
U.P.B. Sci. Bull. Series C, Vol. 68, No. 4, 2006 

SPEAKER VERIFICATION FOR ROMANIAN LANGUAGE 

C.O. DUMITRU, Inge GAVĂT * 

În acest articol se prezintă un sistem de verificarea vorbitorului cu fraze fixe 
pentru limba română. În sistemul propus extragerea parametrilor se bazează pe 
analiza cepstrală, obţinându-se coeficienţii mel cepstrali. Modelarea acustică a 
vorbirii este bazată pe modelele Markov ascunse dependente de context; pentru 
fiecare vorbitor se construieşte câte un model, prin antrenare cu date de la acel 
vorbitor. Pentru evaluarea performanţele sistemului, se testează fiecare model cu 
toţi vorbitorii, determinandu-se astfel ratele de corectă şi falsă acceptare.  
Rezultatele sunt încurajatoare, fiind obţinută o eroarea de falsă acceptare de 4%. 
Experimentele au fost făcute pe baza proprie de date, conţinând semnal vocal de la 
zece vorbitori(8 vorbitori masculini şi 2 vorbitori feminini), fiecare vorbitor rostind 
50 de fraze.  

In this paper we present a speaker verification system with fixed phrase text 
for Romanian language.  The feature extraction in the system is based on perceptual 
cepstral analysis, giving the mel-frequency cepstral coefficients (MFCC). The 
acoustical modeling of speech in the statistical framework is based on hidden 
Markov models (HMM) with context dependent modeling; a model for each speaker 
is built, by training with his own data. To evaluate the system performance, each 
model was tested with all speakers, obtaining the rates for correct and false 
acceptance. The results are promising, a false acceptance error of 4% being 
achieved. The experiments were made using our own database, containing speech 
data from ten speakers (8 male speakers and 2 female speakers), and each speaker 
reading 50 utterances. 
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Introduction 

Speaker verification is defined as a decision process determining if a 
speaker is who he claims to be. This is a different case than the speaker 
identification problem, which is deciding if a speaker is a specific person or is 
among a group of persons. In speaker verification, a person makes an identity 
claim entering an employee number, presenting his smart card or uttering a text. 
In text-dependent systems, the text is known and it can be fixed or optional, 
prompted visually or orally. The claimant speaks the text into a microphone. This 
signal is analyzed by a verification system that makes the binary decision to 
                                                            
* Prof., Ph.D., Dept. of Applied Electronics and Information Engineering, Faculty of Electronics 
Telecommunication and Information Technology, University “Politehnica” of Bucharest, 
ROMANIA, igavat@alpha.imag.pub.ro.  



C.O. Dumitru, Inge Gavăt 82

accept or reject the user’s identity claim or possibly to report insufficient 
confidence and request additional input before making the decision [1], [2]. 

Speaker verification applications include access control, telephone 
banking, or telephone credit cards. 

As automatic speaker verification systems gains widespread use, it is 
imperative to understand the errors made by these systems. There are two types of 
errors: the false acceptance of an invalid user and the false rejection of a valid 
user. It takes a pair of subjects to make a false acceptance error: an impostor and a 
target [3], [4]. 

In this paper we will use for speaker verification the pattern recognition 
approach, extracting features from speakers utterances and than evaluate the 
match with trained models. 

For speaker verification, features that exhibit high speaker discrimination 
power, high inter-speaker variability, and low intra-speaker variability are desired 
[5], [6]. These conditions are fulfilled by the mel-frequency cepstral coefficients 
(MFCC), and therefore we chose them in our feature extraction part of the system.     

The paper is structured as follows: chapter 1 is dedicated to the speech 
parameterization. In chapter 2, we present the HMMs with context dependent 
modeling. Databases and the system interface are exposed in chapter 3 and 4. 
Experimental results are explained in chapter 5. Conclusions and references are 
closing the paper.  

1. Speech parameterization 

Cepstral analysis is a very reliable method to speech parameterization and 
it can be realized applying the blocked and windowed time discrete signal s (n) to 
the processing chain depicted in Fig. 1. After the FFT, the modulus of the signal is 
calculated and the logarithm is taken, the result being proportional in fact to the 
power spectrum of the speech signal.  

Through IFFT, the real cepstrum is obtained, the “filter” characterization 
being comprised near of the cepstrum origin. The re-sampling of the real cepstrum 
leads to the cepstral coefficients, which, alone or in addition with the energy E, 
and/or the first and second order differences constitute a feature vector 
successfully applied in speech recognition [7], [8]. 

In order to obtain a parametric representation with the mel-frequency 
cepstral coefficients and their first and second order variations, the power 
spectrum is processed using a set of filters with the transfer functions represented 
in the Fig. 2. That filter bank is a model for the critical band perception of the 
human cochlea [9], [10]. 
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Fig. 1.  Processing chain. 
 

 

Fig. 2 The transfer functions of filters. 
 
 

 

  
 

Fig. 3. The Romanian word “apa” and the cepstral coefficients. 
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The outputs of the filters are calculated by the formula (1), where i is the 
number of the filter. 
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The first and the second order variations of the mel-frequency cepstral 
coefficients are used for speech recorded in noisy environments or under the 
influence of stress or emotional factors [11], [12]. 

In Fig. 3 it is represented the variation of the 12 mel-frequency cepstral 
coefficients along 60 frames for the word “apa”, calculated with the processing 
chain in Fig. 1. 

 

2. Hidden Markov models (HMM) 

HMMs are finite automates, with a given number of states; passing from 
one state to another, is made instantaneously at equally spaced time moments. At 
every passing from one state to another the system generates observations, into 
the automate two processes taking place: the transparent one and the hidden one, 
which can not be observed, first represented by the observations string (parameter 
sequence) and second, represented by the states string [7]. 

As concerns the HMMs, there are three main problems: 
The first problem is the evaluation one. Given the model and the 

observation (parameter) sequence, we have to analyze if the sequence is produced 
by the given model. The probability to produce an observation sequence with a 
Markov model is calculated by the “forward” and “backward” algorithm. 

The second problem is about establishing the correct state sequence. The 
“Viterby” algorithm is one of the most used algorithms for this purpose.  

The third problem is the parameter optimization of the model to describe 
as good as possible the observation sequence. Training allows optimal adaptation 
of the model parameters to training data by re-estimating them. The “Baum-
Welch” algorithm is the most used model parameter re-estimation algorithm.  

In Fig. 4 it is represented the left - right model (Bakis), which is 
considered the best choice for speech. For each phoneme, called monophone, such 
a model is constructed; a word string is obtained by connecting corresponding 
HMMs together in sequence, the extension to continuous speech being simply 
realized. 

 
2.1. Context – dependent modeling. 
In the simplified hypothesis of context-independent phoneme modeling 

each word results as a concatenation of the component phonemes; for each 
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phoneme a model is constructed. In Romanian language, as phoneticians claim, 
there are 34 phonemes, requiring 34 different models. 

In real speech, the words are not simple strings of independent phonemes: 
as effect of co-articulation, the immediate neighbor – phonemes, for instance the 
preceding and the following one, affect each phoneme in the word. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
This immediate neighbor – phonemes are called respectively the left and the right 
context; a phoneme constitutes with the left and right context a triphone. For 
example in the triphone “a - z + i_o”, (SAMPA- Speech Assessment Methods 
Phonetic Alphabet [13] - transcription for the Romanian word ”azi”), the phoneme 
“z” has as left context “a” and as right context “i_o”, like is shown in Fig. 5. 
 

 
 
 
 
 
 
For each such a triphone a model must be trained: in Romanian that will 

give a number which equals 39304343 =  models, which is totally unacceptable for 
a real time system. In our speaker verification task we have modeled only internal 
– word triphones and the adopted state tying procedure has conducted to a 
controllable situation [14]. 

 
2.2. State Tying on Phonetic Decision Trees 
If triphones are used in place of monophones, the number of needed 

models increases and it may occur the problem of insufficient training data. To 

Fig. 5. The word internal triphone “a - z + i_o” 

     a   -      z     +    i_o 

s 1 s 2 s 3a 12 a 23

a 11 a 22 a 33

o 1 o 2 o 3 o 4 o 5

b 1 (o 1 ) b 1(o 2) b 2(o 3) b 2(o 4) b 3(o 5) 

Fig. 4: Left-right model or Bakis model 
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solve this problem, tying of acoustically similar states of the models built for 
triphones corresponding to each context is an efficient solution. For example, in 
Fig. 6a four models are represented for four different contexts of the phoneme “a”, 
namely the triphones “k – a + S”, “g – a + z”, “n – a + j”, “m – a + j”.  
In Fig. 6b, are represented the clusters formed with acoustically similar states of 
the corresponding HMMs.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The choice of the states and the clustering in phonetic classes are achieved 

by mean of phonetic decision trees. A phonetic decision tree, built as a binary tree 
is shown in Fig. 7 and has in the root node all the training frames to be tied, in 
other words all the contexts of a phoneme. To each node of the tree, beginning 
with the parent – nodes, a question qi is associated concerning the contexts of the 
phoneme [15].  

 
 
 
 
 
 
 
 
 
 
 
 

a)

          k -  a  + S                   g  -   a +   Z                          n  -  a +   j                           m  -  a   +j

b)

          k -  a  + S                   g  -   a +   Z                          n  -  a +   j                           m  -  a   +j

Fig. 6. a) Different models for triphones around the phoneme “a”, 
b) Tying of acoustically similar states. 

Fig. 7. Phonetic tree for phoneme m in state 2 

R=Consonant?

y n

  L=Vowel?

y n

L=a?

y n

L=Vowel_medial?

y n

     R=Vowel? L=p?

ny
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Possible questions are, for example: is the right context a “consonant” (R 
= Consonant?), is the left context a phoneme “a” (L = a?); the first answer 
designates a large class of phonemes, the second only a single phonetic element. 
Depending on the answer, yes or no, child nodes are created and the frames are 
placed in them. New questions are further made for the child nodes, and the 
frames are divided again. 

The questions are chosen in order to increase the log likelihood of the data 
after splitting. Splitting is stopped when increasing in log likelihood is less than an 
imposed threshold, resulting a leaf node. In such leaf nodes are concentrated all 
states having the same answer to the question made along the path from the root 
node and therefore states reaching the same leaf node can be tied as regarded 
acoustically similar. For each leaf node pair the occupancy must be calculated in 
order to merge insufficient occupied leaf nodes [16], [17]. 

A decision tree is built for each state of each phoneme. The sequential top 
down construction of the decision trees was realized automatically, with an 
algorithm selecting the questions to be answered from a large set of 130 questions, 
established after knowledge about phonetic rules for Romanian language [18]. 

3. Database 

Our experiments were carried out in a speaker verification task. 
For speaker verification, the database is constituted from 500 phrases, 

uttered by 10 speakers, 8 males (speaker 1, 2, 3, 4, 5, 7, 9, 10) and 2 females 
(speaker 6, 8), each speaker reading 50 utterances [19], [20]. The speaker 1 and 
the speaker 10 are the same. The database for training contains 480 phrases, each 
speaker reading 48 phrases. The testing database contains 20 phrases uttered by 
the same speakers, each reading the same 2 phrases. 

Examples of testing phrases are: 
- Zero unu doi trei patru cinci şase şapte opt nouă 
- Salvează pe cartela sim 

The training database contains over 250 distinct words, while the testing 
database contains 14 distinct words. 

The data are in the typical “wave” format, sampled by 16 kHz, quantized 
with 16 bits, recorded in a laboratory environment with a desktop microphone. 

4. Interface 

In order to simplify our work during the experiments, a MATLAB 
interface “Speaker verification” represented in Fig. 8 was designed. The interface 
enables the choice of the speaker for training and of the speaker for testing. 
Waveform visualization, opening and playing the sound are also possible options. 
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5. Experimental results 

In our experiments we trained with the embedded procedure the models 
for each speaker and tested the trained models with each of the ten speakers. The 
results of our experiments are synthetically represented in the confusion matrix in 
Table 1, where the success rate is pointed out. The success rate for acceptance is 
97%. 

In general, the system provides good results. 
But there are some false acceptance situations. The models trained with 

the first speaker accept the sixth one; we can consider the sixth speaker as an 
impostor. The models trained with the fifth and the sixth speaker respectively 
accept the seventh one; the models trained with the ninth speaker accept the third 
one. That is in connection with the fact that the acceptance level in success rate is 
very high, respectively 97%. There are chances to improve the situation by adding 
first order differences of the MFCCs to the feature vector or extending the training 
material. Informal tests made for extending the feature vector show some 
enhancements, the acceptance level becoming lower [21]. 

 

 
 

Fig. 8. Speaker verification interface. 
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Table 1 
Experimental results 

 

Conclusions 

The experiments we carry out with our speaker verification system lead to 
promising results.  

In the system, feature extraction is based on perceptive cepstral analysis 
conducting to the mel-frequency cepstral coefficients (MFCCs). 

The modeling technique applied to the statistical framework relies on 
HMMs, built for each monophones and triphones. 

The success rate, actually the word recognition rate, must have a high 
threshold for acceptance (97%) and therefore some false acceptance situations 
appear (4% false acceptance error). 

For our future work this performance can be enhanced, some informal 
tests giving good results by: enlarging the feature vector by adding first order 
differences to the MFCCs or by using PLP (Perceptual Linear Prediction) for 
feature vector [22]. 
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