;(Z1) — ¢, (Z) <0
Since 1); is 0*-pseudoconvex at Z, therefore we get (&, 71 — Z) <0, V& € 9%y, (Z).
p — S—
Since p € RY \ {0}, we have <Z P&, 7y — Z> <0, V& € 0%y, (Z) . (5)
i=1
On the other hand, from (1), there exits £ € 9™ (7) and (7 € 0°G; (7), such that
Doy Bi€* + 300 s = 0. Now, from (2) and (3), we get 1;5;(Z1) < ;95 (Z). By em-
ploying the 9*-quasiconvexity of 11;G;, j € d, we get (¢}, Z1 — Z) <0, V¢ € 0*(1;9;) (Z)
and from Proposition 2.1, it implies that (u;(}, Z1 — Z) <0, V(€ 0"G; (7) ,J € 3.

Since p; > 0, we have <Z ;5 Z1 — Z> <0, V¢ €9°G; (2). (6)

Jj=1

Adding (5) and (6), we get <szf + Z“JCJ , 2y — > < 0, which is a contradiction.
i=1 =

O

Remark 3.1. Theorem 3.1 and Theorem 3.3 generalize and extend Theorem 6 and The-
orem 7, respectively, of Gadhi [14], from Euclidean space to space of symmetric positive
semidefinite matrices.

The following example illustrates the significance of Theorem 3.1 and Theorem 3.3.

Example 3.1. Let us consider the following problem:

(P) min K(Z) = (211((5)) 25((2 2;(2) st Gi(Z2) <0 (i=1,2), Z= {2 zﬂ es?,

O1(Z) =21 —22+1, 02(2) = —2? (52”711 - 1,) , 03(2) =21 — 2 + 1,

3:'1(Z) = —2z9 + 1, 972(2) = e *2, ?3(2) = e*2, 91(Z) = 2:1(21 — 1), 92<Z) = 29.
We denote the feasible set of the problem (P) as % = {Z = 21 22] :0< 21 <1, 25 < O} .
2 23

0 8} Then, K, (Z) = 1K, (Z) = 0, ©4(2) — %, (Z) 51(Z) =

Zy. Thus, Z is a solution of the problem min{©,(2) — X, (Z2) F1(Z) : Z € F}. Hence,
Z is a solution of the problem min { 21523 ZeF } . Therefore, Z is a weak efficient so-
1 —1

lution of Problem (P;). It can be verified that 9*©,(0) = (2)} , 0702(0) =

([ sy rom={s 3))-rao- {13 )-ro0- {3 1))
oo ={[) ) oo ={[3 1} rsio-{[} |

(GCCQ) is satisfied at Z. Moreover, for the multipliers 81 =1, f2 =1, 83 =1, and py =
1, po = 2, all the hypothesis of Theorem 3.2 are satisfied. It is worthwhile to note that Z
is a local weak efficient solution of the problem (P).

Now, we consider Z = {

. We can verify that
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4. Duality

In this section, we formulate a Mond-Weir type dual model (NSMFD) related to
(NSMFP). Moreover we derive weak, strong and strict converse duality results relating
(NSMFD) and (NSMFP). The Mond-Weir type dual problem (NSMFD) is given as follows:

©1(U) ©:(U) @k(U)>
FU) F(U) T FR(U) )

Maximize X(U) = (

k m
subject to 0 € Zp,(é*@Z(U) — aza*Sﬂ(U)) + Zvja*Sj(U), ’ngj(U) >0, Vj €d,
1=1 =1

where p € R¥ \ {0}, v € R7, 0; = (K);(U) = 2’553, Vi € J. The set containing all feasible

solutions of the problem (NSMFD) is denoted by .#p and defined as .#p = {(U, p,v,0) €
S; XR{C’_ XRT xR*: 0 c Zle pl(c?*@l(U)fJﬁ*g(U))+Z;i1 ’yja*Sj(U), ’Y]SJ(U) >0, V] €
d}.

In the following theorem, we establish the weak duality result for (NSMFD).

Theorem 4.1. Let Z € F and (U, p,v,0) € Fp. Further, for every i € J, we assume
that 9*0;(U) is an upper regular convexificator of ©; at U and 9*F;(U) is a lower regular
convexificator of F; at U. If for ¢ € J, functions ©; — 0;F; are 9*-pseudoconvex at U and for
j € J, functions 7,9, are 0*-quasiconvex at U, then K(Z) < K(U) can not hold.

Proof. Using the assumptions of the given theorem and Propositions 2.1 and 2.2, it follows
that 0*0;(U) — 0,0*F;(U) is a convexificator of ©; — 0;F; at U, for every i € J. Now,
let us assume to the contrary that X(Z) < K(U). Then, 0,(Z) — 0:Fi(Z) < 0, Vi €
J, where o; = X;(U) = ei(U), Vi € J. Since (U, p,v,0) € Fp, therefore, there exists

F:(0)
gi S 8*®Z(U) — crﬁ*&ﬂ(U), Cj S 8*9]([]), such that
k m
> i+ ¢ =0. (7)
i=1 j=1
Since Z € # and (U, p,v,0) € ¥p, it follows that
7;95(Z) <0 <7;9;(U), Vj € 3. (9)

Since O, — 0;F; is 0*-pseudoconvex at U, from (8), we get (§;,Z2 —U) < 0, V& € 9*0,;(U) —
O’ia*fﬂ(U), Vi e J.
k
Since p e Ri \ {0}, <Z pifi, Z — U> <0, V& € 8*91([]) — O’ia*gl‘(U), Vi € J. (10)
i=1
Again using 9*-quasiconvexity of v;9; and (9), we have ((}, Z — U) < 0,V(; € 0*(v;9;)(U),
Vj € J. From Proposition 2.1, it follows that (v;(;,Z —U) <0, V¢; € 0*G;(U), Vj € 4.

Since y; > 0, for all j € J, hence <Z'y](j,Z — U> <0, V¢; € 0%G,(U), Vjed. (11)

Jj=1

k m

Adding (10) and (11) gives us <Z pi&i + Z'ngj, Z — U> < 0, which contradicts (7).
i=1 j=1

O
In the following theorem, we derive a strong duality result for (NSMFD).
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Theorem 4.2. Let Z* be a weak efficient solution of (NSMFP). Moreover, we assume that
all the assumptions of Theorem 3.2 are satisfied. Then, there exists (p*,v*,0*) € RF x R™ x
R*, such that (Z*,p*,~v*,0*) € Fp. If for every Z € .F and for every (U, p,,0) € Fp,
Theorem 4.1 hold, then (Z*, p*,v*,0*) is a weak efficient solution of (NSMFD).

Proof. Since Z* is a weak efficient solution of (NSMFP) and all the hypotheses of Theorem
3.2 are satisfied, there exist vectors p* € RX \ {0} and v* € R, such that (1), (2), and (3)
hold. That is,

0e sz (0°0i(Z27) — 02" Fi(Z7) + Y 7078,(Z"),
j=1

0i(Z7)

Fi(2*)’

Hence, (Z*,p*,~v*,0*) € #p. On contrary, we assume that (Z*, p*,v*,0*) is not a weak

efficient solution of (NSMFD). Then, there exists (U, p,v,0) € Fp, such that K(Z*) <

K(U), which is a contradiction to Theorem 4.1. O

7;9;(Z7)=0,Vj€d, v; 20, 5;(Z27)<0,Vjed, Ki(Z")= Vil

Remark 4.1. Theorem 4.1 and Theorem 4.2 generalize and extend Theorem 4.1 and The-
orem 4.2, respectively, of Suneja and Kohli [37] from Euclidean space to space of symmetric
semidefinite matrices.

In the following theorem, we derive strict converse duality for the problem (NSMFD).

Theorem 4.3. Let Z € .Z and (U,p,7,5) € Fp, such that ¢ = X (Z). Further, we
assume that >0, p;(©; — 0;F;) is 9*-quasiconvex and for every j € J, 7;G; is strictly
d*-pseudoconvex and ©;(U) — 0;F,;(U) >0, i € J. Then Z = U.
Proof. Let Z # U. Since (U, p,v,7) € Zp, we have

k m

0e Zpl(a*Gl(U) — E,@*fﬂ(U)) + Z’}/ja*gj(U), ’Yij(U) >0, Vj cd. (12)

— =
Since v; > 0 and §G; (Z) < 0. Therefore, v,;G; (Z) < 7;G;(U). Since v;9; is assumed to be
strictly 9*-pseudoconvex at U, it follows that <Cj’,7 U> <0, V¢ €0*(v;9;)(U),Vj€d.
Z-U)

Now, using Proposition 2.1, it implies that (7;(;, <0, V¢ € 0*9;(U), V¥j € J. Since

v 20, j €, it follows that
<Z%@»Z—U> <0, V¢ € 0°G;(U), Vj €. (13)
j=1
From (12) and (13), we get <Zf=1 pi&i, Z — U> >0, V¢ € 0°0,(U) — 0,0°F;(U), Vi € J.
Then by the 9*-quasiconvexity of Y 7_, p;(0; — 0;F;), we have

Since © (Z) = 7, the left hand side of (14) becomes zero. Therefore, Y7 | p;(0;(U) —
5;;(U)) < 0, which is a contradiction to ©;(U) — ¢;F;(U) > 0. Hence, Z = U. O

We present the following example to demonstrate the importance of weak and strong
duality results.

Example 4.1. Let us consider the following problem

01(2) ©2(2) 4 . I B 2
7(2)’ 5’“2(Z)> , s.t.Gi(Z) <0 (i=1,2), where, Z = LZ ZJ €S2,

(NP) Minimize (
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O1(Z) = 21 — 2 + 1, O5(Z) = —2,2 (sin L 1) L TZ) = e, Fo(Z) = e 2, G1(Z) =

21

Z9 Z3
The Mond-Weir type dual (NPD) corresponding to the problem (NP) is given by
01(2) 91(Z)>
F1(2)" F1(2) )’

z1(1+ 21), G2(Z) = z2. The feasible set of (NP) is & = {Z = {Zl 22} 121 =0, 22 < O}.

(NPD) Maximize <

2 2
subject to 0 € Y p;(070;(U) — 0;0*Fi(U)) + Y _7;0*9;(U), 7;9;(U) >0 (j = 1,2),

i=1 j=1
where p; > 0, v; > 0 and o; = %, (i =1,2). It can be verified that (U, p1, p2,71,72) =
=1
(0,1,1,1,1) is feasible solution for (NPD), and 9*©,(0) = {{_11 8}}, 0*05(0) =
2
—1 0] [t o0 . _f[o . [t o
o ajono=ly o} omo= {3 5} rmo= {3}

(0
% 0:(U) -1 _ ©1(U)
0

0%92(0) = {[(1) - Moreover, for v = 7 , V2 = 5y = 0, functions ©1 — v, F;
2

and O3 — v F5 are 0*-pseudoconvex at U = 0, and v1G; and 2G5 are 9*-quasiconvex at U =
0. We can verify that, for the feasible solution Z € % and (U, p1, p2,71,72) = (0,1,1,1,1),

the following holds (91(2) @2<Z>) £ (@1“” WU)).

F1(2) F2(2) F1(U) F2(U)
5. Conclusions and Future Research Directions

This paper is devoted to the study of a class of (NSMFP). We have established
the KKT-type necessary and sufficient optimality conditions for (NSMFP) under the 0*-
pseudoconvexity and 0*-quasiconvexity assumptions. The necessary and sufficient optimal-
ity conditions deduced in this paper extend the necessary as well as sufficient optimality

conditions derived by Gadhi [14], from the vector (R™) to the symmetric positive semidef-

inite matrix (S’}). Moreover, Mond-Weir type dual model (NSMFD) related to (NSMFP)
has been formulated. Further, we have established the weak, strong, and strict converse

duality results. The duality results deduced in this paper are generalizations of the cor-
responding results derived by Suneja and Kohli [37] from the setting of Euclidean spaces
to the framework of the space of all symmetric positive semidefinite matrices. Non-trivial
g)é%rélrples have been presented to demonstrate the significance of the results derived in this

For future work, it would be interesting to explore optimality conditions and duality
for (NSMFP) with mixed constraints. Moreover, we intend to study constraint qualifications
and optimality conditions for semi-infinite semidefinite programming problems.
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