

GENERALIZED NOTIONS OF AMENABILITY AND CHARACTER AMENABILITY OF A CERTAIN CLASS OF BANACH ALGEBRAS

H. Sadeghi Nahrekhala¹

Suppose A is a Banach algebra and $\epsilon \in \overline{B_1^{(0)}}$ (the closed unit ball of A). In this paper we generalize the notions of amenability, ϕ -amenability, ϕ -contractibility, biprojectivity and biflatness of a new Banach algebra A_ϵ . Moreover we investigate ϕ -pseudo amenability, ϕ -Johnson amenability, ϕ -inner amenability, ϕ -biflatness and ϕ -biprojectivity of A_ϵ .

Keywords: Banach algebra, approximate amenability, approximate ϕ -amenability, approximate ϕ -contractibility, approximate biprojectivity, approximate biflatness.

MSC2020: Primary: 46H25, 46M10; Secondary: 46B28.

Suppose that A is a Banach algebra and X is a Banach A -bimodule. A derivation from A into X is a linear operator $D : A \rightarrow X$ satisfying

$$D(ab) = D(a) \cdot b + a \cdot D(b) \quad (a, b \in A).$$

For every $x \in X$ we define ad_x by $ad_x(a) = a \cdot x - x \cdot a$ ($a \in A$). Note that ad_x is a derivation which is called an inner derivation. A derivation D is said to be inner if there exists $x \in X$ such that $D(a) = ad_x(a)$ ($a \in A$) and is approximately inner if there exists a net $(x_i) \subseteq X$ such that $D(a) = \lim_\alpha ad_{x_\alpha}(a)$ ($a \in A$). A Banach algebra A is amenable if for any Banach A -bimodule X , every continuous derivation $D : A \rightarrow X^*$ is inner and A is called approximately amenable if D is approximately inner.

The concepts of approximate amenability and approximate weak amenability of Banach algebras was introduced and extensively studied by Ghahramani and Loy in [3]. In [2] they also introduced and studied the notions of approximate semi-amenable and approximate semi-contractible Banach algebras.

Let A be a Banach algebra and $\phi \in \Delta(A)$ (the character space of A). Kaniuth et al. [8] have introduced and studied the interesting notion of ϕ -amenability (see also [9]). A Banach algebra A is called ϕ -amenable if for every Banach A -bimodule X with the left module action $a \cdot x = \phi(a)x$ ($a \in A, x \in X$), every continuous derivation from A into X^* is inner. Hu et al. [5] introduced and studied the notion of ϕ -contractibility of A . In fact, A is called ϕ -contractible if there exists a (right) ϕ -diagonal for A ; that is, an element m in the projective tensor product $A \widehat{\otimes} A$ such that $\phi(\pi_A(m)) = 1$ and $a \cdot m = \phi(a)m$ for all $a \in A$, where π_A denotes the product morphism from $A \widehat{\otimes} A$ into A given by $\pi_A(a \otimes b) = ab$ ($a, b \in A$). Furthermore, several authors have investigated the concepts of essential ϕ -amenability, essential left ϕ -contractibility, ϕ -pseudo amenability, ϕ -Johnson amenability and ϕ -inner amenability of Banach algebras; see for example [12], [14], [11], [15] and [6].

Moreover, H. Pourmahmood Aghababa et al. [13] was introduced and studied the concepts of approximate character amenability and approximate character contractibility of Banach algebras and investigated the relations between these concepts.

Young Researchers and Elite Club, Fereydan Branch, Islamic Azad University, Isfahan, Iran e-mail: h.sadeghi9762@gmail.com

Suppose A is a Banach algebra and $\varepsilon \in A$ with $\|\varepsilon\| \leq 1$. Recently, authors in [7], defined a new product on A by $a \odot b = a\varepsilon b$ ($a, b \in A$). A with this product is denoted by A_ε . They studied the algebraic properties, arens regularity and amenability of A_ε . Also A. R. Khoddami in [10], investigated the relation between biflatness, biprojectivity, φ -amenability and φ -contractibility of A and A_ε .

In this paper, we study the relation between approximate amenability, approximate semi-amenability (approximate semi-contractibility), approximate weak amenability, approximate φ -amenability, approximate φ -contractibility, ϕ -pseudo amenability (ϕ -Johnson amenability), ϕ -inner amenability, approximate biflatness (ϕ -biflatness) and approximate biprojectivity (ϕ -biprojectivity) of A and A_ε .

1. Generalized notions of amenability and character amenability of A_ε

We commence this section with the following definition:

Definition 1.1. [7] Let A be a Banach algebra and $\epsilon \in \overline{B_1^{(0)}}$ (the closed unit ball of A) with $\|\epsilon\| \leq 1$. Then A with the product $a \odot b = a\epsilon b$ ($a, b \in A$) is an associative Banach algebra which is denoted by A_ϵ .

Let A be a Banach algebra. The net $\{e_\alpha\}$ in A is called a ϕ -weak approximate identity if, for every $a \in A$, $|\phi(e_\alpha a) - \phi(a)| \rightarrow 0$.

Note that if $\phi \in \Delta(A)$, then $\psi = \phi(\epsilon)\phi \in \Delta(A_\epsilon)$ (see Proposition 2.4 of [7]).

Proposition 1.1. Let A be a Banach algebra, $\phi \in \Delta(A)$, $\phi(\epsilon) \neq 0$ and $\psi = \phi(\epsilon)\phi$. Then A has a ϕ -weak approximate identity if and only if A_ϵ has a ψ -weak approximate identity.

Proof. Let $\{e_\alpha\}$ be a ϕ -weak approximate identity for A . Then $|\phi(e_\alpha a) - \phi(a)| \rightarrow 0$ for all $a \in A$. Suppose that $e'_\alpha = \frac{e_\alpha}{\phi(\epsilon)}$ for all α . So for every $a \in A$, we have

$$\begin{aligned} |\psi(e'_\alpha \odot a) - \psi(a)| &= |\psi\left(\frac{e_\alpha}{\phi(\epsilon)} \odot a\right) - \psi(a)| \\ &= |\phi(\epsilon)\phi(e_\alpha a) - \phi(\epsilon)\phi(a)| \\ &= |\phi(\epsilon)| |\phi(e_\alpha a) - \phi(a)| \rightarrow 0. \end{aligned}$$

It follows that $\{e'_\alpha\}$ is a ψ -weak approximate identity for A_ϵ .

Conversely, let $\{e'_\alpha\}$ be a ψ -weak approximate identity for A_ϵ . Hence $|\psi(e'_\alpha \odot a) - \psi(a)| \rightarrow 0$ for all $a \in A$. Choose $e_\alpha = e'_\alpha \epsilon$ for all α . For every $a \in A$

$$\begin{aligned} |\phi(e_\alpha a) - \phi(a)| &= |\phi(e'_\alpha \epsilon a) - \phi(a)| \\ &= \left| \frac{1}{\phi(\epsilon)} \right| |\phi(\epsilon)\phi(e'_\alpha \epsilon a) - \phi(\epsilon)\phi(a)| \\ &= \left| \frac{1}{\phi(\epsilon)} \right| |\psi(e'_\alpha \odot a) - \psi(a)| \rightarrow 0. \end{aligned}$$

Therefore $\{e_\alpha\}$ is a ϕ -weak approximate identity for A . □

Theorem 1.1. Let A be a Banach algebra and ϵ be an idempotent element of the algebraic center of A . Then the following statements are valid:

- (i) If A_ϵ is approximately amenable, then so is A .
- (ii) If A_ϵ is approximately semi-amenable, then so is A .

Proof. Suppose that A_ϵ is approximately amenable. Then $A_\epsilon^\#$ (the unitalization of A_ϵ) is approximately amenable by Proposition 2.4 of [3]. So, Proposition 6.1 of [4] implies that $A_\epsilon^\# \oplus_1 A_\epsilon^\#$ is approximately amenable. Define $h : A_\epsilon^\# \oplus_1 A_\epsilon^\# \rightarrow A^\#$ by

$$h((a, \lambda), (b, \lambda')) = (a, \lambda) \quad ((a, \lambda), (b, \lambda') \in A_\epsilon^\#).$$

Clearly h is a surjection map. Since A_ϵ is approximately amenable, by Lemma 2.2 of [3], A_ϵ has left and right approximate identities. Let (e_α) be a right approximate identities for A_ϵ . So $\{\epsilon e_\alpha\}$ is a right approximate identities for A and thus for every $(a_1, \lambda_1), (a_2, \lambda_2), (b_1, \lambda'_1)$ and $(b_2, \lambda'_2) \in A_\epsilon^\#$, we get

$$\begin{aligned}
& h((a_1, \lambda_1), (b_1, \lambda'_1)) h((a_2, \lambda_2), (b_2, \lambda'_2)) \\
&= (a_1, \lambda_1)(a_2, \lambda_2) \\
&= (a_1 a_2 + \lambda_1 a_2 + \lambda_2 a_1, \lambda_1 \lambda_2) \\
&= \lim_{\alpha} (a_1 a_2 \epsilon e_\alpha + \lambda_1 a_2 + \lambda_2 a_1, \lambda_1 \lambda_2) \\
&= \lim_{\alpha} (a_1 \epsilon a_2 \epsilon e_\alpha + \lambda_1 a_2 + \lambda_2 a_1, \lambda_1 \lambda_2) \\
&= (a_1 \epsilon a_2 + \lambda_1 a_2 + \lambda_2 a_1, \lambda_1 \lambda_2) \\
&= h((a_1 \odot a_2 + \lambda_1 a_2 + \lambda_2 a_1, \lambda_1 \lambda_2), (b_1 \odot b_2 + \lambda'_1 b_2 + \lambda'_2 b_1, \lambda'_1 \lambda'_2)) \\
&= h((a_1, \lambda_1), (b_1, \lambda'_1)) ((a_2, \lambda_2), (b_2, \lambda'_2)).
\end{aligned}$$

That is h is a homomorphism. Moreover, for every (a, λ) and $(b, \lambda') \in A_\epsilon^\#$,

$$\begin{aligned}
\|h((a, \lambda), (b, \lambda'))\| &= \|(a\epsilon, \lambda)\| \leq \|(a, \lambda)\| \\
&\leq \|(a, \lambda)\| + \|(b, \lambda')\| \\
&= \|((a, \lambda), (b, \lambda'))\|.
\end{aligned}$$

Consequently, h is a continuous epimorphism. Therefore, from Proposition 2.2 of [3], it follows that $A^\#$ is approximately amenable. Again Proposition 2.4 of [3] yields that A is approximately amenable.

(ii) Assume that A_ϵ is approximately semi-amenable. By Proposition 2.1 of [17], $A_\epsilon^\#$ is approximately semi-amenable and so Theorem 5.1 of [2] yields that $A_\epsilon^\# \oplus_1 A_\epsilon^\#$ is approximately semi-amenable. By Lemma 2.2 of [17], A_ϵ has an approximate identity. Now if we define h as part (i). Then Proposition 3.11 of [2], implies that $A^\#$ is approximately semi-amenable. Now from the Proposition 2.1 of [17], we conclude that A is approximately semi-amenable. \square

Theorem 1.2. *Let A be an unital Banach algebra and ϵ be an invertible element of A . Then the following statements are valid:*

- (i) *If A is approximately amenable, then so is A_ϵ .*
- (ii) *If A is approximately semi-amenable, then so is A_ϵ .*
- (iii) *If A is approximate semi-contractible, then so is A_ϵ .*
- (iv) *Let A be a commutative Banach algebra. If A is approximately weakly amenable, then so is A_ϵ .*

Proof. Suppose that A is approximately amenable. Then by Proposition 6.1 of [4], $A \oplus_1 A$ is approximately amenable. Define $h : A \oplus_1 A \longrightarrow A_\epsilon$ by

$$h(a, b) = a\epsilon^{-1} \quad (a \in A).$$

For every $a_1, a_2 \in A$ and $b_1, b_2 \in B$, we have

$$\begin{aligned}
h(a_1, b_1) \odot h(a_2, b_2) &= a_1 \epsilon^{-1} \odot a_2 \epsilon^{-1} = a_1 a_2 \epsilon^{-1} \\
&= h(a_1 a_2, b_1 b_2) = h((a_1, b_1)(a_2, b_2)),
\end{aligned}$$

and for every $a \in A_\epsilon$, $h(a\epsilon, b) = a\epsilon\epsilon^{-1} = a$. So h is an epimorphism. Since A is unital and ϵ is invertible, from Proposition 2.3 of [7], it follows that ϵ^{-1} is the unit of A_ϵ . Thus

$\|\epsilon^{-1}\| \leq 1$. Hence for every $a, b \in A$,

$$\|h(a, b)\| = \|a\epsilon^{-1}\| \leq \|a\| \leq \|a\| + \|b\| = \|(a, b)\|.$$

Consequently, h is continuous. Thus h is a continuous epimorphism. Therefore, by using Proposition 2.2 of [3], we deduce that A_ϵ is approximately amenable.

(ii) Suppose that A is approximately semi-amenable. By Theorem 5.1 of [2], $A \oplus_1 A$ is approximately semi-amenable. Let h be defined as part (i). Then Proposition 3.11 of [2], implies that A_ϵ is approximately semi-amenable.

(iii) Suppose that A is approximate semi-contractible. By a similar argument as part (ii), if we apply Theorem 2.14 of [17] and Proposition 3.11 of [2], one can prove that A_ϵ is approximate semi-contractible.

(iv) Suppose that A is approximately weakly amenable. Then $A \oplus_1 A$ is approximately weakly amenable by Theorem 2.3 of [18]. Let h be defined as part (i). Therefore approximate weak amenability of A_ϵ follows from Theorem 2.1 of [1].

□

Definition 1.2. [13] A Banach algebra A is called ϕ -approximately amenable if there exists a net $\{m_\alpha\} \subseteq A^{**}$ such that $m_\alpha(\phi) = 1$ and $\|a \cdot m_\alpha - \phi(a)m_\alpha\| \rightarrow 0$ for all $a \in A$.

Also A is called ϕ -approximately contractible if there exists a net $\{m_\alpha\} \subseteq A$ such that $\phi(m_\alpha) = 1$ and $\|am_\alpha - \phi(a)m_\alpha\| \rightarrow 0$ for all $a \in A$.

Proposition 1.2. Let A be a Banach algebra and $\phi \in \Delta(A)$. Then the following statements are valid:

- (i) If A is approximately ϕ -contractible and $\phi(\epsilon) \neq 0$, then A_ϵ is approximately ψ -contractible, where $\psi = \phi(\epsilon)\phi$.
- (ii) If A_ϵ is unital and approximately ψ -contractible, then A is approximately ϕ -contractible, where $\phi(a) = \psi(\epsilon^{-1}a)$ ($a \in A$).

Proof. (i) Suppose that A is approximately ϕ -contractible. Then there exists a net $(m_\alpha) \subset A$ such that $\phi(m_\alpha) = 1$ and $\|am_\alpha - \phi(a)m_\alpha\| \rightarrow 0$ for all $a \in A$. Let $n_\alpha = \frac{m_\alpha}{\phi(\epsilon)}$. Hence for every $a \in A$

$$\begin{aligned} \|a \odot n_\alpha - \psi(a)n_\alpha\| &= \|a\epsilon n_\alpha - \phi(\epsilon)\phi(a)n_\alpha\| \\ &= \|a\epsilon \frac{m_\alpha}{\phi(\epsilon)} - \phi(a)m_\alpha\| \\ &= \left\| \frac{a\epsilon}{\phi(\epsilon)} m_\alpha - \phi\left(\frac{a\epsilon}{\phi(\epsilon)}\right) m_\alpha \right\| \rightarrow 0. \end{aligned}$$

Also

$$\psi(n_\alpha) = \psi\left(\frac{m_\alpha}{\phi(\epsilon)}\right) = \frac{1}{\phi(\epsilon)} \phi(\epsilon)\phi(m_\alpha) = 1,$$

for all α . So A_ϵ is approximately ψ -contractible.

(ii) Suppose that A_ϵ is unital and approximately ψ -contractible. Then there exists a net $(n_\alpha) \subset A_\epsilon$ such that $\psi(n_\alpha) = 1$ and $\|a \odot n_\alpha - \psi(a)n_\alpha\| \rightarrow 0$ for all $a \in A_\epsilon$. Since $1 = \psi(n_\alpha) = \phi(\epsilon)\phi(n_\alpha)$ it follows that $\phi(n_\alpha) \neq 0$. Also since A_ϵ is unital, by Proposition 2.3 of [7], ϵ^{-1} is the unit of A_ϵ and thus $\psi(\epsilon^{-1}) \neq 0$. Choose $m_\alpha = \frac{n_\alpha}{\phi(n_\alpha)}$. Then $\phi(m_\alpha) = 1$

for every α and for every $a \in A$, we obtain

$$\begin{aligned} \|am_\alpha - \phi(a)m_\alpha\| &= \|a \frac{n_\alpha}{\phi(n_\alpha)} - \phi(a) \frac{n_\alpha}{\phi(n_\alpha)}\| \\ &= \|a \frac{n_\alpha}{\psi(\epsilon^{-1}n_\alpha)} - \phi(a) \frac{n_\alpha}{\psi(\epsilon^{-1}n_\alpha)}\| \\ &= \left| \frac{1}{\psi(\epsilon^{-1})} \right| \|an_\alpha - \phi(a)n_\alpha\| \\ &= \left| \frac{1}{\psi(\epsilon^{-1})} \right| \|ae^{-1} \odot n_\alpha - \psi(a\epsilon^{-1})n_\alpha\| \longrightarrow 0. \end{aligned}$$

Therefore A is approximately ϕ -contractible and the proof is now complete. \square

The proof of the following proposition is omitted, since it can be proved in the same direction of Proposition 1.2.

Proposition 1.3. *Let A be a Banach algebra and $\phi \in \Delta(A)$. Then the following statements are valid:*

- (i) *If A is approximately ϕ -amenable and $\phi(\epsilon) \neq 0$, then A_ϵ is approximately ψ -amenable, where $\psi = \phi(\epsilon)\phi$.*
- (ii) *If A_ϵ is unital and approximately ψ -amenable, then A is approximately ϕ -amenable, where $\phi(a) = \psi(\epsilon^{-1}a)$ ($a \in A$).*

Definition 1.3. [15] *Let A be a Banach algebra and $\phi \in \Delta(A)$. A is called ϕ -Johnson amenable if there exists a bounded net $\{m_\alpha\} \subseteq A \widehat{\otimes} A$ such that $\phi \circ \pi_A(m_\alpha) \longrightarrow 1$ and $\|a \cdot m_\alpha - m_\alpha \cdot a\| \longrightarrow 0$, for every $a \in A$.*

Definition 1.4. [11] *Let A be a Banach algebra and $\phi \in \Delta(A)$. A is called ϕ -pseudo amenable if there exists a net $\{m_\alpha\} \subseteq A \widehat{\otimes} A$ such that $\phi \circ \pi_A(m_\alpha) \longrightarrow 1$ and $\|a \cdot m_\alpha - \phi(a)m_\alpha\| \longrightarrow 0$, for every $a \in A$.*

Before turning the next theorem we note that if A is an unital Banach algebra and $\epsilon \in \overline{B_1^{(0)}}$, then $A = (A_\epsilon)_{\epsilon^{-2}}$ (see Proposition 2.3 of [10]).

Theorem 1.3. *Let A be a Banach algebra, A_ϵ be unital and let $\phi \in \Delta(A)$ be such that $\phi(\epsilon) \neq 0$. Then the following statements are valid:*

- (i) *A is ϕ -Johnson amenable if and only if A_ϵ is ψ -Johnson amenable, where $\psi = \phi(\epsilon)\phi$.*
- (ii) *A is ϕ -pseudo amenable if and only if A_ϵ is ψ -pseudo amenable, where $\psi = \phi(\epsilon)\phi$.*

Proof. (i) Suppose that A is ϕ -Johnson amenable. Then there exists a bounded net $\{m_\alpha\} \subseteq A \widehat{\otimes} A$ such that $\phi \circ \pi_A(m_\alpha) \longrightarrow 1$ and $\|a \cdot m_\alpha - m_\alpha \cdot a\| \longrightarrow 0$, for every $a \in A$. Let $k : A_\epsilon \widehat{\otimes} A_\epsilon \longrightarrow A_\epsilon \widehat{\otimes} A_\epsilon$ be the bounded linear map such that $k(a \otimes c) = ae^{-1} \otimes c$ ($a, c \in A_\epsilon$). k is an A_ϵ -bimodule map (see the proof of Theorem 2.3 of [10]). Consider $n_\alpha = \frac{k(m_\alpha)}{\phi(\epsilon)}$ and let $m_\alpha = \sum_{i=0}^{\infty} a_i^\alpha \otimes b_i^\alpha$. So,

$$\begin{aligned} \psi \circ \pi_{A_\epsilon}(n_\alpha) &= \psi \circ \pi_{A_\epsilon}\left(\frac{k(m_\alpha)}{\phi(\epsilon)}\right) = \psi \circ \pi_{A_\epsilon}\left(\frac{\sum_{i=0}^{\infty} a_i^\alpha \epsilon^{-1} \otimes b_i^\alpha}{\phi(\epsilon)}\right) \\ &= \frac{\psi}{\phi(\epsilon)} \sum_{i=0}^{\infty} a_i^\alpha \epsilon^{-1} \otimes b_i^\alpha = \frac{\psi}{\phi(\epsilon)} \sum_{i=0}^{\infty} a_i^\alpha b_i^\alpha \\ &= \phi \circ \pi_A(m_\alpha) \longrightarrow 1. \end{aligned}$$

Moreover, for every $a \in A$, we have

$$\begin{aligned}
\|a \odot n_\alpha - n_\alpha \odot a\| &= \|a \odot \frac{k(m_\alpha)}{\phi(\epsilon)} - \frac{k(m_\alpha)}{\phi(\epsilon)} \odot a\| \\
&= \frac{1}{|\phi(\epsilon)|} \|a \odot k(m_\alpha) - k(m_\alpha) \odot a\| \\
&= \frac{1}{|\phi(\epsilon)|} \|k(a \odot m_\alpha) - k(m_\alpha \odot a)\| \\
&\leq \frac{\|k\|}{|\phi(\epsilon)|} \|a \epsilon m_\alpha - m_\alpha \epsilon a\| \\
&= \frac{\|k\|}{|\phi(\epsilon)|} \|a \epsilon \cdot m_\alpha - m_\alpha \cdot \epsilon a\| \longrightarrow 0.
\end{aligned}$$

Therefore A_ϵ is ψ -Johnson amenable.

Conversely, suppose that A_ϵ is ψ -Johnson amenable. Since $(A_\epsilon)_{\epsilon^{-2}} = A$ and $\phi = \psi(\epsilon^{-2})\psi$, the proof is an immediate consequence of above argument.

(ii) Suppose that A is ϕ -pseudo amenable. So there exists a net $\{m_\alpha\} \subseteq A \widehat{\otimes} A$ such that $\phi \circ \pi_A(m_\alpha) \longrightarrow 1$ and $\|a \cdot m_\alpha - \phi(a)m_\alpha\| \longrightarrow 0$, for every $a \in A$. Choose $n_\alpha = \frac{k(m_\alpha)}{\phi(\epsilon)}$. Similar arguments to the proof of part (i), show that $\psi \circ \pi_{A_\epsilon}(n_\alpha) \longrightarrow 1$ and for every $a \in A$, we get

$$\begin{aligned}
\|a \odot n_\alpha - \psi(a)n_\alpha\| &= \|a \odot \frac{k(m_\alpha)}{\phi(\epsilon)} - \psi(a)\frac{k(m_\alpha)}{\phi(\epsilon)}\| \\
&= \|k(a \odot \frac{m_\alpha}{\phi(\epsilon)}) - k(\psi(a)\frac{m_\alpha}{\phi(\epsilon)})\| \\
&\leq \|k\| \|a \odot \frac{m_\alpha}{\phi(\epsilon)} - \psi(a)\frac{m_\alpha}{\phi(\epsilon)}\| \\
&\leq \|k\| \|\frac{a\epsilon}{\phi(\epsilon)} \cdot m_\alpha - \phi(\frac{a\epsilon}{\phi(\epsilon)})m_\alpha\| \longrightarrow 0.
\end{aligned}$$

Consequently, A_ϵ is ψ -pseudo amenable.

Conversely, suppose that A_ϵ is ψ -pseudo amenable. Since $(A_\epsilon)_{\epsilon^{-2}} = A$ and $\phi = \psi(\epsilon^{-2})\psi$, it follows that A is ϕ -pseudo amenable. \square

Definition 1.5. [6] Let A be a Banach algebra, $\varphi \in \Delta(A)$ and $A_\varphi = \{a \in A : \phi(a) = 1\}$. A is called ϕ -inner amenable if there exists a bounded linear functional m on A^* satisfying $m(\phi) = 1$ and $m(f \cdot a) = m(a \cdot f)$ for all $f \in A^*$ and $a \in A_\varphi$.

Note that A is ϕ -inner amenable if and only if there is a bounded net (v_α) in A_φ such that $\|v_\alpha a - a v_\alpha\| \longrightarrow 0$ for all $a \in A_\varphi$ (see Theorem 2.1 of [6]).

Proposition 1.4. Let A be a Banach algebra and let $\phi \in \Delta(A)$ be such that $\phi(\epsilon) \neq 0$. If A is ϕ -inner amenable, then A_ϵ is $\psi = \phi(\epsilon)\phi$ -inner amenable. In the case that ϵ is an element of the algebraic center of A , the converse is also valid.

Proof. Suppose that A is ϕ -inner amenable. Then there is a bounded net (v_α) in A_φ such that $\|v_\alpha a - a v_\alpha\| \longrightarrow 0$ for all $a \in A_\varphi$. Choose $w_\alpha = \frac{v_\alpha}{\phi(\epsilon)}$. Hence, for every α

$$\psi(w_\alpha) = \psi\left(\frac{v_\alpha}{\phi(\epsilon)}\right) = \phi(v_\alpha) = 1.$$

That is $w_\alpha \in (A_\epsilon)_\psi$. Now let $a \in A$ be such that $\psi(a) = 1$. So

$$\phi(\epsilon a) = \phi(\epsilon)\phi(a) = \psi(a) = 1,$$

and it follows that

$$\|w_\alpha \odot a - a \odot w_\alpha\| = \left\| \frac{v_\alpha}{\phi(\epsilon)} a\epsilon - a\epsilon \frac{v_\alpha}{\phi(\epsilon)} \right\| = \left| \frac{1}{\phi(\epsilon)} \right| \|v_\alpha a\epsilon - a\epsilon v_\alpha\| \longrightarrow 0.$$

This means that $\|w_\alpha \odot a - a \odot w_\alpha\| \longrightarrow 0$ for all $a \in (A_\epsilon)_\psi$. Therefore A_ϵ is ψ -inner amenable.

Conversely, Suppose that ϵ is an element of the algebraic center of A and A_ϵ is ψ -inner amenable. So there is a bounded net (w_α) in $(A_\epsilon)_\psi$ such that $\|w_\alpha \odot a - a \odot w_\alpha\| \longrightarrow 0$ for all $a \in (A_\epsilon)_\psi$. Define $v_\alpha := \epsilon w_\alpha$. Thus $\phi(v_\alpha) = \phi(\epsilon)\phi(w_\alpha) = \psi(w_\alpha) = 1$. Also since $\psi(\frac{a}{\phi(\epsilon)}) = 1$ for every $a \in A_\phi$, it follows that

$$\begin{aligned} \|v_\alpha a - av_\alpha\| &= \|\epsilon w_\alpha a - a\epsilon w_\alpha\| \\ &= \|w_\alpha \odot a - a \odot w_\alpha\| \\ &= |\phi(\epsilon)| \|w_\alpha \odot \frac{a}{\phi(\epsilon)} - \frac{a}{\phi(\epsilon)} \odot w_\alpha\| \longrightarrow 0. \end{aligned}$$

Therefore A is ϕ -inner amenable. \square

2. Generalized biprojectivity and biflatness of A_ϵ

We start this section with the following definitions:

Definition 2.1. [16] A Banach algebra A is called approximately biprojective if there is a net $\{\rho_\alpha\} \subseteq A$ of continuous A -bimodule maps from A into $A \widehat{\otimes} A$ such that $\pi_A \circ \rho_\alpha(a) \longrightarrow a$.

A is called approximately biflat if there is a net $\{\theta_\alpha\}$ of continuous A -bimodule maps from $(A \widehat{\otimes} A)^*$ into A^* such that $w^* - \lim_\alpha \theta_\alpha \circ \pi_{A^*} = id_{A^*}$ where w^* is the weak* operator topology on $B(A^*)$.

Let $\phi \in \Delta(A)$. Then ϕ has a unique extension on A^{**} denoted by $\tilde{\phi}$ and defined by $\tilde{\phi}(F) = F(\phi)$ for every $F \in A^{**}$. Clearly this extension remains to be a character on A^{**} .

Definition 2.2. [15] Let A be a Banach algebra and $\phi \in \Delta(A)$. A is called ϕ -biprojective if there exists a continuous A -bimodule map $\rho : A \longrightarrow A \widehat{\otimes} A$ such that $\phi \circ \pi_A \circ \rho = \phi$.

Also A is called ϕ -biflat if there exists a continuous A -bimodule map $\rho : A \longrightarrow (A \widehat{\otimes} A)^{**}$ such that $\tilde{\phi} \circ \pi_A^{**} \circ \rho = \phi$.

Note that if A is a Banach algebra and $\epsilon \in \overline{B_1^{(0)}}$, then $f \odot a = f \cdot a\epsilon$ and $a \odot f = \epsilon a \cdot f$, for all $a \in A_\epsilon$ and $f \in A_\epsilon^*$. Also $a \odot u = a\epsilon \cdot u$ and $u \odot a = u \cdot \epsilon a$ for every $a \in A_\epsilon$ and $u \in A_\epsilon \widehat{\otimes} A_\epsilon$ (see Proposition 2.4 of [10]).

The proof idea of the following Theorem is taken from the proof of Theorem 2.3 and Theorem 2.4 of [10].

Theorem 2.1. Let A be a Banach algebra and A_ϵ be unital. Then the following statements are valid:

- (i) A is approximately biprojective if and only if A_ϵ is approximately biprojective.
- (ii) A is approximately biflat if and only if A_ϵ is approximately biflat.

Proof. (i) Suppose that A is a approximately biprojective Banach algebra. Then there exists a net $\{\rho_\alpha\}$ of continuous A -bimodule maps from A into $A \widehat{\otimes} A$ such that $\pi_A \circ \rho_\alpha(a) \longrightarrow a$ for every $a \in A$. Set $\rho_\alpha^\epsilon = k \circ \rho_\alpha$ such that $k : A_\epsilon \widehat{\otimes} A_\epsilon \longrightarrow A_\epsilon \widehat{\otimes} A_\epsilon$ be the bounded linear map defined by $k(a \otimes c) = a\epsilon^{-1} \otimes c$ ($a, c \in A_\epsilon$). By the same argument as in the proof of the theorem 2.3 of [10], one can show that ρ_α^ϵ is an A_ϵ -bimodule map for every α . Let

$\rho_\alpha(a) = \sum_{i=1}^{\infty} a_i^\alpha \otimes b_i^\alpha$. So, for every $a \in A$, we have

$$\begin{aligned}
\lim_{\alpha} \left(\pi_{A_\epsilon} \circ \rho_\alpha^\epsilon(a) \right) &= \lim_{\alpha} \left(\pi_{A_\epsilon} \circ k \circ \rho_\alpha(a) \right) \\
&= \lim_{\alpha} \left(\pi_{A_\epsilon} \circ k \left(\sum_{i=1}^{\infty} a_i^\alpha \otimes b_i^\alpha \right) \right) \\
&= \lim_{\alpha} \left(\pi_{A_\epsilon} \left(\sum_{i=1}^{\infty} a_i^\alpha \epsilon^{-1} \otimes b_i^\alpha \right) \right) \\
&= \lim_{\alpha} \left(\sum_{i=1}^{\infty} a_i^\alpha \epsilon^{-1} \odot b_i^\alpha \right) = \lim_{\alpha} \left(\sum_{i=1}^{\infty} a_i^\alpha b_i^\alpha \right) \\
&= \lim_{\alpha} \left(\pi_A \left(\sum_{i=1}^{\infty} a_i^\alpha \otimes b_i^\alpha \right) \right) = \lim_{\alpha} \left(\pi_A(\rho_\alpha(a)) \right) \\
&= \lim_{\alpha} \left(\pi_A \circ \rho_\alpha(a) \right) = a.
\end{aligned}$$

Therefore A_ϵ is approximately biprojective.

Conversely, suppose that A_ϵ is approximately biprojective. Since $(A_\epsilon)_{\epsilon-2} = A$, from the above argument we conclude that A is approximately biprojective.

(ii) Suppose that A is approximately biflat. Then there is a net $\{\theta_\alpha\}_\alpha$ of continuous A -bimodule maps from $(A \widehat{\otimes} A)^*$ into A^* such that $w^* - \lim_{\alpha} \theta_\alpha \circ \pi_{A^*} = id_{A^*}$. Suppose that $l : A_\epsilon \widehat{\otimes} A_\epsilon \longrightarrow A_\epsilon$ and $\sigma : A_\epsilon \widehat{\otimes} A_\epsilon \longrightarrow A_\epsilon \widehat{\otimes} A_\epsilon$ are the bounded linear maps such that $l(a \otimes b) = a\epsilon \otimes b$ ($a, b \in A_\epsilon$) and $\sigma(a \otimes b) = a\epsilon^{-1} \otimes b$ ($a, b \in A_\epsilon$). Define $\theta_\alpha^\epsilon : (A_\epsilon \widehat{\otimes} A_\epsilon)^* \longrightarrow A_\epsilon^*$ by $\theta_\alpha^\epsilon(f) = \theta_\alpha \circ \sigma^*(f)$ ($f \in (A_\epsilon \widehat{\otimes} A_\epsilon)^*$). A similar argument as in the proof of theorem 2.4 of [10], shows that θ_α^ϵ is an A_ϵ -bimodule map for every α . Now from the fact that $l^* \circ \pi_{A_\epsilon}^*(f) = \pi_{A_\epsilon}^*(f)$ and $l^*(\pi_A^*(f)) \circ \sigma = \pi_A^*(f)$ ($f \in A^*$), it follows that

$$\begin{aligned}
w^* - \lim_{\alpha} \left(\theta_\alpha^\epsilon \circ \pi_{A_\epsilon}^*(f) \right) &= w^* - \lim_{\alpha} \left(\theta_\alpha^\epsilon \circ l^* \circ \pi_A^*(f) \right) \\
&= w^* - \lim_{\alpha} \left(\theta_\alpha \circ \sigma^* \circ l^* \circ \pi_A^*(f) \right) \\
&= w^* - \lim_{\alpha} \left(\theta_\alpha \left(l^*(\pi_A^*(f)) \circ \sigma \right) \right) \\
&= w^* - \lim_{\alpha} \left(\theta_\alpha(\pi_A^*(f)) \right) \\
&= f,
\end{aligned}$$

for every $f \in A^*$. Therefore A_ϵ is approximately biflat.

Conversely, suppose that A_ϵ is approximately biflat. From the facts that $(A_\epsilon)_{\epsilon-2} = A$, we deduce that A is approximately biflat. \square

Theorem 2.2. *Let A be a Banach algebra and A_ϵ be unital. Then the following statements are valid:*

- (i) A is ϕ -biprojective if and only if A_ϵ is ψ -biprojective, where $\psi = \phi(\epsilon)\phi$.
- (ii) A is ϕ -biflat if and only if A_ϵ is ψ -biflat, where $\psi = \phi(\epsilon)\phi$.

Proof. (i) Suppose that A is ϕ -biprojective. So there exists a continuous A -bimodule map $\rho : A \longrightarrow A \widehat{\otimes} A$ such that $\phi \circ \pi \circ \rho = \phi$. By a similar argument as in the proof of part(i) of Theorem 2.1, if we define $\rho_{A_\epsilon} = k \circ \rho_A$, one can show that $\psi \circ \pi_{A_\epsilon} \circ \rho_{A_\epsilon} = \psi$. So A_ϵ is ψ -biprojective.

Conversely, ϕ -biprojectivity of A follows from the facts that $(A_\epsilon)_{\epsilon-2} = A$ and $\phi = \psi(\epsilon^{-2})\psi$.

(ii) Suppose that A is ϕ -biflat. Hence there exists a continuous A -bimodule map $\rho_A : A \longrightarrow (A \widehat{\otimes} A)^{**}$ such that $\tilde{\phi} \circ \pi_A^{**} \circ \rho = \phi$. Clearly, ρ_A is an A_ϵ -bimodule map. Indeed

$$\rho_A(a \odot b) = \rho_A(a\epsilon b) = \rho(a)\epsilon b = \rho(a) \odot b,$$

Similarly

$$\rho_A(b \odot a) = \rho_A(b\epsilon a) = b\epsilon \rho_A(a) = b \odot \rho_A(a).$$

Let l and σ be A_ϵ -bimodule maps defined as in the proof of Theorem 2.1. Obviously, $\pi_{A_\epsilon} = \pi_A \circ l$. Consequently, $\pi_{A_\epsilon}^{**} = \pi_A^{**} \circ l^{**}$. Now define $\rho_{A_\epsilon} : A_\epsilon \longrightarrow (A_\epsilon \widehat{\otimes} A_\epsilon)^{**}$, by

$$\rho_{A_\epsilon}(a) = \sigma^{**} \circ \rho_A(a) \quad (a \in A).$$

Since ρ_A and σ are two A_ϵ -bimodule maps, it follows that ρ_{A_ϵ} is A_ϵ -bimodule map. Moreover, for every $a \in A$, we have

$$\begin{aligned} \tilde{\psi} \circ \pi_{A_\epsilon}^{**} \circ \rho_{A_\epsilon}(a) &= \tilde{\psi} \circ \pi_A^{**} \circ l^{**} \circ \sigma^{**} \circ \rho_A(a) \\ &= (\widetilde{\phi(\epsilon)\phi}) \circ \pi_A^{**} \circ \rho_A(a) \\ &= \phi(\epsilon)\tilde{\phi} \circ \pi_A^{**} \circ \rho_A(a) \\ &= \phi(\epsilon)\phi(a) \\ &= \psi(a). \end{aligned}$$

So A_ϵ is ψ -biflat.

The converse follows from the facts that $(A_\epsilon)_{\epsilon-2} = A$ and $\phi = \psi(\epsilon^{-2})\psi$. \square

Acknowledgments

We are thankful to the referees for their valuable suggestions and comments.

REFERENCES

- [1] G. H. Esslamzadeh and B. Shojaee, Approximate weak amenability of Banach algebras, *Bull. Belg. Math. Soc. Simon Stevin.*, **18** No. 3 (2011), 415–429.
- [2] F. Ghahramani and R. J. Loy, Approximate semi-amenability of Banach algebras, *arXiv:1910.03775 [math.FA]*, (2019).
- [3] F. Ghahramani and R. J. Loy, Generalized notions of amenability, *J. Funct. Anal.*, **208** (2004), 229–260.
- [4] F. Ghahramani, R. J. Loy and Y. Zhang, Generalized notions of amenability, II, *J. Funct. Anal.*, **254** (2008), 1776–1810.
- [5] Z. Hu, M. Sangani Monfared and T. Traynor, On character amenable Banach algebras, *Studia Math.*, **193** No. 1 (2009), 53–78.
- [6] A. Jabbari, T. Mehdi Abad and M. Zaman Abadi, On φ -inner amenable Banach algebras, *Colloq. Math.*, **122** (2011), 1–10.
- [7] R. A. Kamyabi-Gol and M. Janfada, Banach algebras related to the elements of the unit ball of a Banach algebra, *Taiwan. J. Math.*, **12** No. 7 (2008), 1769–1779.
- [8] E. Kaniuth, A. Lau and J. Pym, On φ -amenability of Banach algebras, *Math. Proc. Camp. Phil. Soc.*, **144** (2008), 85–96.
- [9] E. Kaniuth, A. Lau and J. Pym, On character amenability of Banach algebras, *J. Math. Anal. Appl.*, **344** (2008), 942–955.
- [10] A. R. Khoddami, Biflatness, biprojectivity, φ -amenability and φ -contractibility of a certain class of Banach algebras, *U.P.B. Sci. Bull., Series A*, **80** No. 2 (2018), 169–178.
- [11] R. Nasr-Esfahani and M. Nemat, Character pseudo-amenability of Banach algebras, *Colloq. Math.*, **132** (2013), 177–193.

- [12] *R. Nasr-Isfahani and M. Nemat*, Essential character amenability of Banach algebras, *Bull. Aust. Math. Soc.*, **84** (2011), 372–386.
- [13] *H. Pourmahmood Aghababa, L. Yi Shi and Y. Jing Wu*, Generalized notions of character amenability, *Acta. Math. Sinica, English Series*, **29** No. 7 (2013), 1329-1350.
- [14] *H. Sadeghi Nahrekhala*, Essential character contractibility of Banach algebras, *U.P.B. Sci. Bull., Series A*, **81** (2019), 165–176.
- [15] *A. Sahami and A. Pourabbas*, On ϕ -biflat and ϕ -biprojective Banach algebras, *Bull. Belg. Math. Soc. Simon stevin.*, **20** (2013), 789–801.
- [16] *A. Sahami and A. Pourabbas*, Approximate biprojectivity and ϕ -biflatness of certain Banach algebras, *Colloq. Math.*, **145** (2016), 273–284.
- [17] *M. Shams Kojanaghi, K. Haghnejad and M. R. Mardanbeji*, Approximate semi-amenability of Banach algebras, *arXiv:1909.04874*, (2019).
- [18] *B. Shojaee and A. Bodaghi*, Approximate weak amenability of certain Banach algebras, *Math. Reports.*, **18** (2016), 137-149.