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CONGRUENCES INDUCED BY CERTAIN RELATIONS ON
AT -GROUPOIDS

by Faisal Yousafzail, Murad-ul-Islam Khan?, Kar Ping Shum?® and Kostaq Hila*

We introduce the concept of partially inverse AS M—groupoids which is almost
parallel to the concepts of E-inversive semigroups and E-inversive E-semigroups. Some
characterization problems are provided on partially inverse ASM-groupoidsA We give
necessary and sufficient conditions for a partially inverse AS""-subgroupoid E to be a
rectangular band. Furthermore we determine the unitary congruence m on a partially
inverse AG ™ -groupoid and show that each partially inverse AG™"-groupoid possesses an
idempotent separating congruence p. We also study anti-separative commutative image
of a locally associative AG""-groupoid. Finally, we give the concept of completely N-
inverse AG " -groupoid and characterize a mazimum idempotent separating congruence.

Keywords: AG " -groupoids, soft inverses, rectangular band, congruences, locally asso-
ciative AS**—groupoid.
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1. Introduction

An AG-groupoid is a useful non-associative and a noncommutative algebraic struc-
ture, midway between a groupoid and a commutative semigroup. Commutative law is given
by abc = cba in ternary operations. By putting brackets on the left of this equation, i.e.
(ab)e = (¢b)a, in 1972, M. A. Kazim and M. Naseeruddin introduced a new algebraic struc-
ture called a left almost semigroup abbreviated as an LA-semigroup [14]. This identity is
called the left invertive law. Several others authors that have contributed on left almost
semigroups, can be found in references. Cho et al. [4] studied this structure under the name
of right modular groupoid. Holgate [12] studied it as left invertive groupoid. P.V. Proti¢ and
N. Stevanovié¢ called the same structure an Abel-Grassmann’s groupoid abbreviated as an
AS-groupoid [26]. AG-groupoids have a variety of applications in flocks theory, finite math-
ematics, geometry and other algebras (]2, 25, 31, 33]). AG-groups also have a geometrical
interpretation that gives a rise to their application in the context of parallelogram spaces
[32].

This structure is closely related to a commutative semigroup because a commutative
AS-groupoid is a semigroup [21]. It was proved in [14] that an AG-groupoid S is medial,
that is, ab - cd = ac - bd holds for all a,b,c,d € S. An ASG-groupoid may or may not contains
a left identity. The left identity of an AG-groupoid permits the inverses of elements in
the structure. If an AYG-groupoid contains a left identity, then this left identity is unique
[21]. In an AS-groupoid S with left identity (unitary ASG-groupoid), the paramedial law
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ab - ¢cd = dc - ba holds for all a,b,c,d € S. By using medial law with left identity, we get
a-bc =10b-ac for all a,b,c € S. It is important to mention here that if an AG-groupoid
contains identity or even right identity, then it becomes a commutative monoid.

We should genuinely acknowledge that much of the ground work has been done by
M.A. Kazim, M. Naseeruddin, Q. Mushtaq, M.S. Kamran, P.V. Proti¢, N. Stevanovi¢, M.
Khan, W.A. Dudek and R.S. Gigon. One can be referred to [6, 7, 15, 16, 17, 21, 22, 26, 35]
in this regard.

In [22], Q. Mushtaq and S.M. Yusuf introduced the concept of a locally associative
AG-groupoid. Several fundamental theorems were proved in this paper. An exponential
semigroup is a semigroup satisfying the identity (zy)™ = z™y™(m > 2) and it was intro-
duced by T. Tamura and T. Nordhal in [36]. It is noteworthy that a locally associative
ASG-groupoid is exponential. In 1967, T.S. Frank [9] asked the question, whether or not
there exists a subtractive group? Plainly speaking, the nature of operations of subtraction
and division is such that they are non-associative and as such any structure based upon
them would be the same. It wasn’t till 1987 when this question was answered by Q. Mush-
taq and M.S. Kamran in [13] when they successfully defined a non-associative group called
an ASG-group and verified some important and known results of group theory. P.V. Protic
and N. Stevanovic have done a lot of research on ASG-groupoids. The generalization of a
unitary AG-groupoid was called as an AG" -groupoid. They showed that a non-associative
left simple (right simple, simple) AG"-groupoid does not exist. They introduced the notion
of an AG-band. They also introduced congruences in AG"-groupoids, AG" -groupoids and
AG-bands, and decomposed the structures using these congruences in [27] and [28]. P.V.
Proti¢ and N. Stevanovi¢ introduced a useful technique for verification of AG"" -groupoids,
AG"-groupoids and ASG-groupoids [35]. They defined ideals in [34], and added many inter-
esting results to the theory of AS-groupoids in [35]. In [15], M. Khan has studied many
interesting properties of AG-groupoids, AG"-groupoids and AG" -groupoids in his doctoral
thesis. He has studied M-systems and P-systems in AS-groupoids and characterized simple
and O-simple AG-groupoids. In [6], W.A. Dudek and R.S. Gigon have shown that the set
of all idempotents of a completely inverse AG" -groupoid A forms a semilattice and the
Green’s relations H, £, R, D and J coincide on A. The main result of this note says that
any completely inverse AG" -groupoid meets the famous Lallement’s Lemma for regular
semigroups. They have shown that the Green’s relation H is both the least semilattice
congruence and the maximum idempotent separating congruence on any completely inverse
AG™-groupoid. In [7], they have determined certain fundamental congruences on a com-
pletely inverse AG" " -groupoid; namely: the maximum idempotent separating congruence,
the least AG-group congruence and the least E-unitary congruence. They have investigated
the complete lattice of congruences of a completely inverse AG -groupoid. Some other re-
sults on congruences on completely inverse AG**-groupoids have been obtained recently in
16, 17).

Many authors studied various congruences on some special classes of AG-groupoids
and described the corresponding quotient algebras as semilattices of some subgroupoids
[6, 7, 15, 20, 23, 24, 27, 28]. In this paper, we introduce and study some basic results on
partially inverse AG" "-groupoids and completely N-inverse AG *-groupoid. These concepts
allow us to study some congruences on certain classes of AG" -groupoids that have been
previously explored in the structure of E-inversive semigroups, F-inversive E-semigroups
and eventually regular semigroups [1, 8, 10, 18, 37, 38].

2. Congruences on partially inverse AS"*-groupoids

A congruence is determined in a group if we know a single congruence class, in partic-
ular, if we know the normal subgroup. Similarly, in a ring a congruence is determined if we
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know the ideal. In semigroups there is no such fortunate occurrence, and we are therefore
faced with the necessity of studying congruences and hence the theory of semigroups.

In this section, we give some basic results on partially inverse AG" -groupoids. Some
characterization problems are provided on a partially inverse AG" -groupoid. We study some
congruences on a partially inverse AG" " -groupoid in terms of a semilattice E. At the begin-
ning we determine the unitary congruence 5 on a partially inverse AG" -groupoid. Also, we
give necessary and sufficient conditions for a partially inverse AG" -subgroupoid E to be a
rectangular band. Furthermore, we provide some equivalent conditions for a partially inverse
AG™-groupoid and characterized a unitary congruence 7. Finally we prove that a unitary
congruence 7 on a partially inverse AG" -groupoid is uniquely determined by a relation ~
and the set of idempotents. We show that each partially inverse AG" " -groupoid possesses an
idempotent separating congruence pu.

2.1. Basic results. A semigroup S is called E-inversive if for every a € S there exists
some z € S such that ax is idempotent [18]. This concept was introduced by G. Thierrin in
1955. In [11], E-inversive semigroups are also called E-dense semigroups. Basic properties of
E-inversive semigroups were given by Catino and Miccoli [3], and Mitsch and Petrich [19].

Zheng and Zhang [38] have studied some idempotent separating congruences on E-
inversive semigroups whose idempotents form a rectangular band. In [10], Gigon have
studied ideals and congruences in E-inversive semigroups, and also proved that E-inversive
semigroup is strictly closed. In [37], Weipoltshammer have investigated a least group congru-
ence, a semilattice congruence and an idempotent separating congruence on an F-inversive
E-semigroup.

In this paper, we have generalized the concept of E-inversive semigroups and FE-
inversive E-semigroups. Some basic properties of F-inversive semigroups in a partially in-
verse AG " -groupoid have been transformed and studied different congruences on a partially
inverse AG " -groupoid. It is important to note that unlike semigroup, the concepts of par-
tially inverse AG" -groupoid and partially inverse E-AG" -groupoid coincide in a structure
of an ASG-groupoid.

Thus in this paper, we have actually tried to generalize the work done for associative
structures such as semigroups to non-associative structures such as AG-groupoids.

Let us introduce the concept of soft inverses in an AG" " -groupoid as follows:

For an AG""-groupoid, U(a) = {z € S|z = za - x and za = azr} is the set of all soft
inverses of a € S.

Definition 2.1. An ASG""-groupoid S is called partially inverse if for all a € S, there exists
x € S such that ax and xa are idempotents.

In [3], E-inversive semigroup was characterized by Catino and Miccoli as follows:
A semigroup S is E-inversive if and only if W(a) # 0 for all a € S, where W(a) = {z €
S / x = xax} is the set of all weak inverses of a € S.

By contrast, we obtain the following result in general.

Lemma 2.1. An AS " -groupoid S is partially inverse if and only if U(a) # 0 for alla € S.

Proof. Necessity. Let a € S. Then there exists € S such that ax and xa are idempotents.
Thus, we have
ar-r = (ax-azx)r = (ax-az)(az) - -z = (z-az)(az - ax) = (a - zx)(aa - zx)
= (2zz-aa)(zz-a) = (aa - zx)(z?a) = a®z? - 2%a = (2%a - a)(2%a)
= (az-x)a- (az - x).

Moreover, (azx - r)a = ax - ax = a(az - ). It follows that Va € S, U(a) # 0.
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Sufficiency. Assume that U(a) # 0, for all a € S. Since # = za -z and az = za
for some = € S, then ax = a(za - ) = za - ax = ax - ax, which shows that S is partially
inverse. U

The above fact will be used frequently without mention in the sequel.

A semigroup S is E-semigroup if the set E of idempotents of S forms a subsemigroup
[1]. It is noteworthy that every AG""-groupoid is E-AG" " -groupoid which can be easily
followed from the following Lemma 2.2.

Lemma 2.2. [27] Let S be an AG " -groupoid. Then E is a semilattice.
Example 2.1. Let us define a set S = {a,b, c,d} under the binary operation “” as follows:

~‘abcd
alb b d d
blb b b b
cla b ¢ d
dla b a b

~

By routine calculation, it is easy to see that (S,-) is a partially inverse AG **_groupoid

as well as a partially inverse E-AS ™ -groupoid.
We now provide some properties of a partially inverse ASG" *-groupoid.

Lemma 2.3. Let S be a partially inverse AS" " -groupoid. Then the following conditions
hold:

(i) ea € U(a) ifa’ € U(a) and e € E;
(i) a' f-eeUla) ifad € U(a) and e, f € B;
(iii) a2f -e € U(a?) if o’ € U(a) and e, f € E.
Proof. (i) : Let ' € U(a) and e € E, then
ed = (ee)(da-a)=(e-aa)lea) = (ee-a a)lea’)
= (aa -ee)(ed) = (aa -e)(ed) = (ed - a)(ea ),

’

’ ’ ’ ’
anda-ea =e-aa =ee-aa =aa -e=ea -a.

(ii) : Let ' € U(a) and e, f € E, then
af-e = (@a-a)(ff)-e=(aa faf) ee=(aa-fe-(fe
(ef -a'a)-(a fle=(aa’ - fe)-(a fle=(fe-a)a-(a fle
= (ef-d)a-(a'fle=(a f-e)a-(a fle,
anda(a/f-/e):a,f-aeza/a-fe:aa/-ef ae-d f=(df-e).
(7i) : Let @ € U(a) and e, f € E, then
d%fe = ( f)ezef-a/a/ :(ef)-(a/a-a/)(a/a-a/)
= (ef)-(aa-a'a)(a'd) = (ef)-(ad -ad’)(a'a)
(e )(a2a/2 %) = (fe)(a*a”?-a®) = (ff-a*a”)(ea®)
(a%a® - ff)(ea”) = - s a2f><ea) (a®e)(a™f -a”f)
(a
(
(

aa

i

ef

\_/v

a?- fh)

2fa2f)(ee) -a? = (a2f - )(a>f ) - a?
aa)(a '2f &) (a?f-¢) = (e-af)(aa) - (af - ©)
fa? - e)a? <’2f €)= (a2f - e)a? - (a%f - o),

and

a2(@%f-e)=a’f d®e=a2d> fe=a%d? ef = (ef -a?)a® = (a>f - €)a’.
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O

Definition 2.2. Let S be an AG™ " -groupoid. For any H,B C S, we define Hy, = {a € S :
ba € H for some b € B}.

If B = H, then H,, will be denoted by H, and it is called closure of H. An AG""-
subgroupoid H of an AG""-groupoid S is called closed if H = H,.

Proposition 2.1. Let S be a partially inverse AS™ -groupoid. Then E is partially inverse
if B is closed.

Proof. Lete € Eand e € U(e). Since ee’ € E, then ¢ € E,. Also E is closed, which follows
that ¢ € E. Hence E is partially inverse. (]

In general, the converse of the above proposition does not hold. The following example
shows it.

Example 2.2. Let (S,-) be the partially inverse AS ™ -groupoid of Example 2.1. Clearly
E = {b,c} is a partially inverse subset of S, but it is not closed.

Lemma 2.4. Let S be an AS" " -groupoid. If ab = e for all a,b € S and e € E, then
b%e - a? = e.

Proof. Let a,b € S and e € E. Then by given assumption, we get
b’e-a®> = (bb-e)(aa) = (eb-b)(aa) = (eb-a)(ba) = (ab)(a - eb) = (ab)(e - ab) = e.
0
Definition 2.3. Let S be an AS ™ -groupoid. Define a relation “~” on S as follows:
Forae S ande€ E, e~a < e=xa for somex € S.
For a € S, a subset E(a) of S is defined by E(a)={e€ E /e~ a}.

Lemma 2.5. Let S be an AG" " -groupoid. For alla € S and e € E, e ~ a if and only if
e € Sa.

Proof. 1t is simple, hence is omitted. O

Now, we will make use of the following description of a partially inverse ASG""-groupoid
whose idempotents form a rectangular band.

Definition 2.4. An AS™"-groupoid S is called rectangular if Ssatisfies the identity x = xy-x
for all x,y € S.

Example 2.3. Let us consider an AS" " -groupoid S = {a,b,c,d} in the following multipli-
cation table:

~‘abcd
ala b ¢ d
bl|b a d ¢
cld ¢ a b
dic d b a

It can be verified that it is a rectangular AS" " -groupoid.
By an AG-band we mean an AG-groupoid whose elements are idempotent.

Lemma 2.6. Let S be an AG ™" -groupoid and E be a rectangular band. Then E is a singleton
set.

Proof. 1t is simple, hence is omitted. O
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Lemma 2.7. Let S be a partially inverse AG™ -groupoid. Then the following conditions are
equivalent:

(i) E is a rectangular band;
(i) For all a,b € S, U(a) NU(b) # O implies U(a) = U(b).

Proof. (i) = (i) : Take any a,b € S and = € U(a) NU(b). Then = = za -z, xa = ax
and z = xb -z, b = bx. Since za,xb € E, then by using Lemma 2.6, xa = xb and thus
U(a) =U(b).

(i) = () : It is trivial to observe that if (i4) holds, then for all e, f € E, U(e) N
U(f) # 0 implies U(e) = U(f). Let z € U(ef), that is, x = (x - ef)r and z - ef = ef - z.
Then

(@f-e)e-(zf-e) = (e-xf)(xf-e)=(x-ef)(ef -z)=(ef-2)(x-ef)=((x-ef)x)(ef) =ax-ef =ef w=xf-

and

(of - e)e = (uf - )(ee) = (ce)(e - af) = ela - ef) = elef ) = e(af - ).
Similarly we can show that (zf -e)f-(xf-e)=xf-eand (zf-e)f = f(zf -e). Thus
xf e U(e)NU(f), whence U(e) = U(f). Since e € U(e), then it follows that ef - e = e.
Hence E is a rectangular band. ]

2.2. Unitary congruences. The basic definitions of congruences on an AS-groupoid are
given in [20] and those definitions are analogous with those in semigroup theory. A congru-
ence o on an AG" " -groupoid S is an equivalence relation if o is right (left) compatible, that
is, acobe (caoch) for each ¢ in S.

Definition 2.5. A congruence o on an AG-groupoid S is said to be a unitary congruence
if S/o contains a left identity.

The group congruence ¢ on an E-inversive E-semigroup S was characterized by Rei-
ther [30] as follows: acb <= ea = bf, for some e, f € E.

Now we will provide a theorem which will show the existence of a unitary congruence
on a partially inverse AG" " -groupoid as follows:

Theorem 2.1. Let S be a partially inverse A" -groupoid. Then the relation n = {(a,b) €
S xS [ ea?=0b2f for somee, f € E} is a unitary congruence on S.

Proof. 1t is easy to show that 7 is reflexive and symmetric.
Suppose that anb and bnc. Then ea? = b?f and e b> = c2f for some e, f,e ,f € E.
Now

ce-a® = a%e-e =ea® € :b2f~e'e/ :e/e/oszzel ~fl)2:f~e/b2
= [f =7 f
which follows that anc. Thus 7 is transitive.

Let anb and ¢ € S, then ea? = b?f for some e, f € E. Thus

e(ac)? = ee-ad’c? =c%a® ee=c*a® e=ea® - =b02f -2 =c2f-bb

bb- f? =% f? = f-b2c? = f(be)?.

Thus we showed that 7 is right compatible. Similarly, we can show that 7 is left
compatible. Hence 7 is a congruence on S.

Claim that for any e € E, en is the left identity of S/n. Let 2 € S and = € U(x).
Then (z'z)(ex)? = z'x - 222 = 2’z - 22e* = 22(2 = - €), therefore (ex,z) € n. Thus 7 is a
unitary congruence on S. |

Example 2.4. Let us consider a partially inverse AS™ " -groupoid S = {1,2,3,4,5} in the
following multiplication table:
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= = = = N
[, SESCINSE RS 0
W = Ot =

= O W N = Ot

U W N |

2
1
2
2
2
2
1

If we take E = {2,4} and consider n = {(1,1),(1,2),(2,2),(3,1)}, then it is easy to show
that n is a unitary congruence on S.

Corollary 2.1. Let S be a partially inverse AG" -groupoid and let E be closed. Then n =
{(a,b) e EX E | ea =bf for some e, f € E} is the least unitary congruence on E.

Proof. From Proposition 2.1 and Theorem 2.1, 7 is a unitary congruence on E. To show
that 7 is least on E, let 1 be an arbitrary unitary congruence on F and (a,b) € 1. Then
ea = bf for some e, f € E. Thus

an = en - an = (ea)n = (bf)n = (Vf*)n = (f*b*)n = (fb)n = fn - bn = b,
which implies that (a,b) € n. Hence 7 is the least unitary congruence on E. O

The following characterization problem gives us an alternative description of Theorem
2.1.

Theorem 2.2. Let S be a partially inverse AG ™ -groupoid. Then the unitary congruence n
on S is given by anb < U(a?) NU(b?) # 0.

Proof. Necessity. Let a,b € S such that anb. Then by Theorem 2.1, there exist e, f € E
with ea? = b2f. Let @’ € U(a). Then by Lemma 2.3 (iii), ' 2f - e € U(a2?) N U(b?), whence
U(a?)NU(b?) # 0.

Sufficiency. Let z € U(a?) N U(b?). Then za? = a?x and zb? = b%x. It is easy to see
that b2z, za® € E. Thus b’z - a®> = a’z - b> = bb - xa® = b - xa®. Hence by Theorem 2.1,
anb. ]

Corollary 2.2. Let S be a partially inverse AG™ -groupoid and let E be closed. Then the
unitary congruence n on E is given by n = {(a,b) € EX E [/ U(a) =U(b)} if and only if E
s a rectangular band.

Proof. Necessity. Let e, f € E. From Corollary 2.1, n is a unitary congruence on F, enf.
By hypothesis, therefore we have U(a) = U(b). Since e € U(e) = U(f), then it follows that
ef-e=e. Thus F is a rectangular band.

Sufficiency. Let anb and E be a rectangular band. By Theorem 2.2, U(a?)NU (b%) # 0,
whence by Lemma 2.7, U(a) = U(b). Conversely, if U(a) = U(b), then U(a)NU(b) = U(a) #
() (see Lemma 2.1) which implies that U(a?) N U(b?) # 0. Hence by Theorem 2.2, anb. [0

Definition 2.6. A subset H of an AS "  -groupoid S is called full if E C H. An AG™"-
subgroupoid H of an AS™ -groupoid S is called softly self conjugate if for all a € S, x € H,
a eUa); dz-a,a -zacH, ar =za, 'z =zad .

Example 2.5. Let S be the partially inverse AS" -groupoid of Example 2.4. Consider
E ={2,4} and H = {2}. Then it is easy to verify that H is a softly self conjugate subset of
S.

For an AG" " -groupoid S, the following notations will be used: P is the class of all
full and softly self conjugate AG" "-subgroupoids of S and P* is the set of all closed AG""-
subgroupoids of S.

If we consider H € P instead of E in Theorem 2.1, then we can get some important
characterization problems connected to a unitary congruences of a partially inverse AG" -
groupoid.



90 F. Yousafzai, M.-I. Khan, K.P. Shum and K. Hila

Theorem 2.3. Let S be a partially inverse AG™ -groupoid and H € P. Then the relation
Qg = {(a,b) € S x S / za® = b%y for some x,y € H} is a unitary congruence on S.

Proof. To show that Qg is a congruence on S, let a,b,c € S such that a e U(a). It is easy

to see that a,a, ad’ € E and since H is full, then a,a, ad’ € H. Thus aa’ -a® = a?- a/a, which

shows that aQga.
Suppose that aQgb. Then za® = by for some z,y € H. Let b € U(b). Thus

(by-b)(aa)- 4" = (-aa)(by-b) = (" by)laa -b) = (b-by)(aa -b)
(b-za®)(aa -b) = (b -ad )(za®-b) = (xa®)- (b -aa )b
b(b - ad) - ( 22) = a®- (b(b - ad )z =z(b® -ad)) - a
((b ad)) -z =b(*®b -ad)) -z =0b0 (a® ad)) -z
b(b (@ a-a®) - z=blda-ba®)-z=(ada)b-ba®) x
(ba -b)(a a’) = (z-ad)(ba® b)=(z-aa)ba®b)
= (d -za)(ba®-b)=(ba® (a -za)b=">(a -za)- (ab)
= a® (b (d - za))b.

Since (b'y - b)(aa'), (b'(a" - za))b € H, then bQa.

Again suppose that aQgb and bQgc. Then za? = by and 20> = c*w for some
w,x,y,z € H. Since
2

(0 - zy)(zw) = () (zy - w) = (w - zy)(za®) = (w - 2y)(b°y)
= (2 wy)( y) = (2b%)(wy - y) = (Pw)(y*w) = (yPw - w)c2
yPw

wy? - =2yt

(zw - zy)a’

then it follows that aQgec.
Let aQgb and ¢ € S. Then za? = by for some z,y € H. Let b € U(b) and ¢ € Ulc).
Then

z(bb - cc) - (ac)2 =2(bb -cc) - (a*?) = (za?) - (bb - cc )c?
= (b%y) - (bb - cc ) = (b*y) - P(cc - bb)
= (b%c?) ~y(cc b ) = (be)? -y(cc/ . bbl),

which shows that Qp is right compatible. Similarly, we can show that Qg is left compatible.
Hence Qp is a congruence on S.

Fix z € H and claim that zQ; is the left identity of S/Qp. Let a € S and a" € U(a).
Then (22 - aa')a2 = (a'a - 22)a?® = a22? - a'a = (xa)?(a’a), which implies that (a,za) € Qp.
Hence Qp is a unitary congruence on S. (]

Theorem 2.4. Let S be a partially inverse AS" -groupoid with H € P*. If a,b € S, then
the following statements are equivalent:
(i) For allb € U(b), a®b? € H;
(i1) For alla’ € U(a), a'?b? € H;
(iii) For all a' € Ul(a), b*a’? € H;
(iv) For all b € U(b), b'%a® € H;
(v) For all b € U(b), there exists x € H such that ax-b? € H;
(vi) For all a’ € Ula), there exists x € H such that a*z - b* € H;
(vii) For all a' € U(a), there exists x € H such that bz -a® € H;
(viii) For allb" € U(b), there exists x € H such that b2z - a® € H;
(iz) There exist x,yy € H such that xa® = by;
(x) There exist v,y € H such that a*x = yb?;
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(i) Ha®> N Hb? # 0.

Proof. (i) = (ii) : Let @ € U(a) and b € U(b). Then a2b2 = ab -ab € H implies
ab’ € H_ = H and

Now

(@?-a?)a® = ((aa)(ab -ab))(aa) = ((a -ab)(a -ab))(aa)

(@ -ab)a-(d -ab)aec H.

—
Q

2. a2 ) (a/2b2) = ((a/ -ab)a - (a -ab)a)(a'b-a'b)
((a -ab)a-(a'b))((a -ab)a-(a'b)=((ab -a’)a-(a'b))((ab -a)a-(a'b))
((aa - ab)(a'b))((aa -ab)(a'b)) = ((a'b-ab )(aa ))((a'b-ab )(aa))

)
((a'a)(ab - a'b))((a'a)(ab -a'b)) = ((aa')(aa - bb))((aa )(aa -bb)) € HH C H.

It follows that a 2b2 € H, =H.

(#9) = (1) : Tt is similar to the proof of (i) = (i7).

The proof of (i1) <= (iii) <= (iv) are similar to the proof of (i) <= (ii).

(iv) = (v) : Let b € U(b) and o’ € U(a). Then b2a2 =b'a-b a € H, which implies

that b'a € Hy = H and (b2 - a2a'2)b? € H. Thus

(@ (b2 a2 = (b2 a2a?)(a®?) b2 = (b -ad )b -aa) - (a®b?))b?

((b - aa )(ab) - (b - aa’)(ab))b?

= ((b'-aa’)(ab) - b)((b - aa)(ab) - b)
(b~ ab)(b - aa)((b - ab)(b - aa’))
((a-bb)(b - aa))((a-bb)(b -aa’))

= (b -aa)(bb) - a)((b - aa’)(bh) - a)

= ((b'b)(aa ) -a)((b'b)(ad -b)-a)
(a(aa - b') - (b'b))(alad ) - (b'))
((ad” - ab)(b'b))((aa -ab’) - (b'D))

= (ba-da)®b)((ba-aa) (bb) e HH C H.

(v) = (iv) : Let @ € U(a) and b € U(b). Then there exists # € H such that

2? € H, which follows that a?z% - b2 € H. Since a (a?z?-b?)-a € H, then

a2x .

’

d(@®2? b -a = (®2® - ab?a= (2% ab>a
= (b2 d2¥)a=(a-az?) (b3 € H.

Thus we showed that b2a2 € Hy, = H.
(v) = (vi) : Let @ € U(a) and b € U(b). Then there exists x € H such that

b2 € H. Therefore
alg(an . blg) b = Ba®z-b?)-a? = (aPx- bzb/2)a/2 = (b2p? - xa2)a/2
= (a? 2a®)(b?) = (z-a%a®)(b??) € H.

(vi) = (v) : Tt is similar to the proof of (v) = (iv).
Again, we can show that (vi) <= (vii) <= (viii).
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(vii) = (iz) : Let @ € U(a) and b € U(b). Then there exists # € H such that

b2z - a2 € H. Since (a' (bb - ) - a)(b?b'2), ((b22)a®)(b'b- aa’) € H, then we have

(@ (b -2)-a)B*?)-a®> = (b (d (b -z)-a)b)a® = (a®- (a (bb - x) a)b 2)b?
= - ((a (B -z)-a)b?a®>=b>-(a®>)(d (bb - 2)-a)
= b2 (a®2)((bb -x)a -a) =b>- (a®>)((aa ) (Bb - 2))
= b (a®>)((z-bb)(a a)) =b* (a®b?)((d'a-bb)z)
= b2 (a®(da-bb))(b2x) =b>- ((b'b-aa )a?)(b2x)
= b2 ((b%2)a®)(b'b- ad).

(iz) = (x) : Let ' € U(a) and b € U(b). By assumption there exist 2,y € H such
that za? = b%y. We know that (bb/)(a/x -a), (aa’ - b'b)y € H. Thus

a*-(bb)(a'z-a) = a®-(bb)(wa -a)=a’-(bb)(ad -x) =a’-(ad )(bb - )
= (ad')-a*(bb -z) = ( Nbb - a*x) = (aa )(za® - b'b)
= (ad)(b*y-b'b) = (b*y)(ad -b'b) = (aa - b by - b°.

(r) = (wi) : Suppose that a?z = yb? for some x,y € H. Then

vir? - a? = d®2?-y? = 2% P = (dPx - x)y? = (yb? a)y?

= ylx-yb® =0y ay? = (ay? - y)b?,
which implies that Ha? N Hb? # (.

(i) = (v) : Suppose that Ha? N Hb?> # (). Let za® = yb? for some z,y € H and
a €Ula), b € U(b). Then

’

(aa )(za® - a/Q) = (aa

’ ’

)(01/2(12 -z) = (aa ) - (a/a . a/a)x € H.

It follows that

’

a®((ad’)(wa®-a?))-b* = a*((aa )(yb®-a?)) b = (aa ) (a*(yb* - a?)) - b
a ) b2 = (aa)((yb*)(aa -ad’))-b>

(aa - aa/)(be)) b2 = b/2(aa/ - b2y) - (aa/)

aal)(yb2 ~b/2) . (aa/)

O

Corollary 2.3. Let S be a partially inverse AG™ " -groupoid with H € P* and a,b € S. Then
aQdgb if and only if one of the equivalent conditions in Theorem 2.4 holds.

Theorem 2.5. Let S be a partially inverse AG " -groupoid. Then the relation T = {(a,b) €
S xS/ E(a)=E()} is a unitary congruence on S.

Proof. Clearly, 7 is an equivalence relation. We shall show that 7 is compatible. Let a, b,c € S
be such that arh. Suppose that e € E with e ~ ac. Then there exists x € S such that
x - ac = e. By Lemma 2.4, we have

e = (ac)’e- 2% = (a®c? - e)2? = 2% - a*c* = (aa)(z?e - ) = (2%e - )a - a.
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Hence e ~ a. Since E(a) = E(b), e ~ b and therefore there exists y € S such that
yb = e. Thus (yb)(z - ac) = e. Now by using Lemma 2.4, we have

e = (z-ac)’e- (yb)? = (2% - a*cP)e-y?b? = (2* - Za®)e - y*b?
((32 -x2a2)e . y2b2 —_ (6 . .Z‘QGQ)CQ -y2b2 — b2y2 '02(6 . x2a2)

= b2 y¥(e-2%a?) = (be)(be) -y (e - 2%a?) = (y*(e - x2a?) - be)(be),

which implies that e ~ be. Thus E(ac) C E(bc). Similarly we can show that E(bc) C E(ac).
Hence E(ac) = E(bc), which follows that actbe. The similar argument will holds for carcb.
Therefore 7 is a congruence on S.
To show that x7 is a left identity of S/7 for some z € F, let a € S. If e ~ a, then
there exists « € S such that e = za. By Lemma 2.4, we have
e = d’e-2? =2 ed’ =c- 2% = e(xa-xa) = e(ax - ax)

= (az)(e-azx) = (ax - e)(za).

Thus we showed that e ~ xa and so E(a) C E(xa). Similarly we can show that
E(za) C E(a). Hence (a,za) € 7, and thus 7 is a unitary congruence on S. O

2.3. Idempotent separating congruences. We investigate an idempotent separating
congruence on a partially inverse AG -groupoid S concerning centralizer Hy of H in S,
where Hy = {zx € S / ah = hx for all h € H}.

Definition 2.7. A congruence o on an AS™ -groupoid is called idempotent separating if
each o-class contains at most one idempotent.

Theorem 2.6. Let S be a partially inverse AS" -groupoid and H € P. Then the relation
A= {(a,b) € S xS/ for each a’ € Ul(a), there exists b € U(b) (for all b € U(b), there
existsa € U(a)) such thata'z-a ="bxz-b anda -xa =1 -xb for all x € HY} is an idempotent
separating congruence on S.

Proof. Obviously A is reflexive and symmetric. Take any a,b,c € S with aAb and bAc. Let
a' € U(a). Then there exists b € U(b) such that ¢ z-a =bz-band a -za =b - zb for
all z € H. Since bAc and b € U(b), then there exists ¢ € U(c) such that bz -b=cxz-c
and b -xb=c¢ -xcforallz € H Thusa'z-a=cz-cand d -za =c -zc for all z € H.
Similarly we can show that for all ¢ € U(c), there exists a” € U(a) such that ¢ z-a=c z-c
and a - xa = ¢ - zc for all z € H. Thus we showed that \ is transitive.

Let a,b,c € S with aXb and let «' € U(a). Then there exists b € U(b) such that
drx-a=bz-bandd -xa=0>b -xbforall z € H Let ¢ € U(c). Then by (ac) € Ulac),
(be) € U(be) and for all = € H, we get

=c - (bz-bje=c -(bx-b)e=(bz-b)(cc)=(bx-c)bc)
= (cb)(c -bx) = (cc )b -bx) = (c )b -bx) = (c'b)(c-bx)
=(cb)(b-cax)=(cb)b- zc) = (xc-b)(bc )= (be-z)(bc)=((be) -z)(be),
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and

ac) (x - ac) = (a' ¢ )(x - ac) = (' z)(c -ac) = (xa')(c -ac) = (xc )(a - ac)

d(zc -ac)=d (za-cc)=a (ax-cc)=d - (cc-2)a

—~

’

=b - (Cc-a)b=0b(bz-cc)=b(zb-cc)= b,(xc, - be)
= (zc)(b -bc) = (@b )(c -be) = (bz)(c -be) = (b )(z-be) = (be) (x - be),

which shows that acAbc and therefore A is right compatible. Similarly we can show that A
is left compatible as well. Hence A is a congruence relation on S.
Let e, f € E such that e\f. Then for any e € Ul(e), there exists some f e U(f) such

that ex - e—fx fforallz € H As H is full, e € H and e = ee - e—fe f, we have

ef=(feNf=ff-fe=f-fe=f fe=f ef=fef=fef=e
Now if f € U(f), then there exists ¢ € U(e) such that fr-f=cx-eforallze H.
Since f € H,then we have f:ff~f:e/f-e. It follows that
ef:e(e/f-e):e(ef-e/):ef~ee/zele-fe:e/f~ee:e/f-e:f.

Thus e = f, and so A is an idempotent separating congruence on S. ]

Theorem 2.7. Let S be a partially inverse AS" " -groupoid with H € Pand let ju be the
relation given by i = {(a,b) € S x S / for each a' € Ula), there exists b € U(b) (for all
b e U(b), there exists ' € U(a)) such that a'a = b'b, a'b € Hy for all z € H}. If H is
commutative, then u is an idempotent separating congruence on S.

Proof. Let a,b € S with aAb and let @ € U(a). Then there exists b € U(b) such that

adx-a=bx-banda -za="> -xbfor all z € H. Also note that a'a € E C H. Thus it
follows that

’ ’ ’ ’ ’ / ’

aa = (aa-a)a=aa -aa=a (aa ~a):b/(aa/~b):aa/.b/b:bb/-a/a
= (da-b)b=10"b,
where by Lemma 2.3 (i), a'a-b € U(b). For any h € H, we have
ab-h = (da-a)b-h=(hb)(aa d)=(h-da)ba)
= (da-b)(ha)=(aa b)(a'h)=(da-a)bh)=(da-a)(hb)
= h- (ala~a/)b: h-a'b.

Il
—
Q
IS
>
N
—~
=
IS
~

Therefore a'b € Hy. Similarly we can prove it for the second case as well. Hence A C p.

Now we further suppose that a, b € S such that aub and a € U(a). Then there
exists b € U(b) such that a'a = b'b, a'b € Hy for all z € H. By Lemma 2.3 (i), b =
(b -d'a)(a'a) € U(b). Indeed, if € H, then

a/a a ):c a= (b'b~a’):r ca=(ab-b)z-a=(zb -aba

!
ar-a =

(

v

(ab)( (zb-a)(b'a) = (b'a-d )(xb) = (bz)(a -ba)
(a -ba)x-b:(x-ba)a,-b—(b/ xa)a b—(a,-xa)b/-b
(z-aa)b -b:(aa-x)b/-b—(bx aa) b:(xb/-a/a)-b
( ,

(

’ ’

aa-b)x-b=((aa-a)a- b)m b—((ba)(a/a~a)~x)b
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and since aa € E C H, then

/ ’ ’ / ’ ’ ’ ’ ’

a -zxa = (aa-a)(ra)=(ra-a)(aa)=(aa-z)(aa)=(aa -z)(aa)
= (2d -a)(da)=(dz a)da)=(aa)az a)=(a az)(aa)
= (a/ a;v)(aa/) = (aa/)(a/ cax) = (bbl)(a/ xa) = (bb/)(x . a/a)
(bz)(b -d'a)=(aa-b)(xb) = ((aa-a)a-b)(xh)
Wa)da-a) zb=(da)ba-a) zb=(aa)da-b)-xb

= (b -da)aa)-xb="b"-ab.

Similarly we can easily show that for every b € U(b), there exists ¢ € U(a) such that
dz-a=b'z-band a -za=10b"-zb, for all z € H. It follows that aAb and hence p C A.
Thus it was shown that p is an idempotent separating congruence on S. g

3. Maximal anti-separative decomposition of locally associative
AS**-groupoids

Recall that an AG-groupoid S is called a locally associative AG-groupoid if a - aa =
aa - a, for all a € S [23].

Definition 3.1. A locally associative AS™ -groupoid is an AG” " -groupoid S satisfying an
identity a - aa = aa - a, for alla € S.

It is easy to note that every locally associative AG" -groupoid is a partially inverse
AG™-groupoid, but the converse implication is not true in general which can be followed
from Example 2.1.

The following basic facts will be used frequently without mention in the sequel and
can be found in [23, 22, 24].

Lemma 3.1. Every locally associative AS™ -groupoid S has associative powers, that is,
aa”™ = a"a, Va € S andn € N.

Lemma 3.2. In an AS" " -groupoid S, a™a" = ™", Ya € S and m,n € N.
Lemma 3.3. In a locally associative AG ™" -groupoid S, (a™)™ = a™", Va € S and m,n € N.
Lemma 3.4. If S is a locally associative AS™ -groupoid and a,b € S, then (ab)™ = a™b™
for any n > 1 and (ab)™ = b"a™ for any n > 2.

Note that a"'a = ((((aa)a)a)...a)a and aa™ "t = a((((aa)a)a)...a).
Lemma 3.5. Let S be a locally associative AG" " -groupoid. Then a™ = o™ 'a = aa" !,
Va € S and Vn > 1.

Lemma 3.6. If S is a locally associative AG" -groupoid and a,b € S, then a™b™ = b™a™
for m,n > 1.

Let define a relation 7 as ath <= ab™ = b"*! and ba"™ = a"*!, Va,b € S and n € N.

Lemma 3.7. The relation T on a locally associative AS™ -groupoid S is a congruence
relation.

Proof. Clearly 7 is reflexive and symmetric. For transitivity, let atb and brc. Then there
exist positive integers m, n such that ab”™ = b"*1! ba™ = a™*! and bc™ = ™, cb™ = b7,
Let k= (n+1)(m+1) — 1, that is, k = n(m + 1) +m. Then

k acn(nL+1)+77n —a- cn(m—i—l)cm —a- (cm+1)nc7n —a- (bcm)ncm

ac =
— a.(bncmn)cm:bncmn.acm:bna.cmncm:Cmcmn.abn

mmn bn+1 MmN pnp  ppn L MR Lm bn+1cm(n+1)

= "¢ =c"c

(bcm)nJrl _ (Cm+1)n+1 m-+1)(n+1) k+1'

=l =c
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Similarly, we can show that ca® = a**'. Thus 7 is an equivalence relation. To show

that 7 is compatible, assume that a7b and let ¢ € S. Then (ac)(be)” = ac-b"c™ = ab™ - cc™ =
bn+1cn+1 — (bc)n+1.

Similarly, we can show that (bc)(ac)™ = (ac)®!. Hence 7 is a congruence relation on
S. O

Definition 3.2. A congruence o is said to be anti-separative congruence in S, if aboa® and
bacb? implies that acb.

Theorem 3.1. Let S be a locally associative A" -groupoid. Then S/ is a mazimal anti-
separative commutative image of S.

Proof. Tt is easy to see that if ab™ = b™*! and ba™ = a™*! for a,b € S and positive integers
m,n such that n > m, then atb. Let a,b € S such that abra? and barb?. Then by definition of
7, there exist positive integers m and n such that (ab)(a®)™ = (a?)™*1, a?(ab)™ = (ab)™*!,
and (ba)(b?)™ = (b*)" 1, b?(ba)"™ = (ba)" 1. It follows that

ba>m 1l = b.a®™a=a® ba=a"a™ ba=ab-ama™ = ab- a*™
(ab) (@)™ = (a®)"H = 22,
and
ab®tt = a-b*b=1b""ab="0b"b"ab=ba b"b" = ba - b*"

= (b)) = () =1

which implies that arb. Thus 7 is anti-separative, and hence S/7 is anti-separative. We now
show that 7 is contained in every anti-separative congruence relation £ on S. Let a7b so that
there exists a positive integer n such that, ab” = b"*! and ba™ = a"*'.

We need to show that aéb, where ¢ is any anti-separative congruence on S. Let k be
a positive integer such that, ab*¢b**1 and baF¢ar+1.

Suppose that k > 2, then (ab*~1)2 = ab?~! . ab*~! = aa - bF~10F~1 = a2 2

a0 = aa- bR = abh 2 abFeabh? - ph !
ab* = b = ab® - 020 = ab® - bF Y,
and from above, it follows that
a2b?R2eabk B = B g = pRE g = abF B

Thus (ab*~1)2¢ab® - b*~1. Since abF¢b* ! implies that ab® - ¥ ~1¢pF+1 . o~ Hence
(abF=1)2¢(b%)2. Tt further implies that (ab*~1)2£a?b?k—2 = p2k—242£(bF)2.

Thus it was shown that ab*~1€b*. Similarly, we can show that ba*~1¢a®.

By induction down from k, it follows that for k = 1, ab¢b? and bala?. Also it is easy
to see that 7 is commutative. Hence by using anti-separativity and commutativity, it follows
that S/7 is a maximal anti-separative commutative image of S. ]

3.1. Maximum idempotent separating congruences on a completely N-inverse
AG**-groupoid. In this section, we introduce the concept of a completely N-inverse AG""-
groupoid. We study some properties of a completely N-inverse AG" -groupoid. Also, a
maximum idempotent separating congruence on a completely N-inverse AG" -groupoid is
studied.

A completely N-inverse AG" -groupoid S is a locally associative AG" -groupoid sat-
isfying the identity za™ = a™z, where x is a unique inverse of a”, that is, a” = a"z-a", x =
za™ - x,for alla € S.

Example 3.1. Let S = {z,y,z} be an ASG-groupoid defined in the following multiplication
table:
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Then S is a locally associative AS" -groupoid. It can be verified that S is a completely
N-inverse AS""-groupoid.

Note that a™ = a™x-a™ implies that a” is a regular element of a completely N-inverse
AG""-groupoid. It is easy to see that za™ is idempotent in S.

Recall that if S is a locally associative AG" " -groupoid, then a™ = a" 'a = aa™! for
all a € S and n > 1, and (ab)” = a"b™ for all a,b € S and n > 1. These basic facts are
obviously valid in a completely N-inverse AG" " -groupoid and will be used without mention
in the sequel.

By convention, if we write za® or a%z, for some x € S, then we mean 2.

n—1

Lemma 3.8. Let S be a completely N-inverse AG " -groupoid and a € S. Then for any
n € N such that a™ is regular:

(7) |[V(a™)| =1, that is, a™ has a unique inverse that we denote by a™";

(ii) aa™™ - a"" ', a-a""a"" ! € E;

(iii) af -a "a" "' € E, for dll f € E;

() If a,b € S such that a™ and b™ are regular for some m, n € N, then a™b™ is
reqular with inverse a~"b~™;

)

(v) (ab)™™ =a~"b" ", for all a,b € S.

Proof. Let a, b € S and m, n € N such that ™ and 0" are regular.
(1) : Let y,z € V(a™), then

y = ya"-y=y(a"z-a")-y=(a"z-ya")y = (za" -ya")y = (ya" -a")z -y
= (yz)(a"y-a") =yz-a" = (yz)(a"z- a) (y-a"z)(za") = (a" - yz)(a"z)
= (2a")(yz-a") = (yz-a")a" -z = (a"a" -yz)z = (a"y - a"2)z = (a"y - 2a")z

= z@"y-ad")-z=2zd" -z =2z

n

(#9) : Let n > 2 and suppose that a~
(aa™"™-a" V(aa ™ a" 1) = ("' -aa") (@ - aa™")
= (a"%a-aa"")(a" ' -aa™") = (e "a-aa" %) (a" ! - aa™™)
=(a"a-a" ) (a"2a-aa"") = (a"ra-a ") (a "a- aa
= (a"a ") (a "a-a"" ') = (a""' - a""a)(a "a™)

— (a—nan . a—na)an—l — (a—na—n .ana)an—ll

is the inverse of a”, then

S]

n—2)

Since a"a = a""ta-a=aa-a""%a = aa""?-aa = a(aa""? - a) = aa", then it follows
from above that,
(aa—n . an—l)(aa—n . an—l) _ (a—na—n _aan)an—l _ a(a—n -n an) . an—l
_ a(ana—n .a—n) . an—l _ a(a—nan _a—n) . an—l =aa" " - an—l.

Thus it was shown that aa="-a"~! € E. Similarly, we can show that a-a "a" "' € E.
(i73) : Let f € E and n > 2. Then

(af -a™"a" M) (af -a™"a"1) = (aa™" - fa""H)(af -a7"a" )

= (aa™")(ff-a""%a)  (af -a™"a""") = (aa” ")(aa" 2 ff) (af -a™"a"Y)
= (aa™" - ”*1f)(af-a*"a"*1)=(a "haT"f)(@" e - fa)
=(@@"-a"f)(@" " a™" - fa) = (a" - a"" 1Cf”)(a’”f-fa)-
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Since
a"f = (a"ad"-a")f=fla" a"a")=a"(f -a"a") =a " (a"a" " f)
= a "a"a" f)=a"(fa" -a7")=a"(a"f-aT")=a"f-a""a™"
= a """ fa"=f(a™"a"-a") = f(a"a™"-a™") = f(a™"a" - a™")
fa™",

then it follows that,

(af -a™"a")(af e "a""") = (a" - a""'aT") (" f - fa)
= (a” -at” 1CL‘")(fa_” fa) = (a"-a™" 1Cf")(f ~"a)
(a™"a- f)(a"" 1@ ) (fa- ")(a"a " 2@)
(fa- ")(aa a") = (fa-a™")(a""!-a"a™")
o)™ =) = (a0 - =)o - o)
=a"(a""" - fa) = (a" a)(a™ - fa) = (fa-a™")a""! = (a""a7")(fa)
= (af)(a”™a" ).
Thus it is shown that af -a "a" ! € E.
(iv) : Suppose that a™ and b™ are regular with inverses =" and b=, then
(@™ - a”"b""™)(a"b™) = (aa™" - 00T ™) (a™0) = (a"aT" - d™) (BT D) = a™b™.
Similarly, we can show that (a="b~"™ - a"b™)(a""b~™) = a~"b~™. Moreover ab™ -

a” ™™ =a""b™™ - a™b™, which is what we set out to prove.
(v) : Tt is simple. O

Note that if ¢ is a congruence relation on a completely N-inverse AG" " -groupoid S,
then S/o is a completely N-inverse AG" "-groupoid and if (a,b) € o, then (a=",b") € &
and conversely.

Theorem 3.2. Let S be a completely N-inverse AG™ -groupoid. Then the relation w defined
as awb if and only if a”a™"™ - e = b"b"" - e is a maximum idempotent separating congruence
on S, wheren>1 ande € E.

Proof. 1t is easy to see that w is an equivalence relation on S. Now let awb, then a™a™"-e =
b"b~" - e, for every e € E. Thus

ac)"(ac)™" - e = (ac) "(ac)" - e = e(ac)" - (ac) ™" = (ee - (ac)" "' (ac))(ac) "

<<ac>( > " eeae) " = (o (ae) = o) e 00

=(a™" ee)(ac)” = (a™" ”e)(a”c“) (a™"e-a™)(c e ")

(e e ) = (ea - a0 )

= (a""a" )(c " e)=(a"a""e)("cT"e) = (B"b" - e) (e - e)
=@"b7" ") (ee) = (B - b7 )e = (be)" (be)T" - e

Thus acwbe. Similarly, we can show that cawch. Hence w is a congruence relation on
S.

Furthermore, let ewf for e, f € E. Then for every g € E, e"e™™ - g = f"f~" . g, and
therefore e = e"e™™ - e = f*f~" - €™. Thus

ef ef= ("t f =St [T =t T = (T e

(7 fem = (ffr e fTe = e = =,

and similarly, we can show that ef = f, which shows that e = f. Hence w is an idempotent
separating congruence on S.
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Now let w be any other idempotent separating congruence on S. We shall show
that @w C w. Let zwy. Then clearly z"wy™. Also x "wy ™", and therefore ™" - ex™ =
e-x "x"wy " ey =e-y "y", but both e-x7"z™ and e -y~ "y™ are idempotents, and so
it follows that e - x™ ™2™ = e -y~ "y", which implies that 2"z~ - e = y"y~ " - e. Thus zwy.
Hence w is maximum. ]

Theorem 3.3. Let S be a completely N-inverse AG” -groupoid and let w be the idempotent
separating congruence on S. Then for n > 1, (a,b) € w if and only if a=™a™ = b~"b" and
a™b™"™ € Hy.
Proof. Let (a,b) € w. Then a"a™™ -e =0b0"b""-e for all e € E. From
(a"a™"-e)(a"a" - e) = ("D - )V - e),
it follows that (a"a™™-a"a"")e = (b™b~"™ - b"b~")e. Thus
a"a" = (a "ad"- afn)(a"(f” ~a) = (a"cf" : a”cf")(zf"a")

Similarly, we can show that b="b" = b"b~"-a~"a". Thus we have shown that a ™ "a™ =
bbb,

Since a"a""-e =b"b"" ¢, for all e € E, then a™(a"a""-€)-b=" = a™(b"b " -€)- b ",
whence

a"(a"a™"-e) b7 = (a"a""-a"e) b =(b""-a"¢e)(a"a™")=(b"" ea™)(a"a™")
(e-b"a") (@) = (@b - o) (a” —"> ().
Similarly, we can show that a™(b"b~"™-€)-b~" = (a™b~™)(a"a "-e). Hence a"b~™ € Hy.

Conversely, let a7 "a™ =b07"b" and a™b™" € Hy. Then e- a”b "=a"h""-e,VeEF,
which further implies that a="(e - a™b™™) - b™ = a~"™(a™b~ ™ - €) - b™. Thus

ain(e . anbin) ° bTL - bn(e a,nb n a,in = e(bn . anbfn) a*'n« — e(a’rb . bnbfn) . ain
= (ee)(a"-a"a™")-a"" =(a"a""-a")(ee)-a”" =a"e-a™"
= e a7 "=a"a"-e=a"a"" e,
ain(anbfn . e) P = ain(a”lf" ) = (ane . bine) L

(a"e)(a™" - b7 "e) - b = (b_"e ~a”")(ea™) - "
(b "e-e)(a""a™) - b" = (eb" ") (a "a™) - "

= (edb™)(b7"") b = (" - b7"")(eb™ ™)
(O™ "e) (b7 - b™) = (b "e) (b0 - b")

= b "e-b"=0b"e- b =eb"- 07"

— b e = b

It follows that a®a " -e = b"b~" - e. Hence awb. O
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