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THE ELASTIC CONTACT OF A SPHERE WITH AN ELASTIC 
HALF-SPACE, A COMPARISON BETWEEN ANALYTICAL 

AND FINITE ELEMENTS SOLUTIONS 
 

Adina NEGREA1, Mihai Valentin PREDOI2 

Contactul elastic al unei sfere cu un semispaţiu elastic este o problemă 
teoretică de larg interes practic. Acesta este primul pas în înţelegerea implicaţiilor 
elasto-plastice ale problemei poansonului aplicat pe un astfel de mediu elastic. 
Cercetări mai mult sau mai puţin recente au evidenţiat că formula analitică de 
calcul al deformaţiei δ între două corpuri elastice este clar stabilită. 

 Lucrarea de faţă compară rezultatele soluţiei analitice cu cele date de o 
soluţie numerică pentru un model al acestui contact elastic realizat prin metoda 
elementelor finite, punând în evidenţă posibilele erori care s-ar putea produce 
aplicând formula analitică. 

 
         The elastic contact of a sphere with an elastic half-space is a theoretical 
problem of high practical interest. The elastic contact is the first step in 
understanding the micro-indentation of elasto-plastic contact. Past and recent 
researches reveal that an analytical formula for the deformation δ between two 
elastic bodies is clearly and well established.  
    The present paper compares the results of analytical solution with the results 
of a finite elements approach of this elastic contact, emphasizing possible errors 
which might occur by applying the analytical formula. 
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1. Introduction 

In the last decades, the problem of the Hertzian contact has known 
extensive practical applications, being the first step in understanding the micro-
indentation of an elasto-plastic contact. It is interesting to point out the model 
from reference [1], which allows designers to choose easily different surface 
topographic and material properties for rail gun technology, by using simple Hertz 
theory applied to the complex geometry of a fractal surface. On the other hand, 
some researches deal with the contact of rough surfaces of two bodies, based on 
statistical surface models and elasto-plastic behavior of the asperities, as shown in 
reference [2]. 
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2. Theoretical background 

The case of elastic contact between two bodies (for instance, two spheres 
whose radii are R1 and R2) is known in technical literature [3], [4]. In this context 
it is important to remind some main steps from [3], this being the best known 
approach on this subject.  

If there is no pressure between the bodies, the contact is represented by a 
single point O (Figure 1) and the distances z1 and z2 are given by Hertz relations. 
The notations are explained on figure 1: 
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Figure 1: Contact between two spheres 
 
Let be a vertical force P, acting on the symmetry axis (z) of the spheres. 

Because of the exerted pressure, a local deformation will occur and the point of 
contact becomes a surface of contact. A hypothesis is introduced here: the contact 
surface is a small circular surface of radius a. Denoting by w1 and w2 the 
displacement of point B towards the point A and respectively the displacement of 
point A towards the point B and by δ the distance between the new positions of A 
and B, the relation (1) can be rewritten: 
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 The next equations are proven in [3], the relevant part being represented 
by the following expressions: 
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where 1ν , 2ν  are the Poisson’s coefficients and 1E , 2E  the Young’s moduli for 
the two bodies. The term 0p  is the maximum value of the pressure due to the 
applied force P over the contact surface, the distribution of this pressure p being 
imagined as a half-ellipsoid with axis ba =  and 0pc = . It is obvious that in the 

middle of the contact surface, the maximum pressure will be 20 2
3

a
Pp
π

= . 

 From relations (1) and (3) the next expressions are clearly determined:  
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 Finally, the equations required in applications are: 
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 Using the notations (5) and the specific conditions  (6) for the contact 
between a sphere with a plane, relation (4) becomes: 
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 In order to have a clear image of the analytical solution, maintaining the 
same symbols for the above mentioned quantities (force, radius of the contact 
surface, distance between two points after the impact, etc) and referring directly to 
the contact between a sphere and a half-space, from reference [4], it is relevant to 
point out the next demonstration. 
 For a Hertzian pressure distribution, the following are true: 
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 The resulting vertical displacement is: 

 ( )( )22*
0

24 raaE
pw

−
=

π  (9) 

where: 

 
2

2
2

1

2
1

*

111
EEE
νν −

+
−

=   

and ν1, ν2, E1, E2 are already known to have specified significations. 
 The force P is: 
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 The modeling of the mentioned contact can be seen on figure 2: 
 

 
 
 
 
 
 
 
  
 

Figure 2: Contact between a sphere and a half-space 
 

 
R

rzw
2

2

−=−= δδ  or 

 ( )
R

rra
aE

p
2

2
4

2
22

*
0 −=− δπ     (11) 

From the above relation (by identification of the terms left-right), the 
radius of the contact surface and the deformation fulfil the expressions:              
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 Using both equations, the maximum value of the contact pressure is: 
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 Relations (12) and (13) are introduced in (10): 
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 It is obvious, now, that the value of δ is: 
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 Introducing in (7) the conditions (6), the expression (15) is equivalent to 
the relation (7). 

3. The finite elements solution 

The problem of elastic contact was a considerable challenge for the finite 
elements method until very recently. The main difficulty is to solve 
simultaneously both the contact surface shape and the surface area which 
increases with the applied force. As the area increases, the contact pressure 
diminishes. The equilibrium condition is achieved by an iterative process. Since 
the force is applied on a sphere placed on an elastic half-space, it can be logically 
expected that the contact surface has a circular boundary. The hypothesis that the 
contact surface is a circle cannot be imposed in the finite elements approach. This 
is one of the reasons to expect a more realistic physical solution. On the other 
hand, the classical analytical approach makes no clear statement about the applied 
force P. In practical applications, the force is applied vertically downwards 
(Figure 3) by other mechanical parts, which are not investigated. It is clear that a 
concentrated load applied on the top point of the sphere will cause a deformation 
affecting the spherical shape. The radius R, used in the analytical formula, will not 
remain valid because the shape changes. Moreover, from the point of view of 
finite elements method, by applying a force on a point, extreme local stresses 
occur, as it is known from analytical solutions. These extreme stresses can lead to 
numerical instabilities. One solution is to model only a quarter from the axial 
section of the sphere and to apply on the top surface a uniformly distributed load, 
having the same resultant force P. The solution is questionable, since the stress 
distribution over the horizontal circle passing through the sphere centre is not 
perfectly uniform. The solution adopted in the present paper is to apply uniform 
axial displacement over horizontal circular surfaces and the values of these 
displacements are increased in 20 steps from 0 to 0.1 mm. Two such circular 
surfaces were tested: one of them passing through the sphere centre and another 
one, very close (0.1 mm) to the upmost point of the sphere. The letter case is 
expected to be the closest to the real loading condition. The choice to impose 
displacements instead of applied force or of axial stress is necessary due to the 
lack of the convergence of the numerical solution if the applied force or the axial 
stress were used. However, the two approaches are equivalent, because the axial 
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force can be computed as integral of the normal (axial) stress on the surface with 
imposed displacements. For these reasons and using the advantage of the axial 
symmetry of the problem, it is recommended to investigate only half of the axial 
cross section through the sphere and a reasonable region is formed for the infinite 
half-plane.  

 

Figure 3: Geometry of the FEM model 

A reasonable region is, from the finite elements point of view, a rectangle 
sufficiently wide, so as it has numerically negligible strains and stresses on the 
lowest and rightmost edges (Figure 3). This numerical requirement can be 
achieved by increasing the rectangle size, which represents the semi-infinite 
elastic domain and fixing the lowest edge. The elastic problem is solved for the 
two sub-domains: sphere and elastic half-space. 
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 The multi-physics finite elements software package COMSOL [6] was 
used to determine the solution. A recent development in the available solving 
methods is the use of the contact elements. The software determines which 
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elements are in contact and in continuity for displacements and at the same time, 
the soft imposes normal stresses for the nodes which are in the contact domain.  

A parametrical study is done for each geometrical configuration, the load 
increasing from zero to the imposed applied resulting force. The displacement of 
the point placed in the centre of the contact area can be plotted as function of the 
applied force. 

4. Numerical results 

The elastic contact between a sphere of radius R=10 mm and an elastic 
plane is modelled by finite elements as indicated in the previous paragraph. 
Material data for the infinite medium are: Young’s modulus E1=2e11 Pa and 
Poisson’s coefficient ν1=0.33. In the first case, the sphere material has been 
selected to be the same as for the infinite medium (E2=2e11 Pa, ν2=0.33). Typical 
results are presented on Fig. 4, for the half-sphere model (a) and “full” sphere 
model (b) which is a sphere whose cap of 0.1 mm is missing from the 10 mm 
radius. 

For comparison reasons, the Young’s modulus of the infinite medium has 
been decreased in steps, such that: E2/E1=2,..., E2/E1=8. The same material and 
loading data are introduced in (7) in order to determine the deformation δ for the 
same values of the applied force. The results are presented on Figure 5 as dashed 
line for the analytical solution and continuous line for the FEM solution. 

 

 

 

 

 

 

 

 

Fig. 4: Deformed shape of the contact for the two FEM models 
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A large difference can be seen for the case E2/E1=1, marked by squares. 
The difference between solutions decreases for increasing of the ratio E2/E1. 

 

Fig. 5: Relative displacement vs. applied force for three materials. Dashed line: analytical 
formula, continuous line: FEM solution 

 

Fig. 6: FEM models comparison. Continuous line: half sphere; circles: “full” sphere. 
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The influence of the FEM model has been investigated and compared. The 
comparison of the two FEM solutions is shown on Figure 6. The model using a 
half- sphere (continuous line) produces practically the same results as in the case 
of a “full” sphere, proving that a smaller FEM model, which provides faster 
solutions, is a very good choice. The semi-infinite medium is modelled by 
cylinders. Two values were tested for the radius of the cylinder: 15 and 20 mm 
keeping the same height of 15 mm. The results were practically the same. 

5. Conclusions 

The investigation of the accuracy of the classical formula for the Hertzian 
contact between a sphere and an infinite medium has led to the following 
conclusions.  

The theoretical approach is based on assumptions concerning the geometry 
of the deformed bodies. The contact surface is assumed to be a circular area, over 
which a parabolic load is applied. 

The FEM solution provides consistently lower values for the displacement 
of the central contact point. The FEM solution approaches the analytical solution 
for increasing E2/E1 ratio and both solutions are expected to coincide as this ratio 
tends to infinite. 

 The explanation comes from the situation that the real contact surface is 
not flat; it is considerably larger than the analytical solution predicts. In fact, the 
FEM solution accounts for the sphere deformation, the equilibrium configuration 
not corresponding to a spherical shape in the free area. 

Practical application of the results can be used for the hardness measuring 
devices which need corrections and a model of a quarter of the sphere cross 
section is quite satisfactory. 
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