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GENERALIZED NOTIONS OF AMENABILITY AND CHARACTER
AMENABILITY OF A CERTAIN CLASS OF BANACH ALGEBRAS

H. Sadeghi Nahrekhalaji

Suppose A is a Banach algebra and € € Bgo) (the closed unit ball of A). In
this paper we generalize the motions of amenability, ¢-amenability, ¢-contractibility,
biprojectivity and biflatness of a new Banach algebra A.. Moreover we investigate ¢-
pseudo amenability, ¢-Johnson amenability, ¢-inner amenability, ¢-biflatness and ¢-
biprojectivity of Ae.
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Suppose that A is a Banach algebra and X is a Banach A-bimodule. A derivation
from A into X is a linear operator D : A — X satisfying

D(ab) = D(a) -b+a- D(b) (a,b e A).

For every € X we define ad, by ad,(a) = a-xz — 2 -a (a € A). Note that ad, is a
derivation which is called an inner derivation. A derivation D is said to be inner if there
exists ¢ € X such that D(a) = ad,(a) (a € A) and is approximately inner if there exists a
net (z;) € X such that D(a) = lim, ad,_(a) (a € A). A Banach algebra A is amenable if
for any Banach A-bimodule X, every continuous derivation D : A — X* is inner and A is
called approximately amenable if D is approximately inner.

The concepts of approximate amenability and approximate weak amenability of Ba-
nach algebras was introduced and extensively studied by Ghahramani and Loy in [3]. In [2]
they also introduced and studied the notions of approximate semi-amenable and approxi-
mate semi-ontractible Banach algebras.

Let A be a Banach algebra and ¢ € A(A) (the character space of A). Kaniuth et
al. [8] have introduced and studied the interesting notion of ¢-amenability (see also [9]).
A Banach algebra A is called ¢-amenable if for every Banach A-bimodule X with the left
module action a -z = ¢(a)z (a € A,z € X), every continuous derivation from A into X* is
inner. Hu et al. [5] introduced and studied the notion of ¢-contractibility of A. In fact, A is
called ¢-contractible if there exists a (right) ¢-diagonal for A; that is, an element m in the
projective tensor product A®A such that ¢(ra(m)) =1 and a - m = $(a)m for all a € A,
where 74 denotes the product morphism from A®A into A given by 74(a ® b) = ab (a,b €
A). Furthermore, several authors have investigated the concepts of essential ¢-amenability,
essential left ¢-contractibility, ¢-pseudo amenability, ¢-Johnson amenability and ¢-inner
amenability of Banach algebras; see for example [12], [14], [11], [15] and [6].

Moreover, H. Pourmahmood Aghababa et al. [13] was introduced and studied the
concepts of approximate character amenability and approximate character contractibility of
Banach algebras and investigated the relations between these concepts.
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Suppose A is a Banach algebra and ¢ € A with |le| < 1. Recently, authors in [7],
defined a new product on A by a©®b = aeb (a,b € A). A with this product is denoted by A..
They studied the algebraic properties, arens regularity and amenability of A.. Also A. R.
Khoddami in [10], investigated the relation between biflatness, biprojectivity, ¢-amenability
and @-contractibility of A and A..

In this paper, we study the relation between approximate amenability, approximate
semi-amenability (approximate semi-contractibility), approximate weak amenability, ap-
proximate @p-amenability, approximate ¢-contractibility, ¢-pseudo amenability (¢-Johnson
amenability), ¢-inner amenability, approximate biflatness (¢-biflatness) and approximate
biprojectivity (¢-biprojectivity) of A and A..

1. Generalized notions of amenability and character amenability of A,

We commence this section with the following definition:

Definition 1.1. [7] Let A be a Banach algebra and € € Bgo) (the closed unit ball of A) with
llell < 1. Then A with the product a © b = aeb (a,b € A) is an associative Banach algebra
which is denoted by A..

Let A be a Banach algebra. The net {e, } in A is called a ¢-weak approximate identity
if, for every a € A, |¢p(eqa) — ¢(a)] — 0.
Note that if ¢ € A(A), then ¥ = ¢(e)¢ € A(A,) (see Proposition 2.4 of [7]).

Proposition 1.1. Let A be a Banach algebra, ¢ € A(A), ¢(e) # 0 and ¢ = ¢p(e)¢p. Then A
has a ¢p-weak approrimate identity if and only if Ac has a y-weak approximate identity.

Proof. Let {e,} be a ¢-weak approximate identity for A. Then |p(e,a) — ¢(a)] — 0 for all

€o

a € A. Suppose that e/, = 3 for all a. So for every a € A, we have
[9(e © @) = $(a)| = [W( 575 @ @) — (a)]
= |p(e)p(ean) — d(€)d(a)]
= |p(e)l|¢(eaa) — ¢(a)l
It follows that {e/,} is a 1)-weak approximate identity for A..

Conversely, let {e/,} be a i-weak approximate identity for A.. Hence |¢(el, ® a) —
¥(a)] — 0 for all a € A. Choose e, = €/e for all a. For every a € A

|6(eaa) — d(a)| = [d(eqea) — d(a)]

0.

1 , _
= |@|l¢(€)¢(€a€a) p(e)¢(a)|
1 /
= |@|I¢(€a ©a) —¢(a)] — 0.
Therefore {e,} is a ¢-weak approximate identity for A. a

Theorem 1.1. Let A be a Banach algebra and € be an idempotent element of the algebraic
center of A. Then the following statements are valid:

(i) If Ac is approximately amenable, then so is A.

(ii) If Ac is approzimately semi-amenable, then so is A.

Proof. Suppose that A, is approximately amenable. Then A¥ (the unitalization of A.) is
approximately amenable by Proposition 2.4 of [3]. So, Proposition 6.1 of [4] implies that
A# @, A¥ is approximately amenable. Define h : A# ®; A# — A# by

h((a, A), (b, X)) = (a, A) ((a, 1), (b, X) € AF).
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Clearly h is a surjection map. Since A. is approximately amenable, by Lemma 2.2 of [3], A,
has left and right approximate identities. Let (e, ) be a right approximate identities for A..
So {een} is a right approximate identities for A and thus for every (a1, A1), (a2, A2), (b1, A])
and (bg, \y) € A¥, we get
h((ala Al)a(bb All))h((a’% >\2)7 (b27 )‘/2))
= (a1, M\1)(az, A2)
= (arag + Arag + A2ai, MA2)

= lién(alageea + Arag + A2ai, A1 Aa)

= lién(meazeea + Aras + Aq2a1, A1 Aa)

= (a1€az + A\az + A2ai, A1 A2)

- h((a1 ® as + Az + Aoar, Mda), (by @ b -+ Nybs + Ayby, Xlxz))

= 1(((01, A1), (01, 4)) (a2, 2a), (b2, X)) ).
That is h is a homomorphism. Moreover, for every (a,\) and (b, \') € A¥,
17:((a, ), (0, A) 1| = [[(ae, M| < [[(a, M|
< [[(a, M| + [0, X)]|
= ||((a, )‘)7 (b7 )‘/))”

Consequently, h is a continuous epimorphism. Therefore, from Proposition 2.2 of [3], it
follows that A% is approximately amenable. Again Proposition 2.4 of [3] yields that A is
approximately amenable.

(ii) Assume that A, is approximately semi-amenable. By Proposition 2.1 of [17],
A# is approximately semi-amenable and so Theorem 5.1 of [2] yields that A% @; A¥ is
approximately semi-amenable. By Lemma 2.2 of [17], A has an approximate identity. Now
if we define h as part (i). Then Proposition 3.11 of [2], implies that A¥ is approximately
semi-amenable. Now from the Proposition 2.1 of [17], we conclude that A is approximately
semi-amenable. O

Theorem 1.2. Let A be an unital Banach algebra and € be an invertible element of A. Then
the following statements are valid:

(i) If A is approxzimately amenable, then so is A..
(ii) If A is approzimately semi-amenable, then so is A..
(iii) If A is approzimate semi-contractible, then so is A..
(iv) Let A be a commutative Banach algebra. If A is approzimately weakly amenable, then
80 is Ae.

Proof. Suppose that A is approximately amenable. Then by Proposition 6.1 of [4], A ®; A
is approximately amenable. Define h: A &, A — A, by

h(a,b) = ae* (a € A).
For every ai,as € A and by, by € B, we have
h(a1,b1) ® h(ag, bs) = are™* @ aze ! = ajage™*
= h(ajaz,b1bs) = h((al,b1)(a2,b2)),

and for every a € A, h(ae,b) = ace™! = a. So h is an epimorphism. Since A is unital

and e is invertible, from Proposition 2.3 of [7], it follows that ¢! is the unit of A.. Thus
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le=|| < 1. Hence for every a,b € A,
1h(a,b)]| = llae™" (| < lla]| < llall + o]l = l|(a, b)]I-

Consequently, h is continuous. Thus A is a continuous epimorphism. Therefore, by using
Proposition 2.2 of [3], we deduce that A, is approximately amenable.

(i) Suppose that A is approximately semi-amenable. By Theorem 5.1 of [2], A ®1 A
is approximately semi-amenable. Let h be defined as part (i). Then Proposition 3.11 of [2],
implies that A, is approximately semi-amenable.

(iii) Suppose that A is approximate semi-contractible. By a similar argument as part
(ii), if we apply Theorem 2.14 of [17] and Proposition 3.11 of [2], one can prove that A, is
approximate semi-contractible.

(iv) Suppose that A is approximately weakly amenable. Then A®; A is approximately
weakly amenable by Theorem 2.3 of [18]. Let h be defined as part (i). Therefore approximate
weak amenability of A follows from Theorem 2.1 of [1].

O

Definition 1.2. [13] A Banach algebra A is called ¢-approzimately amenable if there exists
a net {mqy} C A** such that m,(¢) =1 and ||a - my — d(a)my|| — 0 for all a € A.

Also A is called ¢-approzimately contractible if there exists a net {mq} C A such that
d(me) =1 and |lamy, — ¢p(a)my|| — 0 for all a € A.

Proposition 1.2. Let A be a Banach algebra and ¢ € A(A). Then the following statements
are valid:

(i) If A is approzimately ¢-contractible and ¢(e) # 0, then A is approximately -
contractible, where ¥ = ¢(€)o.
(i1) If A¢ is unital and approximately 1p-contractible, then A is approzimately ¢-contractible,

where ¢(a) = (e ta) (a € A).

Proof. (i) Suppose that A is approximately ¢-contractible. Then there exists a net (m,) C A
such that ¢(mq) =1 and [lama — ¢(a)mal| — 0 for all a € A. Let nq = 3. Hence for
every a € A

la © 16 = Pla)nall = [|aena — ¢(€)p(a)nal|

IIGG% — ¢(a)mal
= I 55ma = (575 mall —0
Also
May_ 1 €)p(my) =
w(na) = 1#(%) - ¢(6) ¢)( )¢( oc) 1,

for all . So A, is approximately 1-contractible.
(ii) Suppose that A, is unital and approximately t-contractible. Then there exists
a net (na) C Ac such that ¥(n,) = 1 and [ja ® ng — (a)ne|| — 0 for all a € A.. Since
Y(ng) = ¢(€)p(ny) it follows that ¢(n,) # 0. Also since A, is unital, by Proposition

2 3 of [7], 7" is the unit of Ac and thus 9(e7") # 0. Choose mq = g25. Then ¢(ma) =1
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for every a and for every a € A, we obtain

lama — ¢(a)mall = ||a¢(na) - ¢(a)¢<na) |
= ||am - ¢(a)m”

1
m\”a”a — ¢(a)na||

H|a€1 Ong — zb(ae*l)naH — 0.

b
b(et)

Therefore A is approximately ¢-contractible and the proof is now complete. O

The proof of the following proposition is omitted, since it can be proved in the same
direction of Proposition 1.2.

Proposition 1.3. Let A be a Banach algebra and ¢ € A(A). Then the following statements
are valid:

(i) If A is approzimately ¢-amenable and $(€) # 0, then A, is approzimately 1-amenable,
where ¥ = ¢(€) .

(ii) If A. is unital and approzimately -amenable, then A is approzimately ¢-amenable,

where ¢(a) = P(e~ta) (a € A).

Definition 1.3. [15] Let A be a Banach algebra and ¢ € A(A). A is called ¢-Johnson
amenable if there exists a bounded net {my} C A®A such that ¢ o T4(ms) — 1 and
la-mq —meq - al| — 0, for every a € A.

Definition 1.4. [11] Let A be a Banach algebra and ¢ € A(A). A is called ¢-pseudo
amenable if there exists a net {mao} C A®A such that ¢ o Ta(ma) — 1 and |ja - my —
o(a)mq|| — 0, for every a € A.

Before turning the next theorem we note that if A is an unital Banach algebra and
€€ BEO), then A = (A.).-2 (see Proposition 2.3 of [10]).

Theorem 1.3. Let A be a Banach algebra, A be unital and let ¢ € A(A) be such that
@(€) # 0. Then the following statements are valid:

(i) A is ¢-Johnson amenable if and only if Ac is ¥-Johnson amenable, where 1 = ¢(€).
(ii) A is ¢-pseudo amenable if and only if A is ¥-pseudo amenable, where 1 = ¢(€)e.

Proof. (i) Suppose that A is ¢-Johnson amenable. Then there exists a bounded net {m,} C
A®A such that ¢ o ma(ms) — 1 and |ja - mg — Mg - al| — 0, for every a € A. Let
k:A®A. — A.®A, be the bounded linear map such that k(a®c) = ae ' @c (a,c € A,).

k is an A.-bimodule map (see the proof of Theorem 2.3 of [10]). Consider n, = kg("e‘;) and

let mq = >.2a® ® b, So,

k(ma) Y igage @b
(e) ¢(e)

d) - a —1 _j1a 1/} - apo
. : [ o
¢<e>;“” o ¢<e>§‘“ :

=¢oma(mg) — 1.

) =voma,( )

Yoma, (na) =1 oma,(
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Moreover, for every a € A, we have

||Cl®7’loz — Nqa @a” = ||a® ¢(6) - (b(e) QCLH
1
= aylla©k(ma) = k(ma) Ol
1
= W”k(a O ma) — k(ma © a)|
< ||k:|| ||a6ma —ma6@||
(el
= I e -call

Therefore A, is 1)-Johnson amenable.

Conversely, suppose that A, is ¢¥-Johnson amenable. Since (A¢).-2 = A and ¢ =
Y (e72)1), the proof is an immediate consequence of above argument.

(ii) Suppose that A is ¢-pseudo amenable. So there exists a net {m,} C A®A such
that ¢ o ma(my) — 1 and [|a - mq — ¢(a)my| — 0, for every a € A. Choose n, = kg('l‘)*)
Similar arguments to the proof of part (i), show that ¥ om4,(n,) — 1 and for every a € A,
we get

la®na — p(@na]l = la ’“;Z;“) ~(a) ’“;Z‘;) ||
— Jk(a® %) = k(wa)%)n
< [llla © 5% = v(@) g5
< ||k|\||% Mo — ¢><%>mau — 0.

Consequently, A, is ¥-pseudo amenable.
Conversely, suppose that A, is ¢-pseudo amenable. Since (4¢).-2 = A and ¢ =
P(e=2)1p, it follows that A is ¢-pseudo amenable. O

Definition 1.5. [6] Let A be a Banach algebra, ¢ € A(A) and Ay = {a € A: ¢(a) = 1}.
A is called ¢-inner amenable if there exists a bounded linear functional m on A* satisfying
m(¢) =1 and m(f -a) =m(a- f) for all f € A* and a € Ay.

Note that A is ¢-inner amenable if and only if there is a bounded net (v, ) in Ay such
that |[uvga — avy|| — 0 for all a € Ay (see Theorem 2.1 of [6]).

Proposition 1.4. Let A be a Banach algebra and let ¢ € A(A) be such that ¢(e) #0. If A
is ¢g-inner amenable, then Ac is ¢ = ¢(€)p-inner amenable. In the case that € is an element
of the algebraie center of A, the converse is also valid.

Proof. Suppose that A is ¢-inner amenable. Then there is a bounded net (v,) in Ay such

Vo

that |[vaa — ave|| — 0 for all @ € Ay. Choose wy = (- Hence, for every a

Vo
¢(e)
That is we € (Ac)y. Now let a € A be such that ¢(a) =1. So

p(ea) = d(e)pla) = ¥(a) = 1,

P(wa) = Y( )= o(va) = 1.
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and it follows that

lwe ©®a—a©w,| = ||U—aae—ae— [lvaae — aevy || — 0.

V|| =
0™ “o0! = 50

This means that ||w, ®a—a®w,|| — 0for all a € (Ac)y. Therefore A, is ¢-inner amenable.

Conversely, Suppose that € is an element of the algebraie center of A and A, is ¢-inner
amenable. So there is a bounded net (wg) in (A¢)y such that [[wy ©® a —a © wy| — 0
for all a € (A¢)y. Define vy := ewy. Thus ¢(ve) = ¢(€)p(wa) = P(wa) = 1. Also since
@/}(ﬁ) =1 for every a € Ay, it follows that

|[vaa — avy || = [[ewaa — acw, |
= ||lwa ®a—a® wyl|

= |p(e)|[[wa © % - %

Therefore A is ¢-inner amenable. O

© Wol| — 0.

2. Generalized biprojectivity and biflatness of A,

We start this section with the following definitions:

Definition 2.1. [16] A Banach algebra A is called approzimately biprojective if there is a
net {pa} C A of continuous A-bimodule maps from A into AQA such that ma 0 pa(a) — a.

A is called approximately biflat if there is a net {0} of continuous A-bimodule maps
from (A@A)* into A* such that w* — limg, 0, 0 T+ = td 4+ where w* is the weak™ operator
topology on B(A*).

Let ¢ € A(A). Then ¢ has a unique extension on A** denoted by ¢ and defined by
¢(F) = F(¢) for every F' € A**. Clearly this extension remains to be a character on A**.

Definition 2.2. [15] Let A be a Banach algebra and ¢ € A(A). A is called ¢p-biprojective if
there exists a continuous A-bimodule map p : A —s A®A such that poms0p = .

Also A is called ¢-biflat if there exists a continuous A-bimodule map p : A —
(ARA)*™* such that ¢ o T op=¢.

Note that if A is a Banach algebra and € € B%O), then fOa= f-acanda® f =e€a- f,
foralla € Ac and f € Af. Alsoa®u = aec-u and u ®a = u - ea for every a € A, and
u € A.®A, (see Proposition 2.4 of [10]).

The proof idea of the following Theorem is taken from the proof of Theorem 2.3 and
Theorem 2.4 of [10].

Theorem 2.1. Let A be a Banach algebra and A. be unital. Then the following statements
are valid:

(i) A is approzimately biprojective if and only if A. is approxzimately biprojective.
(ii) A is approzimately biflat if and only if A is approzimately biflat.

Proof. (i) Suppose that A is a approximately biprojective Banach algebra. Then there exists
a net {p,} of continuous A-bimodule maps from A into A®A such that 74 o pa(a) — a
for every a € A. Set p, = k o p, such that & : A.®A, — A.RA, be the bounded linear
map defined by k(a ® ¢) = ae~! ® ¢ (a,c € A.). By the same argument as in the proof
of the theorem 2.3 of [10], one can show that p is an A.-bimodule map for every «. Let
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pala) =57, a® @ b¢. So, for every a € A, we have

=1 "1

lién (WAE o pg(a)) = licryn (7‘(’,4‘ oko pa(a))

o0

= lim (ms o k(;a? ® bg‘))

= h(gn (WAE(;a?E—l ® b;"))

— hén (; af‘e_l ® bf‘) = lim (;ﬁ‘bf)

i e 1) b ()
i=1

Therefore A, is approximately biprojective.

Conversely, suppose that A, is approximately biprojective. Since (A¢).-2 = A, from
the above argument we conclude that A is approximately biprojective.

(ii) Suppose that A is approximately biflat. Then there is a net {6, }, of continuous
A-bimodule maps from (A@A)* into A* such that w* — lim, 04 © Tax = ida~. Suppose
that [ : A.®A4. — A and 0 : A.®A. — A.RA, are the bounded linear maps such that
l(a®b) = ae®b (a,b € A,) and o(a®@b) = ae~ @b (a,b € A,). Define 05, : (A.DA)* — A*
by 05(f) = 04 0 0*(f) (f € (A®A)*). A similar argument as in the proof of theorem
2.4 of [10], shows that €S is an A.-bimodule map for every a. Now from the fact that
Fomy(f)=m4 (f) and I* (74 (f)) oo = 74 (f) (f € A*), it follows that

w* ~Tim (9; o wzg)(f)) = w" —lim (9; ol* o w;(f))

for every f € A*. Therefore A, is approximately biflat.
Conversely, suppose that A, is approximately biflat. From the facts that (A.).-2 = A,
we deduce that A is approximately biflat. O

Theorem 2.2. Let A be a Banach algebra and A be unital. Then the following statements
are valid:

(i) A is ¢-biprojective if and only if A, is ¥-biprojective, where ¥ = ¢(€)e.

(ii) A is ¢-biflat if and only if Ac is 1-biflat, where ¥ = ¢(€)o.

Proof. (i) Suppose that A is ¢-biprojective. So there exists a continuous A-bimodule map
p: A — A®A such that ¢ omo p = ¢. By a similar argument as in the proof of part(i)
of Theorem 2.1, if we define pa, = k o pa, one can show that Y oms, 0o pa, = ¢. So A, is
1-biprojective.

Conversely, ¢-biprojectivity of A follows from the facts that (A¢).—2 = A and ¢ =
().
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(ii) Suppose that A is ¢-biflat. Hence there exists a continuous A-bimodule map
pa: A — (ARA)** such that ¢ o %5 o p = ¢. Clearly, pa is an A.-bimodule map. Indeed

pala®b) = pa(aeb) = p(a)eb = p(a) © b,
Similarly
pa(b®a) = palbea) = bepa(a) = b© pa(a).

Let [ and o be A.-bimodule maps defined as in the proof of Theorem 2.1. Obviously,
ma, = ma o l. Consequently, 7% = 74" o [**. Now define pa, : Ac — (A®A)™, by

pa.(a) = 0™ 0 pala) (a € A).

Since p4 and o are two A.-bimodule maps, it follows that p4_ is A.-bimodule map. Moreover,
for every a € A, we have

Yok opaa)=1omy ol™ oo™ opala)

= (0(e)p) oy 0 pa(a)

€

p(e)pomy" o pala)
¢(e)¢(a)
P(a).

So A, is y-biflat.
The converse follows from the facts that (A.).—2 = A and ¢ = ¥(e=2). O
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