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TWO SIMPLE FORMULAE FOR HALL-GEOMETRY
FACTOR OF HALL-PLATES WITH 90° SYMMETRY

Udo AUSSERLECHNER*

Symmetrical Hall-plates with equal input and output resistance are
considered. The Hall-geometry factor accounts for the loss of output voltage due to
finite size of contacts. In the limit of low magnetic field it depends only on the
effective number of squares (i.e. the ratio of internal resistance over sheet
resistance). For the first time two simple formulae are given which express the Hall-
geometry factor as a function of effective number of squares. These approximations
are accurate up to 2% and 0.02%, respectively, for arbitrary contact size. They also
suggest a symmetry property not mentioned in the literature. The results hold for all
shapes of Hall-plates with four electrodes which are invariant to rotations of 90°.
Thus, they can be used for the optimization of spinning current Hall probes by
electronic circuit design engineers.
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1. Introduction

Hall plates are widely used in today’s industry to measure linear or
rotational position or electric current with galvanic isolation. There the circuit
design engineer needs to optimize the signal over noise ratio SNR at low magnetic
field while keeping the power drain low. This calls for Hall-effect devices with
medium sized contacts, where the influence of the contacts cannot be neglected as
assumed in most prior approaches [1-3]. However, for medium sized input and
output contacts there are no closed analytical formulae for the Hall-geometry
factor, which describes the loss in signal due to short-circuiting effects of the
electrodes. There are indeed numerical solutions, yet they are not ready to use in
daily practice [4-6]. Besides, modern Hall plates have a 90° symmetry, where
input and output contacts are periodically swapped to implement the spinning
current scheme, which drastically reduces the offset (i.e. the zero point error) [7,
8]. (In industrial practice this low offset is still one of the main advantages over
magneto-resistors.) No one seems to have used this symmetry so far to provide
simple electrical design formulae.

In contrast to a physical layout engineer a circuit design engineer is
interested in the Hall-geometry factor versus internal resistance and not versus
contact size or geometric shape. As known from conformal mapping theory there
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is a unique relation between the effective number of squares of internal resistance
and the Hall-geometry factor in the limit of low magnetic field. This applies for
all kinds of geometry such as disks, squares, rectangles, crosses, octagons, clover
leaves a.s.0., as long as a conformal mapping exists which transforms one into the
other. In other words, if e.g. an octagonal Hall plate and a disk shaped Hall plate
have the same number of squares, then they also have the same Hall-geometry
factor, the same thermal noise, and the same magnetic sensitivity. They are
equivalent within the scope of linear electrostatic theory. This led us to the goal of
looking for a simple formula, which expresses the Hall-geometry factor as a
function of effective number of squares. Such a formula has not yet been reported
in literature. However, it would be of significant practical interest, because it is
much simpler to first compute the effective number of squares and then get the
Hall-geometry factor thereof with the simple formula, than to compute the Hall
geometry factor directly. Another benefit is that the effective number of squares
can be measured easily on wafer level by Van-der-Pauw’s method without need to
apply a magnetic field.

2. Definitions

The output voltage Vo« of Hall-plates depends on input current £, or
voltage Vi, and perpendicular magnetic flux density B, .

Vow = B.S, iy =B.S,V;, 1)

S and Sy are current and voltage related magnetic sensitivity, respectively. With
the input resistance Ri, = Vin / Iin it holds

S, =8, R, = Gy |RH|/IH )
with the plate thickness ¢ and the Hall-geometry factor Gy. The Hall coefficient
Ry depends solely on material properties. Due to symmetry the input resistance
Rin equals the output resistance Roy. It is given by

Rin = Rout = ﬂRsh (3)
with the effective number of squares A and the sheet resistance Rs,. Thermal
noise is proportional to the square-root of the internal resistance and low-
frequency noise is cancelled out by the spinning current scheme [9]. Combining

this with the foregoing equations one obtains SNR/I, o< G, A2,
SNR/ VoI, o G, A, and SNR/V,, o« G, 2%, which need to be maximized
depending on whether supply current, power, or voltage is limited [10]. For this
kind of optimization we are interested in the low-field limit of the Hall-geometry
factor only: G'(*O):B“TOGH' The magnetic field is considered to be low if
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1, B, <<1 holds. For Hall-plates with 90° symmetry the field dependence of the
Hall-geometry factor is approximated by [11]

G, ;1—(1—G,§°))arCtan(ﬂ”BL) %)
My B,

3. An approximate fit formula

Let us consider disk shaped Hall-plates with four equal contacts, each one
covering an aperture angle of 24 [4]. First we compute the internal resistance and
then the Hall-geometry factor.

Following the method of [12] we reduce the number of contacts from four to
two: in the absence of magnetic fields the potential distribution is symmetric and
so one needs only consider a quarter of the circular Hall plate. If e.g. 1V is applied
at two diametrically opposite contacts of the original plate, the output contacts
would be at 0.5V. Fig. 1(a) shows the lower right quarter of such a circular Hall
plate. The half of the right output contact between Z3 and Z4 is at 0.5V and the
right half of the ground contact between Z1 and Z2 is at OV. Due to symmetry the
potential along the line Z4-Z5 is also at 0.5V and so we can place a contact there
and connect it to the output contact without changing potential and current
distributions. Due to symmetry half of the current through the original device
flows through Z1-Z2 and also between Z3-Z5. Hence, the total resistance of the
plate is the ratio of voltage between Z1 and Z5 divided by the current through Z1-
Z2. Next we map the interior of this quarter disk in fig. 1(a) to the interior of a
rectangle in fig. 1(d) such that one edge corresponds to Z1-Z2 and the opposite
edge corresponds to Z3-Z5. The ratio of the lengths of these edges |Q.Qs|/|Q30s|
is the number of squares of both rectangle and circular disk. The first
transformation w = (1-z2)%/(1+z?)?2 maps the interior of the quarter disk in the z-
plane to the upper half-space of the w-plane in fig. 1(b) [13]. Then the contacts lie
on the real axis in the w-plane: the ground contact extends from w = —o0 at W1 to
w = =1/(tand)? at W2 and the output contact extends from w = —(tané)? at W3 to w
=1 at W5. Thereby W1 corresponds to Z1, W2 corresponds to Z2, and so on. By
a subsequent bilinear transformation ¢ = (4+Bw)/(C+Dw) these asymmetric points
in the w-plane are mapped into symmetric position in the #-plane in fig. 1(c), such
thatr=-1/katTl,t=-1atT2,t=1atT3,and = 1/kat TSwith0 <k <1l We
choose B = -1, from which follows D = k, 4 = 1 - 2/sin(26), and C = (sind
tand-cosd /tand)/ (sinG+cosd). For k we get a quadratic equation, from which we
choose the solution with £ < 1
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k = (1-sin(20))/cos(26) (5)
It was verified that the bilinear transformation maps the upper half-space of the w-
plane onto the upper half-space of the zplane. According to [12] the

transformation ¢ = Lt((l—xZXl—kzxz))*mdx maps the upper half space of the ¢

plane onto the interior of the rectangle in the g-plane in fig. 1(d). Obviously the
ratio of the lengths of both edges of this rectangle is equal to its effective number
of squares

4=10,0://10:05| = 2K (k) K (k) (6)
with &(k)=k{i-x2)*) and K(k)zj:(l—zz)fﬂz(l—kztz)ﬂdt is the complete
elliptical integral of the first kind. In the computation of |Q30s| we used the
; ; AN 2y y2 2),2 Y2 (2 _aYY2(q g2 2YV2
identity  K'(k)=[_(1-)*0-0-#)2) Par =] (-1 0-#?) Par

t=0

which is proven by the substitution (1-£?)2 = 1-k%22.
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Fig. 1 (a-d). Sequence of conformal transformations that map the interior of a quarter circle onto
the interior of a rectangle

The Hall-geometry factor for disk shaped Hall-plates with four equal contacts
of medium size can be computed numerically according to [4]. To this end the
relation between A and @ according to (5) and (6) is used. Yet for too small or
too large contacts numerical problems show up. In the limit of small contacts and
small magnetic field one can derive an analytical formula with (27) in [4]



Two simple formulae for Hall-geometry factor of Hall-plates with 90° symmetry 279

G =1-3277 exp(- 74/2) @)

The error of (7) is +0%/-0.32% for 1.83 < A. In the limit of large contacts and
small magnetic field one can derive from [4] (with appreciable effort)
GO =3 2z L L
2" " 3r-7iexp(-7/4) 7—24A(In2)exp(-7z/1)
with an error bound of +1.4%/-0% for A < 0.51.

With the foregoing equations one can obtain numerical data for the Hall-
geometry factor over a wide range of number of squares. A plot of the resulting
curve is given in Fig. 2 in both (a) linear and (b) logarithmic scale. Figure 2(b)
shows Gpx(1-Gy) in order to magnify the curves at small and large A. Numerical
data for 0.4 < A< 5 was obtained from [4]. This curve can be approximated by
the astonishingly simple fit formula

G = 2/ JA + R[2+4 9)

Equation (9) is accurate for large and medium sized contacts, yet for small
contacts (4 > 2.5) the error is visible in fig. 2(b). In general (9) slightly
underestimates the Hall-geometry factor, as it is shown in Fig. 3. There as
reference we took numerical data obtained from [4] in the range where they are
reliable (notice first signs of round-off “noise” at A~ 0.4 and A ~ 5). Outside this
range we used the more accurate analytical limit formulas (7, 8). (9) has no error
at 2 =22 and it has -1% error at 4 = 0.355, 1, 2, 5.43. The curve is symmetric to
A =22 An additional factor improves the accuracy by two orders in magnitude

1

(8)

Gy, = (l+ A? exp(— Co— (czA)2 + (C4A)4 — (CGA)G »x Gy, (10)

with A = In(4 /2¥%) and ¢ = 2.279, ¢, = 1.394, ¢4 = 0.6699, cg = 0.4543. The
error of (10) is between -6x10” and 2x10™ for 0 < 4 < oo as shown in fig. 4. There
the abscissa axis covers effective numbers of squares from 0.002 to 500 in
logarithmic scale. Note again the striking symmetry of the curve with respect to 1
= 212 where the approximation error vanishes.
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Fig. 2 (a-b). Hall-geometry factor Gy for symmetric Hall plates at small magnetic field versus
effective number of squares 4. (a) linear scale, (b) logarithmic scale.
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Fig. 3. The error of fit (9) for Gy versus A.
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Fig. 4. Ratio of approximate Hall-geometry factor after (10) over the exact one (Gn o/Gn).
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4. Conclusions

For the first time the Hall-geometry factor of 90°-symmetric Hall-plates in
the low magnetic field limit is given as a function of the effective number of
squares A. It is approximated by two simple formulae (9, 10) with 2% and 0.02%
accuracy, respectively. They suggest an apparent symmetry between small and
large contacts Gu(A = 2Y%) = x2 Gu(A = 2%/x) for x > 0. This symmetry has not
yet been reported in the literature and we have no rigorous proof for it.

Equations (9, 10) are of practical relevance for concept engineers of Hall
sensors systems, because they allow for an optimization of the electronic system
in terms of a single degree of freedom (namely the effective number of squares 1)
regardless of the specific geometry of the Hall plate.

Equations (9, 10) are also useful in the characterization of Hall-mobility.
There one can measure the effective number of squares with Van-der-Pauw’s
method, determine the Hall-geometry factor with (9, 10) and use this result in the
mobility measurement.
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