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ROLLING BEARING FAULT DIAGNOSIS BASED ON BRB 
AND PSO-SVM 

Zhenghui LI1*, Na ZHANG2 

A rolling bearing fault diagnosis method based on belief-rule-base (BRB) 
and the particle swarm optimization (PSO)-based support vector machine (SVM) 
was proposed to solve the insufficient adjustment accuracy and long computation 
time due to the linear decrease of inertia weights cannot truly reflect the actual 
search process. Firstly, the ensemble empirical mode decomposition (EEMD) 
method was utilized to process the vibration information data of rolling bearing and 
decompose the information data into several intrinsic mode functions (IMFs), and 
then the root mean square of the IMFs was feature vector. The inference structure of 
BRB was built to obtain the estimates of inertia weight increments and update the 
historical inertia weights. Based on this inertia weight, the velocity, position and 
other parameters of each particle in PSO algorithm were adjusted and iterated 
sequentially until the stopping criteria were satisfied, then the optimization of PSO-
SVM model parameters was realized. The datasets collected from two different 
experimental platforms in different environments were used to experiment with this 
method and other methods. This method contributes a novel attempt of effective 
adaptive adjustment of inertia weights in the existing method. 
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1. Introduction 

Rotating machinery, as a very important power device, is widely used in 
industries such as mechanical engineering, water treatment, mining and 
quarrying[1-4]. The frequency of faults and accidents in rolling bearings is 
increasing due to the frequent exposure to heavy mechanical pressure and 
prolonged operation. According to statistics, the majority of faults in large 
mechanical power equipment are caused by bearing faults or damages[5-6]. The 
complexity of today's rotating machinery is increasing, and establishing an 
intelligent fault diagnosis system is the main direction of fault diagnosis 
research[7]. The overall process of fault diagnosis mainly consists of the 
following parts: (1) analyzing and processing of fault signal data; (2)selection and 
extraction of fault features in fault signal; (3)classification of fault type [8-9]. 
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Due to the high noise working environment of rotating machinery 
equipment, the obtained fault vibration signal data often contains noise and 
exhibits nonlinear characteristics. The commonly used methods for analyzing and 
processing fault signal data are Fourier transform (FT) and wavelet transform 
(WT)[10-11]. FT is a frequency domain analysis method for the entire signal, 
which cannot determine the time corresponding to the frequency. WT is an 
improved version of Fourier transform. It not only can complete analyzing and 
processing of fault signal data in the time domain, but can also can complete 
analyzing and processing of fault signal data in the frequency domain. But its 
adaptability in selecting wavelet functions is poor. The method for selecting and 
extracting fault features in fault signals is Empirical Mode Decomposition (EMD).  
Song et al.[12] used this method to analyze fault signals and converted them into 
images for fault diagnosis, achieving good experimental results. The adaptive data 
processing method decomposes any type of signal into several Intrinsic Mode 
Functions (IMFs), each representing local features of the original signal at 
different time scales. Relevant IMFs can be selected for signal analysis or 
recombination. However, EMD method suffer from pattern aliasing issues[13]. 
The Ensemble Empirical Mode Decomposition (EEMD) technique effectively 
addresses the pattern aliasing problems associated with EMD. It has better overall 
performance than EMD in analyzing vibration information[14-15]. 

The methods for classifying fault types and degrees include artificial 
neural networks (ANN), decision trees (DT), and support vector machines 
(SVM)[16-18]. Cavallaro et al.[16] optimized many parameters of ANN and 
provided some help and guidance for using this method. However, ANN based 
bearing fault diagnosis not only requires a sufficient number of samples, but also 
has a slow learning speed. The disadvantage of DT is the potential introduction of 
deviations. SVM can effectively solve the over-fitting and local optima issues of 
ANN.It has strong data mining and learning capabilities. In recent years, SVM has 
become a focus of international scholars in the field of fault diagnosis[17]. 

However, the fault diagnosis performance of SVM largely depends on a 
few parameters. Numerous experts and scholars have employed the Particle 
Swarm Optimization (PSO) algorithm to optimize the selection of crucial 
parameters in SVM, thereby enhancing its performance. And this attempt has 
been proven to achieve good results[18]. However, the process of finding the 
optimal important parameter values in PSO is nonlinear, but the inertia parameter 
weights are set to a linearly decreasing method, which cannot truly reflect the real 
particle search process. Based on a thorough analysis of existing inertia weight 
adjustment methods, this article tends to seek a method that can integrate and 
amplify the advantages of these methods while avoiding their disadvantages. The 
belief-rule-base (BRB) method proposed by Emam [19-20] can attempt to solve 
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these difficulties of insufficient adjustment accuracy and long computation time in 
the above methods, and achieve adaptive adjustment of inertia weights. 

To overcome these difficulties, the article proposes a new method to solve 
the insufficient adjustment accuracy and long computation time due to the linear 
decrease of inertia weights cannot truly reflect the actual search process. Firstly, 
the EEMD method is utilized to process the vibration information data of rolling 
bearings and decompose the information data into several IMFs, and then the root 
mean square of the IMFs is feature vector. On the basis of the traditional PSO 
optimization model, an improvement plan is proposed to overcome premature 
convergence, low search accuracy and long computation time caused by improper 
selection of particle inertia weights. BRB is established to infer the estimated 
value of the change in inertia weight through belief rule inference, and update the 
inertia weight to achieve adaptive adjustment of inertia weight. Subsequently, 
based on the updated particle inertia weights, the velocity, position, global optimal 
value, and individual optimal value of each particle are adjusted. Based on this 
inertia weight, the velocity, position and other parameters of each particle in PSO 
algorithm are adjusted and iterated sequentially until the stopping criteria are 
satisfied, then the optimization of PSO-SVM model parameters is realized. 

The remainder of this paper is organized as follows: Section 2 introduces 
the fundamental theory of fault signal processing and feature extraction in rolling 
bearings. Section 3 shows the construction process and operational steps of the 
proposed fault diagnosis method. Section 4 demonstrates the effectiveness of the 
proposed method through two experimental examples and provides a comparative 
analysis with other methods. Finally, Section 5 presents the conclusions. 

2. Fault signal processing and feature extraction 
2.1 Fault signal processing 
(1) Firstly, the value of noise amplitude is determined based on the actual 

operating conditions, and the number of noise sets are set to M. 
(2) In general, fault signal under actual operating conditions contains a lot 

of noise, while the original signal obtained through experiments contain less 
noise. In order to simulate actual operating conditions more realistically, a new 
fault signal is obtained by adding white noise data ni(t) to  the original signal data 
x(t). 

mitntxtx ii ,...,2,1),()()( =+=                                (1) 
The i-th white noise is represented by ni(t). xi(t) represents the i-th new fault 
signal. t represents the time in the signal data. 

(3) The new fault signal is further decomposed into IMF component by the 
EEMD algorithm. 
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S is the number of IMF components. The final residual, denoted as )(, tr si , 
represents the average trend of the signal. )(, tc si  is defined as IMF 

),...,,...,,( ,2,1, ssiii cccc , which represents the component information of signals in 
different frequency bands from high to low. 

(4) Repeat step (2) M times with different white noise sequences to obtain 
a set of IMFs. 

   Sstctctc sMss ,...,2,1)}],({)},...,({)},([{ ,,2,1 =                    (3) 
(5) Calculate the average value of the corresponding IMF sets and obtain 

the following result: 
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)(tcs  is the IMF component of EEMD decomposition. 
2.2 Feature extraction 
The feature extraction based on EEMD bearing fault diagnosis mainly 

relies on different fault locations and vibration signals generated by different fault 
degrees. Therefore, by extracting the features of vibration signals, different faults 
can be classified more accurately. 

The commonly selected features for bearing fault diagnosis include 
kurtosis, margin, variance, root mean square, skewness, energy, etc. Reference 
[13] used many feature combinations, while this article only uses a single feature. 

The root mean square value of bearing vibration signals mostly has a good 
correlation with the waveform of irregular vibrations generated by bearing surface 
wear. Therefore, this article summarizes and selects the test results of different 
features through testing in Table 1. Here, the results of two additional methods are 
presented for summary and comparison: the cuckoo search algorithm optimization 
support vector machine(CS-SVM) and the genetic algorithm optimization support 
vector machine(GA-SVM). 

Table 1 
Test of different features 

Feature CS-SVM/(%) PSO-SVM/(%) GA-SVM/(%) 

Kurtosis 87.727 3 87.727 3 79.545 5 

Mean value 59.545 5 58.181 8 54.090 9 

Variance 91.727 3 91.454 5 79.090 9 

Skewness 72.272 7 71.818 2 67.272 7 

Root mean square 94.5786 95.636 4 87.272 8 
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Table 1 shows that the identification accuracy is highest when selecting root mean 
square features. Therefore, this article extracts the index of IMF as a feature for 
fault diagnosis. rmsX  is the root mean square of IMF. 
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The i-th sample value is represented by xi. The number of samples is represented 
by N. 

3. Fault feature classification 

3.1 Theoretical derivation process of SVM 
The fault classification process of SVM mainly involves constructing a 

suitable hyperplane equation )(xh (Eq.6) to distinguish different types of samples. 
The training sample data is defined as D={(x1, y1), (x2, y2)...（xn, yn)}, which 
contains several support vectors. A loss function φ(w, ξ) is designed to improve 
the classification effect of the constructed hyperplane equation. When the value of 
the loss function is minimized, solve w and b using Eq.(7). 
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where w is a matrix, b and C are fixed parameters. The number of support vectors 
is defined as q. And the relaxation factor of each data point is represented 
as )0( >ii ξξ . 

The solving equation for Eq.(7) is defined as: 
bxxKyaxh q

i iii +××=∑ =1
),()(                                   (8) 

Due to the high computational complexity of dot product operation in the feature 
vector space during the process of solving this equation, a kernel function K(x, xi) 
is designed to solve this problem. ia is a Lagrange multiplier. 

3.2 Inertial weight estimation of PSO based on BRB 
This section specifically explains the process of inertia weight estimation 

based on BRB. The following content will provide a detailed introduction to BRB 
modeling and inference process from three aspects: BRB construction, BRB 
inference, and BRB integration. 

3.2.1 BRB construction 
(1) Determine the antecedent attribute and its reference value 
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In the BRB model for particle inertia weight estimation, the inertia weight 
h
iw  of particle pi and the current performance evaluation index h

iJ at iteration 
times h are used as input feature variables f1 and f2, respectively. The change in 
inertia weight is used as the output of the model. The reference value set 
corresponding to input fm(m=1,2) is Am={Am,i|i=1,2,...,Km}, and the reference value 
set corresponding to the output feature variable is D={Dn|n=1,2,...,N}, 
Am,1<Am,2<....<Am,Km,D1<D2<...<DN. Km represents the number of reference levels 
for the m-th input feature variable, and N represents the number of reference 
levels for the output feature variable. 

(2) Construct belief rule base 
           Based on the antecedent attribute and its reference value determined in 
Step1, and combined with expert experience, construct a belief rule base 
containing L rules. The l-th rule Rl is defined as: 

1 2l 1 2 1 1, 2 2, ,R :IF ( is ) and ( is ) THEN {( , ), ( , ), , ( , )}l l
l l N N lf A f A D D Dβ β βL      (9) 

),...,1;2,1( LlmAl
m == represents the reference level of the m-th antecedent 

attribute in rule l,  and satisfies ),...,1(};,...,2,1|{ ,, NnKAAA lnmmm
l
m ===∈ βθθ  

represents the belief level assigned to the reference level in rule l. 
3.2.2 BRB inference 
(3) Calculate matching degree 
For the obtained input feature vector )],(),,([),( 21 ihfihfihX = , input 

),( ihfm can be converted into the form of a reliability distribution, and the 
corresponding weight ),( ihX   can be calculated: 
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Here, activate weight ]1,0[∈lw , mδ is relative attribute weight, l
ma is the 

matching level between the input fm(h,i) and its reference value under rule l. 
3.2.3 BRB integration 
(4) Rule combination 

           After obtaining the corresponding weights of the rules, the activation rules 
with corresponding weights are fused using ER. The belief level of the output 
reference value corresponding to the input feature vector X(h, i) can be calculated: 
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(5)Estimate particle inertia weight 
Calculate the change in inertia weight ),( ihw∆  based on the rule fusion 

results obtained in Step 4. The inertia weight h
iw 1+  of particle pi+1 is calculated at 

the h-th iteration process: 

1
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At this point, the estimation of the inertia weight of particle pi+1 in the h-th 
iteration process has been completed. 

3.3 The overall process flow of fault diagnosis 
An improved plan is proposed based on the traditional PSO model to 

address issues of premature convergence, low search accuracy, and extended 
computation time, which arise from the improper selection of particle inertia 
weights. BRB is established to infer the estimated value of the change in inertia 
weight through belief rule inference, and update the inertia weight to achieve 
adaptive adjustment of inertia weight. Subsequently, based on the updated particle 
inertia weights, the velocity, position, global optimal value, and individual 
optimal value of each particle are adjusted. Based on this inertia weight, the 
velocity, position and other parameters of each particle in PSO algorithm are 
adjusted and iterated sequentially until the stopping criteria are satisfied, then the 
optimization of PSO-SVM model parameters is realized. Specifically, input the 
actual data x into the model to obtain the output yo. The fitness value of particles is 
calculated based on model error. The optimal solution is determined based on 
fitness values and stopping criteria. Figure 1 shows a detailed flowchart. 

The flowchart reveals that the processing primarily comprises three 
components: (1) the detailed process of EEMD and SVM; (2) the optimization 
process of PSO; and (3) the updated model of inertia weight based on BRB. 

(1)The detailed process of EEMD and SVM. The process is primarily 
divided into three stages: analyzing and processing fault signal data, selecting and 
extracting fault features, and classifying fault types. Initially, the acquired sample 
datasets serve as input data for the model. The EEMD method is employed to 
decompose the sample data signals and calculate the IMFs. Subsequently, the 
calculated and extracted sample datasets are input into the SVM model for 
training and testing. 
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Fig. 1. The flowchart of the proposed  method 

 
(2)The optimization  process of  PSO. This process is mainly divided into: 

the initialization of the model,calculate the fitness value of particles and update 
the inertia weight of particles. Firstly, the PSO parameters are initialized based on 
empirical values. Secondly, the fitness of the particle swarm is calculated, and 
both the individual optimal value and the global optimal value are updated. The 
vectors and positions of the particle swarm are then updated using the designed 
BRB. If either the number of iterations or the accuracy meets the specified 
requirements, the loop process terminates. Otherwise, if both the number of 
iterations and accuracy do not meet the requirements, the loop continues to iterate 
and train. Finally, the output of the optimal identification parameters is utilized to 
optimize the SVM model. 

(3)The update model of inertia weight based on BRB. The linear decrease 
of inertia weights in PSO cannot adequately reflect the search process required to 
find the optimal solution. This process comprises three main stages: construction 
of the BRB, reasoning within the BRB, and integration of the BRB. Initially, the 
antecedent attributes and their reference values are determined through expert 
knowledge, and the BRB is constructed using multiple belief rules. The vectors 
and positions of the particles are then input into this belief rule base. Subsequently, 
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several belief rules are matched to varying degrees and activated. The activated 
rules are calculated using an evidence reasoning fusion algorithm, and the inertia 
weights of the particles are subsequently updated based on the fusion results. This 
entire process functions as a nested loop. 

4. Experiment and analysis 

4.1 Experimental condition 
The experimental environment and platform of the article are shown in the 

figure 2(Case Western Reserve University). The left side of the platform  
includes: fan and bearing,induction motor, drive and bearing. The central section 
of the platform consists of a coupling and a torque transducer/encoder. The right 
section of the platform is a dynamometer. The control electronics are not shown in 
the figure.Electric discharge machining technology was used to simulate pitting 
faults on bearings from weak to severe. The data from the measuring points were 
collected by sensors positioned near the bearings, which were the diagnostic 
objects at the motor drive end and the fan end[21]. 

 
Fig. 2. The experimental environment and platform 

This experiment collected a total of 10 types of sample data information, 
including normal data, inner ring fault (diameter 0.18mm, 0.36mm, 
0.53mm,0.71mm), rolling element fault (diameter 0.18mm), outer ring fault 
0.18mm (3-point position, 6-point position, 12 o'clock position), outer ring fault 
(diameter 0.36mm, 0.53mm).There are a total of 200 sets of sample data for each 
fault type. 104 sets are selected from these 200 sets  to train the important 
parameters of the model, and the other data is used to test the accuracy of this 
model. 

 4.2 Results and analysis 
  This study uses the EEMD method for data processing and extracts the 

root mean square of 14 transformed IMFs (if less than 14, use 0 padding) as 
feature inputs.The three methods(BRB-PSO-SVM, PSO-SVM, GA-SVM) were 
iterated 100 times, 200 times, and 500 times respectively.The test comparison 
results of average fitness and average accuracy are shown in Table 2. 
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Table 2 shows that compared to PSO-SVM and GA-SVM, BRB-PSO-
SVM has certain improvements in convergence speed and diagnostic accuracy. 
This is because PSO has fixed inertia weights during the search process, which 
makes it difficult to adjust the ability of global and local search well, resulting in 
lower identification performance than BRB-PSO. However, GA-SVM shows a 
linearly decreasing trend in inertia weight during the identification process. 
Although it improves the accuracy of identification to a certain extent, it cannot 
adapt well to nonlinear identification  problems. 

The belief rule in BRB-PSO is developed based on the traditional IF-
THEN rule, and its output is a structure of belief distribution, which has the ability 
 to model nonlinear uncertain input-output relationships. The input activated rules 
are fused and inferred by the Evidence Based Reasoning (ER) algorithm, which 
can obtain more refined parameter identification results. 

Table 2 
Test results of different algorithms 

Methods Iterations Average fitness 
value 

Average 
accuracy 

 
PSO-SVM 

100 0.7449 92.5 

200 0.8656 94.0 

500 0.3567 95.0 

 
GA-SVM 

100 0.9567 87.2 

200 0.9653 87.8 

500 0.9346 88.1 

 
BRB-PSO-SVM 

100 1.5673E-05 98.9 

200 1.5673E-05 99.9 

500 1.5673E-05 99.9 

To verify the effectiveness of this method, 960 sets of test data are applied to the 
above three methods, and Figure 3-5 show the detailed comparative diagnostic 
results of the experimental data.The red solid line represents the actual fault type, 
while the blue dashed line illustrates the fault type diagnosis results obtained from 
the corresponding method. 

(1)GA-SVM mistakenly diagnoses non-fault type as fault type, and 
misdiagnosis can also occur between faults of different severity levels on the inner 
ring, rolling elements at different fault positions, and faults of different severity 
levels on the outer ring. 
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Fig. 3.  Test accuracy of GA-SVM 

          
Fig. 4.  Test accuracy of PSO-SVM 

 
Fig. 5.  Test accuracy of BRB-PSO-SVM 

(2)PSO-SVM is very accurate in diagnosing non-fault type, faults at 
different positions of rolling elements, and faults of different severity levels on the 
outer ring, but it may lead to misdiagnosis between faults of different severity 
levels on the inner ring. 
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(3)BRB-PSO-SVM is highly accurate in diagnosing faults at different 
locations and severity levels. 

This article adopted the method of taking the average of 50 experiments 
for result comparison. The comparison of different classification methods is 
shown in Table 3. 

Table 3 
 Comparison of diagnostic accuracy and time consumption of different methods 

Methods Diagnostic accuracy(%) 50 times consumption(s) 

PSO-SVM 95.5 16.2 

GA-SVM 88.7 23.84 

BRB-PSO-SVM 100 23.61 

Experiments have shown that although the diagnostic time of BRB-PSO-
SVM is not the shortest, it is within an acceptable range.Under the condition of 
not increasing the diagnostic time too much, the diagnostic accuracy of BRB-
PSO-SVM is superior to traditional PSO-SVM and GA-SVM. 

 
 4.3 The other experimental platform and its result analysis 
This study conducted experiments in other experimental environment and 

platform as shown in the figure 6 (Cincinnati University). On the left side of the 
figure is accelerometer, the middle part of the figure is radial load, and the right 
part of the figure is thermocouples. This data sets are divided into normal data, 
inner ring fault, outer ring fault, and rolling fault[22]. The results generated by the 
new experimental environment and platform are shown in Table 4. 

 
Fig. 6. The experimental platform structure 

Table 4 
 Comparison of diagnostic accuracy and time consumption of different methods 

Methods Diagnostic accuracy(%) 50 times consumption(s) 
PSO-SVM 96.5 18.21 

GA-SVM 89.6 26.83 

BRB-PSO-SVM 98.97 21.71 
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Experiments on bearing data from the Cincinnati University have shown 
that BRB-PSO-SVM performs better than PSO-SVM and GA-SVM on different 
data platforms. 

5. Conclusion 
This article uses the EEMD method to decompose signal data and extracts 

the root mean square of IMF components as features. On the basis of the 
traditional PSO optimization model, an improvement plan is proposed to 
overcome premature convergence, low search accuracy and long computation 
time  caused by improper selection of particle inertia weights. BRB is established 
to infer the estimated value of the change in inertia weight through belief rule 
inference, and update the inertia weight to achieve adaptive adjustment of inertia 
weight. Subsequently, based on the updated particle inertia weights, the velocity, 
position, global optimal value, and individual optimal value of each particle are 
adjusted. The above process is iterated sequentially until the stopping condition is 
met, achieving optimization of the SVM model. Finally, data sets from different 
experimental environments and platforms are used for validation, which not only 
accurately identified the location of bearing faults, but also outperformed 
traditional PSO-SVM and GA-SVM in terms of accuracy. 

This paper ends with the following future research ideas:  (1)Future 
research will use detection data from real complex environments to further test the 
robustness of this method. Due to the differences in data distribution and fault 
features between detection data in real complex environments and detection data 
in experimental simulation environments, the future work will further improve the 
overall performance of this method based on these differences. (2)The proposed 
method is a meaningful attempt to overcome linear decrease of inertia weights 
cannot truly reflect the actual search process required to find the optimal solution. 
However, the unbalance of fault data will bring new challenges to this method. 
Therefore, the future work will attempt knowledge transfer and reinforcement 
learning methods to improve the cross domain adaptability of the model.  

(3)This article is a attempt to use expert knowledge to guide data-driven 
fault diagnosis method. The next work will explore more ideas that combine 
knowledge and data to improve this field technology. 
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