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A STRUCTURED NEWTON’S METHOD FOR CHANDRASEKHAR
H-EQUATION ARISING FROM RADIATIVE TRANSFER

Bo YU,! 2 Ning DONG?2

By exploiting the implicit structure of Chandrasekhar H-equation, we de-
vise a structured Newton’s method to compute the solution with physical mean-
ing. We also consider the critical case of this equation, in which the Jacobian
matriz at the solution is singular. By incorporating a shift technique, we show
that our structured Newton’s method can still converge quadratically to the so-
lution. Numerical experiments are listed to indicate that the new method is a
feasible and effective solver for Chandrasekhar H-equation.
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1. Introduction

The Chandrasekhar H-equation

. 5H(t)dt)*1

S+t =0 e

F(H)(5) = H(8) — (1 - C/

2 Jo

arises from solving exit distribution problems in radiative transfer [4, 17, 18]. Here

the parameter c is the average total number of particles emerging from a collision,

which is assumed to be nonnegative and conservative, i.e. 0 < ¢ < 1. By the use of
some numerical integral formula such as composite midpoint rule

1 n
| t@as~ 1> 1) 2)
0 =

with 0; = (i —1/2)/n for 1 < i < n, the integral equation (1) can be transformed
into a nonlinear vector equation

Fz) =0 (3)
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with its ¢-th element

Cc - 521’ -1

When ¢ € (0,1), the H-equation has exactly two positive solutions [13, 18],
but only the minimal positive solution is of great interest in physics. Various it-
eration methods for finding the minimal positive solution have been studied. In
[16], the author proposed a fixed-point iteration method for the coupled system of
H-equations and proved its convergence. Newton’s method and the chord method,
which possess quadratical and linear convergence, were presented in [17]. In [18],
Krylov subspace methods such as GMRE [24], BiICGSTAB [26] and TRQMR [7]
were employed to solve the subproblem of Newton’s method. For more discussion
of other methods for H-equation, see [5, 6, 19, 20] and its references therein. These
methods are effective solvers for H-equation but a common feature of them is that
the implicit structure in (3) is not explored sufficiently.

It has been shown in [17] that an equivalent form of H-equation (1) is

1
c SH (t)dt
GH)0)=H()—1—=-H(S ——— =0
(1)) = 10 =1~ 51 [ S o
and its discrete equation, by using the same numerical integral rule as in (2), takes
the form

Gr)=x—xz0Sr—e=0, (4)

where el = (1,...,1) and S is a matrix with

0 c

()i aéi +9; e =, (5)
Applying Newton’s method directly to H-equation (4) yields the following iteration
scheme

2D = g8 () - o) o 52 )

_ M,;l(e—m(k)osx(k)), k=0,1,.., (6)

with Mj, = I — diag(Sz®)) — diag(z(®))S and “o” denoting the Hadamard product
symbol. However, this Newton’s method does not differ very much from the original
one since what we have done is only giving a small change in representation of
variables and the structure is not unfolded yet.

The purpose of this paper is to provide a structured Newton’s method to
obtain the minimal positive solution of H-equation (4). To this purpose, we define
an unknown Cauchy-like matrix X (introduced in the next section) so that the
H-equation (4) can be written as a Riccati matrix equation

XCX —AX —XAT + B =0,
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with A, B and C some known coefficient matrices of dimension n x n. Newton’s
method with an initial guess for this Riccati equation is given by

(A—x®oyx D) L x B AT —ox®y =B - x®ox® L =0,1,.. (7)

Obviously, if there is no any special structure in (7), the complexity of New-
ton’s method in the matrix form is definitely higher than that of Newton’s method
(6) in the vector form. Fortunately, we observe that some structured characteristics
lie in the equation (7) as follows:

(i) . The right hand side of the equation (7) is a low rank matrix.

(ii) . The coefficient matrices in left hand side of (7) are diagonal plus rank one
matrices and their eigenvalues are positive real numbers and can be evaluated
in O(n) flops.

These attractive structures allow us to design a structured Newton’s method to
obtain the minimal positive solution of H-equation (4). The idea is to apply a
factored-alternating-directional-implicit (FADI) method [3, 21], motivated by the
structure feature (i), to solve the subproblem equation (7) to get X **1) then form
the the next iterative vector z(**1) from X+ This strategy is very efficient
because the structure feature (ii) guarantees that the optimal ADI parameters can
be computed cheaply through fast evaluating the two extremal eigenvalues of coeffi-
cient matrices (see Wachspress’s method [27, 28]). Moreover, it is unnecessary that
the iterative matrix X **1 should be formed exactly since only a matrix-vector
product is needed in each Newton iteration step. Therefore, we can expect that
such structured Newton’s method may be implemented in a low storage way to
obtain the minimal positive solution of H-equation (4).

Another important case for H-equation is the critical case, i.e. ¢ =1 in (1).
The H-equation in this case has a unique positive solution [13]. Also, the Jacobian
at this solution is singular, which consequently causes that Newton’s method is con-
vergent linearly. This drawback can be removed by incorporating a shift technique,
introduced by He, Meini and Rhee [12] (see also [2, 10]), into our transformed Riccati
equation. Hence, the proposed structured Newton’s method can still be employed
to obtain the positive solution of H-equation (4) with quadratical convergence and
high accuracy.

The rest of this paper is organized as follows. We give some preliminaries
in Section 2. In Section 3, we describe the structured Newton’s method for H-
equation with ¢ € (0,1). Section 4 is devoted to the H-equation when ¢ = 1,
where the Jacobian of Newton’s method at the solution is singular. At last, we do
some numerical experiments in Section 5 to test the proposed methods and compare
their performances with those of Newton-GMRE, Newton-BiCGSTAB and Newton-
TRQMR in [18].

Throughout this paper, we use “®” to denote Kronecker product of matrices.

Lo ] For matrix A € R™*",

Let I be the identity matrix of order n and J = [0 7
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we denote by o(A) and p(A) its spectrum and spectral radius, respectively. For
a diagonal matrix D € R™™ and a vector d € R", diag(D) represents the vector
whose elements are the diagonal entries of D and, diag(d) represents the diagonal
matrix whose diagonal entries are elements of d.

2. Preliminaries

We give some preliminaries in this section. The first concept is the Cauchy-
like matrix [15]. An n x n matrix X is called real Cauchy-like matrix if its entries
have the form

fi9;
Xi': )

where f;, g;, 0; and v; (i = 1,...,n) denote some scalars such that ¢; +~; # 0 for
any ¢ # j. The Cauchy-like matrix X satisfies the following displacement equation

AX + XT = fq*

with diagonals A = diag(d1, ..., 0, ), I' = diag(y1, ..., 7a) and vectors f1 = (f1, ..., fn),
g" = (g1,...,9n). We also need the concept of M-matrix. A real square matrix A
is called a Z-matrix if all its off-diagonal elements are nonpositive. It is clear that
a Z-matrix A can be written as sI — B with (B);; > 0. A Z-matrix sI — B with
(B)ij > 0 is called a singular or nonsingular M-matrix if s = p(B) or s > p(B).

The following lemma comes from [25] which gives some interesting properties
of the M-matrix.

Lemma 1. For a Z-matrixz A, it holds true that

(a) A is an M-matriz if and only if u' A > 0 (Av > 0) for some vector u > 0
(0> 0);

(b) when A is nonsingular, A is an M-matriz if and only if A= >0 or, ul A > 0
(Av > 0) for some vector u >0 (v > 0) or, 0(A) € CT with C* denoting the open
right half-plane.

The following lists some well-known results about a nonsymmetric algebraic
Riccati equation structure

R(YY)=YCY —AY - YD+ B =0, (8)
see [9, 10, 11].
Theorem 2. Let B B
M= [ 5a } (9)

be a nonsingular or irreducible singular M-matrixz. Let {)\i}fgl be eigenvalues of the
matrix H = JM ordered nonincreasingly. Then it holds that

ReXop < ... < ReAdpgo < A1 S0 <A, < Redm1 <o < Rey.
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Moreover, the minimal positive solution Y* of (8) is such that o(D — CY*) =
{Al,...,)\n} and O'(A—Y*C) :{—)\n+1,...,—)\2n}. B

Let w and v be the left and the right eigenvector of M corresponding to the
zero eigenvalue, respectively. Then w and v are positive and unique up to a scalar
multiple. Moreover, the following statement are true: If X Jv > 0, then \, = 0,
Mgl < 0. Ifal Jv <0, then Ay > 0, A1 = 0. If a7 J0 =0, then Ay = Apg1 = 0.

The next result, given in [9, 11], guarantees the local convergence of Newton’s
method applied to Ricaati equation (8).

Theorem 3. Let M be a nonsingular or irreducible singular M-matriz as in The-
orem 2 and Y(©) = 0. Then Newton’s method

(A-y® Oyt L yt+(p_cy®)y =B —y®ey® gk =0,1,.. (10)

1s well defined and the matrix sequence {Y(k)} is strictly monotonically increasing
and is convergent to the_ mmimaépositz})e so_lutz'on of (8). Furthermore, the Jacobian
matriz Mya = I @ (A=YW®C) + (D - CYUNT &I is a nonsingular M-matriz.

Particularly, if M is nonsingular, A — Y®)C and D — CY'®) are nonsingular M-
matrices.

3. Structured Newton’s method for H-equation with c € (0, 1)

We review the factored-alternating-directional-implicit (FADI) iteration method
[3, 21, 27] in subsection 3.1 and describe the structured Newton’s method in sub-
section 3.2.
3.1. FADI iteration method for low-rank Sylvester equation
Let
PX +XQ =FGT (11)

be a Sylvester equation with P,Q € R™*" F G € R™*" and r < n. Given two sets
of ADI parameters {p;} and {g;} and some initial guess X(?). For j = 1,2,... until
convergence, we proceed the iteration

(P +p DXUYD = XU (p;l — Q) + FGT,
XUNQ + ¢;I) = (¢;I — P)XU=Y/2) 4 FGT.

It is not difficult to see that X can be expressed by XU~1 explicitly, namely,
X0 = (qI = PY(P +p;I) ' XUV (p;T = Q)(Q+ ;1)

+(pj + @) (P +p ) T FGT(Q + ;1)1 (12)
Let
T =vpi+a (P+pD)'F, Te, =vpi+a (Q+aql)'G. (13)
Then for j = 2,3, ..., we can rewrite (12) as the following factored form

XU = TFJ_ng,
Tr, = [ Vb 6 (P+p;I)'F, (q;1 = P)(P +p, )" T, , ],
T, = [ VP T4 Q" +¢;D)7'G, (piI = QNQT + 1) T, |
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Since the order of the ADI parameters {p;} and {g;} has no significance to the ADI
iteration [21], the FADI iteration method with parameters of reverse order, after J
step, can be reformulated as

X)) = Tr, T,
Tr, = [ Try, J\r/ﬁ%gi (QII_P)(P+p2I)71TF17 ey
= (qy—1l = P)(P +psD) T, |, (14)
Tg, = [ Tay, Jyf,f%gf (pI = QT)(QT + ¢2I) ' Ty, ...,
= (py I - QM@ + s ) TG,
where Tr, and Tg, are defined in (13) and Tp, = Traton %(qj_lf — P)(P +
J— J—
. \/Pita; _ ,
£iD T, Ta, = —A222(pja] — QT)(QT + ¢;1) ' Tg,_, for j=2,...J — 1.

VPi—11qi-1

We refer to [3, 21] for more details about the FADI iteration method.
3.2. Structured Newton’s method for transformed H-equation
To highlight the implicit structure in (4), we define a Cauchy-like matrix X
with
TiZj

X)ii = .
( )Z] 0; + 5]‘
Then the H-equation (4), by incorporating X, is reformulated as

r=aAXe+e (15)

with A = diag(d), 67 = (01,...,0,) and 2T = (x1,...,2,). Since the Cauchy-like
matrix X satisfies the displacement equation

AX + XA =gz, (16)

we substitute (15) into (16) and pre-multiply and post-multiply it by A~! such that
(16) is equivalent to a Riccati equation

XCX —AX - XAT+B=0 (17)
with
A=A"1—aA tee!, B=A"tee’ A7t and C = oeel.

Based on the transformed Riccati equation (17), we have the following itera-
tion scheme.

Structured Newton’s method for H-equation with ¢ € (0,1). Let
¢ = A~ 'e and n = ae. Given an initial guess 20 = ¢, for k = 0,1,2, ... until
convergence proceed the iteration:

1. Let f(k) = A1z Solve the following equation to get X (k+1)
(A_l _ £(k)77T)X(k+1) + X(k+1) (A_l _ n(g(k))T)
= (6EW = Q¢ ¢— M) (18)

2. Form the next iterative vector 2 1) = qAX*+tDe 4 ¢
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Remark. (i) Equation (18) is a Lyapunov equation and may be rewritten as
(6) in a vector form, in view of the equality in step 2.

(ii) It is clear that the rank of the matrix in right hand side of (18) is 2, far
less than the dimension of the equation in general, which motivates us to use the
FADI iteration method to solve the subproblem (18).

(iii) The iterative matrix X *) in step 1 is unnecessary to be derived explicitly
as only a vector z(®) is needed at each Newton iteration.

The following result indicates that the structured Newton’s method for H-
equation (4) is well-defined.

Theorem 4. Given the initial vector (9) = e, the sequence {x(k’)};:o? generated by

structured Newton’s method is strictly monotonically increasing and is convergent
to the minimal positive solution x* of H-equation (4).

Proof. Tt is not difficult to see that the structured Newton’s method is in essence
just Newton’s method applied to Riccati equation (17). Therefore by Theorem 3,
we only need to show that the matrix

AT —C AT — qee A1 —a2eel
M= [ -B A ] - [ —AleeTATL A7l —aA~Teel (19)
is an M-matrix. In fact, we can find two positive vectors
ul = (27, EeTA) and v = (ceT A, 2nel) (20)

n

such that

u' M= (1—-¢)(2eTA7, EeT) >0 and v MT = (1 —c¢)(ce”, 2neTA™Y) >0
n
for ¢ € (0,1). By Lemma 1, M is a nonsingular M-matrix. O

We can further show the elementwisely monotonic property in each iteration

vector z(%).

Theorem 5. Let the sequence {m(k)}zﬁ be generated by structured Newton’s method

with an initial guess 20 = e. Then for k =1,2,..., each iteration vector z®) g
elementwisely strictly monotonic, namely, for k = 1,2, ... the following inequalities
hold true

N At (21)

Proof. Let the matrix S be defined in (5). We first show that
1—(Sz®); >0 (22)

fori=1,..,nand k = 0,1, .... In fact, it follows from Theorem 3 that A~ —¢®k)pnT
is a nonsingular M-matrix. Thus I — az®e” is a nonsingular M-matrix, which
implies that, for any ¢ =1,....,n and k =0,1, ...,

1—(Sz®); >1—ae’zs® =1 — plaz®e’) > 0.
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We now demonstrate the inequalities in (21) by induction on k. For k = 1,
taking the i-th item of iteration vector (*) in (6) yields

) _ LS —2®); 14 (S@Y - @) _ )
oo 1-— (Sa:(o))l 1-— (S.T(O))i_;,_l T

where the inequality follows from
01 < 09 < ... < Oy,

(22) and Theorem 4. This proves (21) with k£ = 1.

Suppose that (21) is true for some k, i.e. xl(k) < %@1 fori =1,2,...,n— 1.
Then by using this induction assumption and the strict monotonicity of {J;}7_; and
{z®)}}2° the i-th item of 2(**1) in (6) satisfies

) _ 14 xl(k)(s(x(k+1) —z®)), 14 x(k) (S(zt+D — 2 (B))y, O

) = < =x: /.
¢ 1- (Sx(k))l 1- (S.T(k))z_i_l 1

Thus (21) holds true for all k£ by the principle of induction. O

As for the eigenvalues in coefficient matrices at each Newton step, we have
the following interlacing property.

Theorem 6. For each k = 1,2, ..., the coefficient matrices A~ — §(k)nT at the
k-th Newton step have distinct eigenvalues {)\Z(k)}?zl. Moreover, they satisfy the
following inequalities:

0< AP < </\§k) <ﬁ<...<>\,(f) <5
Proof. Let
(k) " J;(k)a
o) =14 Z 20; — 1 0 (23)

be the secular equation [22] of A~ — ¢ — 2T for k = 1,2,.... Then ¢ (z)
is a strictly monotonically decreasing function with respect to z in the interval
(5%_, i), i=1,...,n—1. Since for each i = 1,...,n — 1, limz_)ﬁ_i_ p*)(2) = 400
and lim,_, 6 _ gb(k)(z) = —o00, the equation (23) has a unique real root in the open

interval (& 5 5T ) Hence, we only need to show that the last root of (23) lies in
(0, & 5-). Let 7 be the minimal eigenvalue of the matrix A~! — A~lz*nT | where z* is
the minimal positive solution of H-equation (4). By an analogous proof of Lemma
2.1 in [14], we can get the fact 0 < 7 < i. This together Theorem 4 yield the
following inequality

_1+ZT(5 _1>1+ZT(5 — =" (7)
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for all k = 1,2, .... Since 7 is an eigenvalue of the matrix A~! — A~lz*nT it must
hold ¢*(7) = 0 as ¢*(z) = 0 is the secular equation of A™! — A= z*n? — 2I. So the
last real root of ¢(*)(2) lies in the interval (0, 5%) due to limzﬁéii ¢*)(2) = —00. O

Remark. Theorem 6 particularly shows that the coefficient matrices at each
Newton step have positive extremal eigenvalues. Hence the Lyapunov equation
(18) falls into the “ADI model problems”. Moreover, the diagonal-plus-rank-one
structure guarantees that each eigenvalue can be evaluated in O(n) flops (see [1,
23]), so that the optimal ADI parameters could be computed readily from the two
extremal eigenvalues by Wachspress’s method [27, 28]. Consequently, the FADI
iteration method is very efficient for solving the low rank Lyapunov equation (18).

To implement the FADI iteration method more conveniently in computation,
we give the following.

Proposition 7. Let Tr and Tq be factor matrices generated by the FADI iteration
for solving (18). For eachi = 1,2,...,J, denote by (ta;i—1,t2;) and (t2;—1,to;) the i-th
pair of vectors in Tr and Tq, respectively. For each v = 2,3, ..., J, define diagonal
matrices

Da, = (T +piA)™, Da, = (i1 A = DI +piA) ™

and scalars

_ nTDAle _ nTDAl(:E(k) —e)
1—77TDA1$(]€)7 2 1—77TDA1$(k) ’

7’]T(I +piA)71At2i_3 nT(I —i—piA)*lAt%_g

ha

h i—1 = ) h i =
YT T+ i) e ® =T (L + pid) )
with 1 = ae. Then we have
[t1, t2] = 2p1 [ Da,(e+hia®), Do, (1 +ho)a®™ —e) ], (24)
[t1, t2] = [t1, —t2] (25)
and fori=2,....,J
[ toi—1, toi ] = 2p; [ Da,(t2i—3 + hoi 160 4 hg;_1€®),
D, (t2i—a + hoi€®)) 4 hoye®], (26)
[toi—1, t2i | = [taic1, —t2i ] (27)

with §(k) = ACD (),

Proof. For i =1,...,J, by using the Sherman-Morrison-Woodbury formula (see [8]
for example) directly to the matrices

(P+pD) ™t = (A 4 pd — BTyt

in (14), we have equalities (24) and (26). Note that Q7 = P in (14) for Riccati
equation (17), equalities (25) and (27) hold true. O
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Notice that, when solving the subproblem (18), the iteration matrix X *)
must not to be formed exactly since only the a matrix-vector product (i.e. X (k)e) is
needed. So the FADI iteration method, as mentioned before, can be implemented in
a low storage way. Specifically, in current FADI iteration step, we use two vectors to
store [tai—1, t2;] and a temporary vector Tiemp to store the sum of first 2i items in
x(k), then update the two storage vectors with [tg;11, t2i+2] and add them to Ziemp
in next FADI iteration step. When the Jp-th FADI iteration step is completed,
Ttemp approximates the exact #®) in the k-th Newton step. This approach avoids
constructing the two n x 2.J factor matrices Tr and T in (14). We give all steps
of the structured Newton-FADI iteration method for H-equation with ¢ € (0,1) in
Algorithm 1.

Algorithm 1.
Inputs: Initial guess #(9) = e and tolerance tol.
Outputs: z € R" is approximative minimal positive solution of H-eqution.

1. Ziemp == 20,

2. For k=0,1,2,..., until convergence, do

3. Compute the two extremal eigenvalues of A~! — A‘l(a:temp)nT.
4 Determine the number of ADI iterations J; and compute the

optimal ADI parameters {p; }ji 1

5. Form a pair of vectors [ ¢, ta | using (24).
6. Tiemp = (tTe)t1 — (the)ta.
7. For:=2,3,..., Jg, do
8. Update vectors [ ¢1, to | with formula (26).
9. Ttemp = Ttemp + (t{e)tl — (tge)tg.
10. End
11. Ttemp = (XAIIZtemp + e.

12. Evaluate ||F(2temp)||2- If || F(@temp)||2 < tol, x := Tiemp, stop.
13. k:=k+1.
14.  End

Remark. (i) We compute the two extremal eigenvalues in step 3 by a similar
method in [23]. In addition, we adopted the so-called “warm start” strategy in
the computation of the extremal eigenvalues of the successive coefficient matrices.
More precisely, except the first iteration, we chose the currently obtained minimal
(maximal) eigenvalue as the initial guess in the iterative process for the next minimal
(maximal) eigenvalue. (ii) The method to determine J; and select the optimal ADI
parameters {p;} in step 4 can be found in [21, 27, 28]. (iii) During iterations in
Algorithm 1, we evaluate the H-equation in step 12 only once to test that the stop
criterion is satisfied or not. The choice of the tolerance for the termination is given
in Section 5.

4. The shift technique for H-equation with c =1

In this section, we consider the structured Newton’s method for H-equation
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with the parameter ¢ = 1. In this case, the structured Newton’s method for H-
equation given in last section may not retain the quadratic convergence since the
Jacobian at the solution is singular. In fact, if we still let the matrix M and
vectors u, v be defined in (19) and (20), respectively, it is clear that v and v are
the left and the right eigenvector of M corresponding to the zero eigenvalue when
¢ = 1. Moreover it follows from Theorem 2 that the matrix H := JM has two zero
eigenvalues since u” Jv = 0. That is, both spectrums of A — X*C and AT — CX*
contain a zero eigenvalue, respectively, where X™* is the minimal positive solution of
Riccati equation (17). Consequently, the sequence of Jacobian {M y ) } in Newton’s
method converges to a singular M-matrix My = I®(A—X*C)+ (AT -CX*)T®1.

The shift technique, introduced in [12] (see also [2, 10]), aims at removing the
singularity of the matrix M x+ by converting a zero eigenvalue to a nonzero one so
that Newton’s method may recover the quadratic convergence. We will exploit this
technique to cope with the Riccati equation (17) with ¢ = 1. To avoid notational
clutter, we still use the same symbols as in Theorem 2.

Let H = H + vw! with w? = (w!,wl) = (%eTA_I,ﬁeT) and vl =
(v, vd) = (eTA,2ne”). Then we have w'v = 1. By Lemma 5.3 in [10], the
eigenvalues of H are those of H except one zero eigenvalue replaced by 1. Denote
the subblocks of H by

A=A—wnuwl, B=B+ww!, C=C-vwl, D=A" 4+vwl.
Then we can construct a new Riccati equation
YCY —AY - YD+ B=0. (28)

It follows from Theorem 5.4 in [10] that the Riccati equation (28) shares the same
minimal positive solution (i.e. X*) with the Riccati equation (17) and o(D —
CX*) = {M, ..., \u_1,1}. Therefore, we can implement the Newton’s method for
finding the minimal positive solution of new Riccati equation (28) instead of the
original one (17). This leads the following iterative scheme for H-equation with
c=1.

Structured Newton’s method for H-equation with ¢ = 1. Let n = ae,
y=a(l - A, f= (A" +1)eand { = A~'e. Given an initial guess Y(?) = 0, for
k=0,1,2,... until convergence proceed the iteration:

1. Let a® =aY® (1 —A)e, b® =a(Y*®)Te. Solve the equation
(A7 = (5 + W)y ) YDA (¢ 4 50T (29)
= (8, =a®)(¢. 0T to get YD,

2. Form the next iteration vector y(kH) =aAYFHe 4 ¢,

Similar to the proof of Theorem 4, we can show that the above structured
Newton’s method is well-defined. In fact, if we let M = JH, then it is a Z-matrix
and

uWI'M=uTTH = u" M + uT JowT = 0,



40 Bo Yu, Ning Dong

where u is a positive vector defined in (20). As M is irreducible, it follows from
Theorem 3 that the above structured Newton’s method is well defined.

By applying FADI iteration method into the Sylvester equation (29), we have
the following concise formula in (14). We omit the proof as it is analogous to that
in Proposition 7.

Proposition 8. Let Tr and Tg be factor matrices generated by the FADI iteration
for solving (29). For eachi = 1,2,...,J, denote by (ta;i—1,t2;) and (t2;—1,to;) the i-th
pair of vectors in Tr and Tq, respectively. For each i = 2,3, ...,J, define diagonal
matrices

DAl = (Ail +p11)717 DA1 = (Ail + Q1I)71
Da, = (giad —AH)(A™ +p) 7, D, = (piid =AY (A™ +qI)7!
and scalars
e 1T DaB R N
L 1_77TI)A1(5+G(1€))7 2 1—77TDA1(ﬁ+a(k))’
. YD, ¢ o YT D, o™
P 1—9TDa, (CH M) T 19T DA, (¢ + bR’

S 0t (pid + A1) g s b — 0" (pid + A7) iy
Il + AT @R ) LT (] + AT (@) 4 )
S Y (qid + A1) g3 fo Y (@il + A7)y

2T AT (g + AR 4 ¢) T AT (il + AL (k) 4 ()
Then we have
[t1,t2] = Vp1+ @[Da, (1 + h1)B + hia™), Da, ((he — 1)a'® + ko)), (30)
[f1,8) = VprF ai[Da, (14 7)¢ + 7ib®), Da (1 + ha)p™® — haQ)]  (31)

and fori=2,...,J

[toi-1, toi] = VPi+ @ [ Dai(taies + haim1(B 4+ a™)) + hai1(B + a™),

(t2i2 + hoi(a®™ + B)) + has(a™ + B)],  (32)
(t2i—3 + hai— 1(C+bk)))+h2z (¢ + b))
(t

[ t2i—1, t2i ] = Vpi+a [D )
2i-3 + hoi—1(C 4 0M))) + hgi_1 (¢ + b™)]. (33)

A
A
A
A

We list all steps of the structured Newton’s method for H-equation with ¢ = 1
in Algorithm 2, noting that only two pairs of vectors are used for the storage and
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the update in the FADI iteration.

Algorithm 2.
Inputs: Initial guess y(®) = 0 and tolerance tol.
Outputs: y € R™ is an approximative positive solution of H-eqution.
. a=b=0,vy=a(l—-A)e,n=ae,(=A7te, B= (A1 + e
2. For k=0,1,2,..., until convergence, do
3. Find extremal eigenvalues of A™' — (8 —a)n™, A=t — (¢ +b)7.
4 Compute the number of ADI iterations J; and the optimal ADI
parameters {p;}7%, and {q;}7",.

0)

5. Form vectors [t1,t2] and [t1, t2] using (30) and (31).

6. a=(EHU+ (Bt

T b= () + ().

8. Ytemp = (T )1 + (£3 1)t

9. For:=2,3,..., Ji, do

10. Update vectors [ t1, to | and [ t1, t2 ] with (32) and (33).
11. a:=a+ #FHy)t + (By)ts.

12. b:=b+ (tIn)t, + (tin)ts.

13. Ytemp ‘= Ytemp T (f{n)tl + (t_g"?)t%

14. End

15. Ytemp ‘= Aytemp +e.

16. Evaluate ||F(ytemp)|l2- I [|F (Ytemp)|l2 < tol, y := Ytemp, stop.
17. k:=Fk~+1.

18.  End

5. Numerical experiments

The purpose of this section is to show the effectiveness of Algorithm 1 and
2 in computation. The test problems come from the discrete integral equation (3)
with different ¢ € (0, 1], see [18] for more details.

Our algorithms are coded by MATLAB 7.1 and are run on a PC with 1.80 GHz
AMD Sempron 3000+ processor and 512M RAM.

We compare the performance of Algorithms 1 and 2 with that of Newton-
Krylov methods (Newton-GMRE (NGMRE), Newton-BiCGSTAB (NBICG) and
Newton-TFQMR (NTRQMR) in [18]), the MATLAB codes of which can be down-
loaded form Kelley’s web page at

http://www4.ncsu.edu/~ctk/newtony.html.

The termination criterion for all algorithms is to stop the iteration if the
inequality
1F @) < 7l |F (O] + 7

is satisfied, where 7, and 7, are the relative error tolerance and absolute error
tolerance [18]. In our experiments, we take 7, = 7, = 10712,
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Table 1 Test Results for ¢ = 0.5 and ¢ = 0.9

c=0.5 c=0.9
n Method ALG.1 NGMRE NBICG NTRQME ALG.1 NGMRE NBICG NTRQME
CPU 0.07 0.14 0.09 0.07 0.04 0.10 0.12 0.10
1000 T 4 6 5 6 5 6 6 6
FE 4 14 16 21 5 17 23 27
NMF 7.83e-15 2.22e-12 5.98e-14 5.73e-14 2.84e-14 6.19e-13 4.15e-14 5.01le-14
CPU 0.15 0.28 0.31 0.28 0.18 0.32 0.45 0.42
2000 T 4 6 5 6 5 6 6 6
FE 4 14 16 21 5 17 23 27
NMF 1.44e-14 3.14e-12 8.53e-14 8.19e-14 6.64e-14 8.73e-13 7.81le-14 9.12e-14
CPU 0.31 0.60 0.67 0.64 0.37 0.73 1.00 0.92
3000 T 4 6 5 6 5 6 6 6
FE 4 14 16 21 5 17 23 27
NMF 2.12e-14 3.84e-12 1.05e-13 1.02e-13 8.32e-14 1.06e-12 1.20e-13 1.24e-13
CPU 0.50 1.07 1.21 1.14 0.64 1.34 1.71 1.67
4000 IT 4 6 5 6 5 6 6 6
FE 4 14 16 21 5 17 23 27
NMF 2.84e-14 | 4.44e-12 | 1.24e-13 1.19¢-13 1.16e-13 | 1.22e-12 | 1.56e-13 1.68e-13
Table 2 Test Results for ¢ = 0.9999 and ¢ = 0.999999
c = 0.9999 ¢ = 0.999999
n Method ALG.1 NGMRE NBICG NTRQME ALG.1 NGMRE NBICG NTRQME
CPU 0.10 0.15 0.23 0.25 0.15 0.21 0.32 0.34
1000 T 10 9 9 9 13 12 12 12
FE 10 30 46 54 13 42 61 75
NMF 1.11e-13 3.98e-12 2.16e-13 6.09e-12 7.7le-12 6.39e-12 6.17e-13 5.63e-12
CPU 0.35 0.57 0.89 0.87 0.46 0.82 1.17 1.28
2000 T 10 9 9 9 13 12 12 12
FE 10 30 46 54 13 42 61 75
NMF 2.14e-13 5.62e-12 3.35e-13 8.60e-12 1.11e-11 9.12e-12 9.05e-13 8.03e-12
CPU 0.75 1.29 1.95 1.95 0.96 1.79 2.59 2.82
3000 IT 10 9 9 9 13 12 12 12
FE 10 30 46 54 13 42 61 75
NMF 3.17e-13 6.92e-12 4.26e-13 1.05e-11 1.35e-11 1.15e-11 1.14e-12 9.83e-12
CPU 1.18 2.28 3.48 3.46 1.56 3.23 4.64 5.00
4000 IT 10 9 9 9 13 12 12 12
FE 10 30 46 54 13 42 61 75
NMF 5.36e-13 7.95e-12 5.34e-13 1.22e-11 1.56e-11 1.28e-11 1.33e-12 1.13e-11

We first test Algorithm 1, NGMRE, NBICG and TFQMR for the problem
with ¢ = 0.5, 0.9, 0.9999 and 0.999999. The test results are listed in Tables 1-2,
where the “n” column gives the sizes of the problem, the “CPU” row denotes the
CPU time used in seconds, the “IT” row represents the number of iterations in
Newton’s method, the “FE” row records the number of evaluations of H-equation
and, the “NMF” row in tables is the 2-norm of the H-equation at the approximative
minimal positive solution obtained by each algorithm.

We see clearly from results in Tables 1 that when ¢ is not (or not very) close
to 1, the performance Algorithms 1 is better than the other three algorithms in
CPU time, function evaluations and accuracy. The results in Table 2 show that
as the parameter ¢ approaches to 1, Algorithm 1, compared with other algorithms,
needs more iterations but less CPU time and function evaluations to attain the
prescribed accuracy.

We then compare the performance of Algorithms 2 and other three algorithms
when ¢ = 1. The results are listed in Table 3. Obviously, we can see from the table
that Algorithm 2 performs much better than other three algorithms in CPU time,
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Table 3 Test Results for ¢ =1

c=1
n Method ALG.2 NGMRE NBICG NTRQME
CPU 0.12 0.48 0.64 0.73
1000 IT 5 21 21 21
FE 5 84 122 156
NMF 7.79e-14 4.28e-12 2.81e-12 3.98e-12
CPU 0.32 1.65 2.32 2.70
2000 IT 5 21 21 21
FE 5 84 122 156
NMF 1.58e-13 6.10e-12 4.03e-12 5.65e-12
CPU 0.60 3.62 5.26 6.17
3000 IT 5 21 21 21
FE 5 84 122 156
NMF 2.24e-13 7.48e-12 4.95e-12 6.99e-12
CPU 0.92 6.45 9.25 10.70
4000 IT 5 21 21 21
FE 5 84 122 156
NMF 3.15e-13 8.75e-12 5.72e-12 8.16e-12

iterative number and accuracy. This indicates Algorithm 2 is very efficient to obtain
the minimal positive solution of H-equation in the critical case.

6. Conclusions

We have proposed a structured Newton’s method for solving Chandrasekhar
H-equation. The method exploits the implicit structure sufficiently to decrease the
complexity of original Newton’s method. The preliminary numerical results show
that the proposed method outperforms some well-know Newton-Krylov methods
especially in the critical case. A possible future topic is the generalization of the
new-presented method to more complicated H-equations such as in [13].
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