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THE ELASTIC CONTACT OF A SPHERE WITH AN ELASTIC
HALF-SPACE, A COMPARISON BETWEEN ANALYTICAL
AND FINITE ELEMENTS SOLUTIONS

Adina NEGREA!, Mihai Valentin PREDOI*

Contactul elastic al unei sfere cu un semispatiu elastic este o problema
teoretica de larg interes practic. Acesta este primul pas in intelegerea implicatiilor
elasto-plastice ale problemei poansonului aplicat pe un astfel de mediu elastic.
Cercetari mai mult sau mai putin recente au evidentiat ca formula analitica de
calcul al deformatiei & intre doud corpuri elastice este clar stabilitd.

Lucrarea de fatd compara rezultatele solutiei analitice cu cele date de o
solutie numerica pentru un model al acestui contact elastic realizat prin metoda
elementelor finite, pundnd in evidentd posibilele erori care s-ar putea produce
aplicand formula analitica.

The elastic contact of a sphere with an elastic half-space is a theoretical
problem of high practical interest. The elastic contact is the first step in
understanding the micro-indentation of elasto-plastic contact. Past and recent
researches reveal that an analytical formula for the deformation O between two
elastic bodies is clearly and well established.

The present paper compares the results of analytical solution with the results
of a finite elements approach of this elastic contact, emphasizing possible errors
which might occur by applying the analytical formula.
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1. Introduction

In the last decades, the problem of the Hertzian contact has known
extensive practical applications, being the first step in understanding the micro-
indentation of an elasto-plastic contact. It is interesting to point out the model
from reference [1], which allows designers to choose easily different surface
topographic and material properties for rail gun technology, by using simple Hertz
theory applied to the complex geometry of a fractal surface. On the other hand,
some researches deal with the contact of rough surfaces of two bodies, based on
statistical surface models and elasto-plastic behavior of the asperities, as shown in
reference [2].
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2. Theoretical background

The case of elastic contact between two bodies (for instance, two spheres
whose radii are R; and R)) is known in technical literature [3], [4]. In this context
it is important to remind some main steps from [3], this being the best known
approach on this subject.

If there is no pressure between the bodies, the contact is represented by a
single point O (Figure 1) and the distances z; and z, are given by Hertz relations.
The notations are explained on figure 1:
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Figure 1: Contact between two spheres

Let be a vertical force P, acting on the symmetry axis (z) of the spheres.
Because of the exerted pressure, a local deformation will occur and the point of
contact becomes a surface of contact. A hypothesis is introduced here: the contact
surface is a small circular surface of radius a. Denoting by w; and w, the
displacement of point B towards the point A and respectively the displacement of
point 4 towards the point B and by ¢ the distance between the new positions of 4
and B, the relation (1) can be rewritten:
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The next equations are proven in [3], the relevant part being represented
by the following expressions
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where v,, v, are the Poisson’s coefficients and E,, E, the Young’s moduli for

the two bodies. The term p, is the maximum value of the pressure due to the

applied force P over the contact surface, the distribution of this pressure p being

imagined as a half-ellipsoid with axis a=5b and c= p,. It is obvious that in the
3P
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From relations (1) and (3) the next expressions are clearly determined:

middle of the contact surface, the maximum pressure will be p, = .
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Finally, the equations required in applications are:
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Using the notations (5) and the specific conditions (6) for the contact
between a sphere with a plane, relation (4) becomes:
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In order to have a clear image of the analytical solution, maintaining the
same symbols for the above mentioned quantities (force, radius of the contact
surface, distance between two points after the impact, etc) and referring directly to
the contact between a sphere and a half-space, from reference [4], it is relevant to
point out the next demonstration.

For a Hertzian pressure distribution, the following are true:
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p= Po(l - —ZJ ®)
a
The resulting vertical displacement is:
7Py
w= . 9
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where:
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and vi, w, E|, E, are already known to have specified significations.
The force P is:
P= j: p(r)2mrdr = %poiza2 (10)

The modeling of the mentioned contact can be seen on figure 2:

Figure 2: Contact between a sphere and a half-space
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From the above relation (by identification of the terms left-right), the
radius of the contact surface and the deformation fulfil the expressions:

a=DR 5="0 (12)
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Using both equations, the maximum value of the contact pressure is:
2E° (5"
Py=—— (—j (13)
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Relations (12) and (13) are introduced in (10):
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P= gE*R%c?% (14)

It is obvious, now, that the value of Jis:

2
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Introducing in (7) the conditions (6), the expression (15) is equivalent to
the relation (7).

3. The finite elements solution

The problem of elastic contact was a considerable challenge for the finite
elements method until very recently. The main difficulty is to solve
simultaneously both the contact surface shape and the surface area which
increases with the applied force. As the area increases, the contact pressure
diminishes. The equilibrium condition is achieved by an iterative process. Since
the force is applied on a sphere placed on an elastic half-space, it can be logically
expected that the contact surface has a circular boundary. The hypothesis that the
contact surface is a circle cannot be imposed in the finite elements approach. This
is one of the reasons to expect a more realistic physical solution. On the other
hand, the classical analytical approach makes no clear statement about the applied
force P. In practical applications, the force is applied vertically downwards
(Figure 3) by other mechanical parts, which are not investigated. It is clear that a
concentrated load applied on the top point of the sphere will cause a deformation
affecting the spherical shape. The radius R, used in the analytical formula, will not
remain valid because the shape changes. Moreover, from the point of view of
finite elements method, by applying a force on a point, extreme local stresses
occur, as it is known from analytical solutions. These extreme stresses can lead to
numerical instabilities. One solution is to model only a quarter from the axial
section of the sphere and to apply on the top surface a uniformly distributed load,
having the same resultant force P. The solution is questionable, since the stress
distribution over the horizontal circle passing through the sphere centre is not
perfectly uniform. The solution adopted in the present paper is to apply uniform
axial displacement over horizontal circular surfaces and the values of these
displacements are increased in 20 steps from 0 to 0.1 mm. Two such circular
surfaces were tested: one of them passing through the sphere centre and another
one, very close (0.1 mm) to the upmost point of the sphere. The letter case is
expected to be the closest to the real loading condition. The choice to impose
displacements instead of applied force or of axial stress is necessary due to the
lack of the convergence of the numerical solution if the applied force or the axial
stress were used. However, the two approaches are equivalent, because the axial
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force can be computed as integral of the normal (axial) stress on the surface with
imposed displacements. For these reasons and using the advantage of the axial
symmetry of the problem, it is recommended to investigate only half of the axial
cross section through the sphere and a reasonable region is formed for the infinite

half-plane.
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Figure 3: Geometry of the FEM model

A reasonable region is, from the finite elements point of view, a rectangle
sufficiently wide, so as it has numerically negligible strains and stresses on the
lowest and rightmost edges (Figure 3). This numerical requirement can be
achieved by increasing the rectangle size, which represents the semi-infinite
elastic domain and fixing the lowest edge. The elastic problem is solved for the
two sub-domains: sphere and elastic half-space.
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The multi-physics finite elements software package COMSOL [6] was
used to determine the solution. A recent development in the available solving

methods is the use of the contact elements. The software determines which
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elements are in contact and in continuity for displacements and at the same time,
the soft imposes normal stresses for the nodes which are in the contact domain.

A parametrical study is done for each geometrical configuration, the load
increasing from zero to the imposed applied resulting force. The displacement of
the point placed in the centre of the contact area can be plotted as function of the
applied force.

4. Numerical results

The elastic contact between a sphere of radius R=10 mm and an elastic
plane is modelled by finite elements as indicated in the previous paragraph.
Material data for the infinite medium are: Young’s modulus E,=2ell Pa and
Poisson’s coefficient 11=0.33. In the first case, the sphere material has been
selected to be the same as for the infinite medium (£,=2el1 Pa, »»,=0.33). Typical
results are presented on Fig. 4, for the half-sphere model (a) and “full” sphere
model (b) which is a sphere whose cap of 0.1 mm is missing from the 10 mm
radius.

For comparison reasons, the Young’s modulus of the infinite medium has
been decreased in steps, such that: Ey/E\=2,..., E»/E1=8. The same material and
loading data are introduced in (7) in order to determine the deformation ¢ for the
same values of the applied force. The results are presented on Figure 5 as dashed
line for the analytical solution and continuous line for the FEM solution.

Fig. 4: Deformed shape of the contact for the two FEM models
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A large difference can be seen for the case E»/E;=1, marked by squares.
The difference between solutions decreases for increasing of the ratio E»/Ej.
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Fig. 5: Relative displacement vs. applied force for three materials. Dashed line: analytical
formula, continuous line: FEM solution
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Fig. 6: FEM models comparison. Continuous line: half sphere; circles: “full” sphere.
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The influence of the FEM model has been investigated and compared. The
comparison of the two FEM solutions is shown on Figure 6. The model using a
half- sphere (continuous line) produces practically the same results as in the case
of a “full” sphere, proving that a smaller FEM model, which provides faster
solutions, is a very good choice. The semi-infinite medium is modelled by
cylinders. Two values were tested for the radius of the cylinder: 15 and 20 mm
keeping the same height of 15 mm. The results were practically the same.

5. Conclusions

The investigation of the accuracy of the classical formula for the Hertzian
contact between a sphere and an infinite medium has led to the following
conclusions.

The theoretical approach is based on assumptions concerning the geometry
of the deformed bodies. The contact surface is assumed to be a circular area, over
which a parabolic load is applied.

The FEM solution provides consistently lower values for the displacement
of the central contact point. The FEM solution approaches the analytical solution
for increasing E,/E; ratio and both solutions are expected to coincide as this ratio
tends to infinite.

The explanation comes from the situation that the real contact surface is
not flat; it is considerably larger than the analytical solution predicts. In fact, the
FEM solution accounts for the sphere deformation, the equilibrium configuration
not corresponding to a spherical shape in the free area.

Practical application of the results can be used for the hardness measuring
devices which need corrections and a model of a quarter of the sphere cross
section is quite satisfactory.
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