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CORRELATED DUAL AUTOENCODER FOR ZERO-SHOT
LEARNING

Ming JIANG?, Zhiyong LIU%*, Pengfei LI®, Min ZHANG?#, Jingfan TANG®

In the existing researches on zero-shot learning, people focus more on the
mapping relationship between the visual features of images and the semantic
features of each class. However, these features themselves affect the final
identification for classification in a very significant way. Particularly, concerning
the semantic features, some representations are relatively close to each other in
some similar categories, which indicates the distinction among categories will not
be so apparent. Additionally, features will also witness a redundancy if the wider
span of the category appears. Therefore, to obtain more discriminative and finer-
grained semantic features, this paper proposes a model on framework of the
correlated dual autoencoder. Although these autoencoders are established for visual
and semantic features, the two autoencoders are still related to each other without
any independence. Hence, we encode the visual features, and these are added to the
encoded semantic features with the decoding of added semantic features. Finally, the
decoded and the original semantic features are added for better attainment and
completion of semantic features. In this paper, experiments were carried out on the
AWA and Cub datasets, and higher accuracy was achieved in the final classification
identification.
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1. Introduction

In recent years, with the development of deep learning technology, the use
of computer vision for image classification and recognition has achieved good
results [1, 2]. For example, in a large database such as ImageNet [3], the accuracy
of recognition is already very high. However, it can be noted that the
identification of these images usually requires us to collect and label a large
number of images for each category. This approach severely limits the scalability
of the entire model, as it becomes difficult to meet all of these needs as the size of
the identification task continues to grow, and the fine-grained classification
requirements increase. For example, it is easier to collect pictures of common
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animals and plants such as cats and dogs, but for some rare or endangered animals
and plants, it is difficult to collect a large number of these pictures in advance.
This means that there may be no such data sets in the training sample. In contrast,
humans are very good at identifying objects without seeing any visual images.
This ability is also known as zero-shot learning. For example, a child has only
seen a horse before, and then you let him go to the zoo to find a zebra. You tell
him that the zebra is a horse, but there are black and white stripes on his body, so
he can easily recognize the zebra. Inspired by human zero-shot learning ability,
people hope that machines can also have this ability. This way of learning can
extend the visual recognition of visible classes to invisible classes without
additional data sets [4,5,6,7,8,9,10,11,12,13].

Zero-shot learning ultimately needs to establish a mapping relationship
between visual features and semantic features, so these features themselves will
have a significant impact on the final classification results. In particular, semantic
features, these artificially defined attribute features or textual descriptions, have a
limited distinction between similar categories, such as horses and zebras that are
very close in the representation of attribute feature vectors. Besides, if the
category of the category to be identified is relatively broad, such as a data set of
various categories such as animals, vehicles, plants, furniture, etc., it has the
problem of feature redundancy in the representation of the attribute vector
because some features will only be apparent in some specific categories. Both of
the above problems have caused difficulties in our following classification and
identification. Therefore, this paper proposes a feature extraction model to mine
these attribute features to obtain more distinguishing semantic features.
Experiments show that using this method to obtain semantic features, the
distinction between them is better, and higher accuracy is achieved in the
following classification and recognition.

In this article we present a model architecture for a correlated dual
autoencoder, where the autoencoder differs from a traditional autoencoder [14].
Its role is not only to reduce the dimension of the main components of the original
information. We encode and decode visual and semantic features separately. In
order to obtain more discriminative semantic features, we add the features
obtained by visual feature coding to the encoded semantic features and add this
new constraint to the encoded semantic features, so that it is affected by this
potential visual feature. This ultimately affects the semantic feature of the decoder
reconstruction. Finally, we add the decoded semantic features and the original
semantic features to obtain the final semantic features. Experiments show that the
semantic features obtained by this method are more distinguishable than the
original semantic features.
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2. Related Work

Zero-shot learning includes semantic space and visual space. Visual space
is often learned through deep neural network learning and training. The most
widely used semantic space is the attribute space, which requires manual attribute
annotation for each class. However, for some problems between classes and
classes that are relatively large or have a large number of categories, there may be
some difficulties in the annotation of attribute features. Therefore, for some
models, their semantic space may also contain word vectors corresponding to
class names and textual descriptions of these classes [15]. Only the attribute space
is used in the experiments in this article.

In order to achieve the final classification recognition effect, we need to
establish a mapping relationship between semantic space and visual space. The
mapping between the two can be roughly divided into these three categories. (1)
Semantic space is mapped to visual space. (2) The visual space is mapped to the
semantic space. (3) Projecting visual features and semantic features into the
intermediate space. When choosing the mapping relationship, we need to pay
attention to the hubness problem in zero-shot learning. This is actually a problem
inherent in high-dimensional space: in high-dimensional space, some points
become the nearest neighbors of most points. For the above mapping
relationships, [16] found that the mapping from semantic space to visual space
achieved the best results, because it can well alleviate the hubness problem in the
high-dimensional space. Therefore, in this paper, we use the mapping from
semantic space to visual space in the choice of the final mapping relationship.

The autoencoder has a good effect on data noise reduction and
dimensionality reduction and can extract various good features. Because of the
simplicity and effectiveness of the autoencoder, it has a wide range of applications
in the field of computer vision. The autoencoder mainly includes two processes of
encoding and decoding.it encodes the original features, extracts the optimized
features S, and then decodes the S to obtain the reconstructed features. We hope
that this reconstructed feature and the original feature will be as similar as
possible. There are also examples of using autoencoders in the zero-shot learning
field, such as [17]. Because the semantic space is usually lower than the
dimension of the visual feature space, it uses an autoencoder for the visual
features. It is hoped that the features obtained after encoding are the same as the
semantic features, so as to obtain the mapping relationship between the two. In
our model, we use an autoencoder for both visual and semantic features and add
the encoded visual features to the encoded semantic features. The purpose here is
not to construct mapping relationships but to extract better semantic features.

There is a problem with domain drift in zero-shot learning. The domain
drift represents the same attribute, and its corresponding visual representation may
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be different in different categories. For example, horses and pigs have the tail
attribute, but they have different performance on the tail. The horse's tail is longer,
and the pig's tail is shorter. If the horse is a training set and the pig is a test set, it
is difficult to classify the pig using the model trained by the horse. Because the
data in the training set may describe the "tail" differently from the data in the test
set, although they all have the "tail" attribute, the direct migration may be biased.

The dual autoencoder model constructed by our model adds visual features
to the reconstruction of semantic features, and the optimized semantic features can
better represent the correct semantics of the category, to reduce the influence
caused by domain drift. Previous work on zero-shot learning focused more on
finding mappings, ignoring the study of attributes themselves. This paper focuses
more on attributes, simply using autoencoders to optimize attribute features. In the
course of the experiment, our mapping relationship uses the method mentioned in
[16], and the final result is better compared with it.

3. Approach

Our model consists of three submodels. The three models are visual
feature autoencoder, visual semantic correlation autoencoder, and mapping model.
The coded visual features are obtained by visual feature autoencoder, which is
used in visual semantic correlation autoencoders to train optimized attribute
features. Optimized attribute features are trained as inputs to the mapping model,
ultimately achieving the purpose of classification recognition. More details will be
described below.

3.1 Problem Settings

In zero-shot learning, we are given I training set classes(denoted as Y;,.)
and J test set classes(denoted as Y;.), where the training set and test set classes are
disjoint, i.e. ¥, Nn¥,, = @.We use the index {1.....I} to represent the training set
classes and{I + 1,...,I + J} to represent the test set classes. The source classes
contain P labeled images D = {(v;, ¥ )lv; e V,y, € V., }_,. V represents the
visual feature space. Semantic information 4 = {a,}!2’, is provided for each class
c Y, UY,.. The goal of ZSL is to learn visual classifiers of test set classes

fzs!:v —* Y;'s'
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3.2 Visual feature autoencoder
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Fig. 1. The framework of visual feature autoencoder. V" is the visual feature extracted from the
original image using the deep neural network(VGG and Inception-V2), and we train it to construct
the autoencoder. The purpose is to obtain the encoded visual feature V,. We believe that the
trained V; is an important feature of the image. ¥; represents the visual features after decoding
reconstruction.
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As shown in Fig. 1, we first use the deep neural network (VGG and Inception-
V2) to extract features from the original image to obtain the initial visual feature
vector ¥ € RF**_ An autoencoder is then constructed for the initial visual feature
vector V. The method of constructing the autoencoder can be completed by the
following method:

V,=o(VW, +b,) (1)
Vg = o (VW +b,) (2)

where 1, € R¥*¥  denotes the encoded features of visual
features, V, € RF*M denotes the visual features of V. after decoding and
reconstruction, W, € RM*¥and w, € R are the weights which will be
learned, b, and b, are bias. o(-)is the ReLU activation function.

The loss function can be formulated as:

L=V =V, S

3.3 Visual semantic correlation autoencoder

As shown in Fig. 2, we use the first visually trained visual feature to obtain
a coded feature V. from the encoder and an initial attribute feature 4 € R5*¥ to
construct a visual semantic correlation autoencoder model.
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Fig. 2. The framework of visual semantic correlation autoencoder. We decode the initial attribute
feature A to obtain the encoded attribute feature .. At the same time, V; is mapped to the same
dimensional space as 4, by ReLU+FC Block (two ReLU+FC activation function layers) to obtain
the eigenvector V.. ¥, represents the encoded visual features obtained from the visual feature
autoencoder. Then add 4, and V,, to get A_, and finally decode A_ to get 4. In order to obtain
a more complete semantic expression, 4 and 4 ; are added to obtain the finally optimized attribute
feature A ;.

We encode the initial attribute feature A to obtain the encoded attribute
feature A_ € RF*L, and also map V. to the space of the same dimension as A,
through two ReLU+FC activation function layers to obtain the feature vector.
V.. € RF*E These two processes can be represented by the following formula:

A, = a(AW; +b;) (4)
Voo = a(a(V,W, + by )W + by) (%)
where W, € RF*E W, e RV*“and W € R“** are the weights which
will be learned, b3, b, and bsare bias. o(-)is the ReLU activation function.

We add the eigenvectors V.. and A, to get 4. € R5*%, AL is influenced by
both visual and semantic aspects, can be better expressed, and then decodes A,
the calculation formula is:
A; = HE + VRE (6)
Ay = o(A;W, +b) (7)
where A, € R¥*¥ denotes reconstructed attribute features, W, € R*¥ is
the weights which will be learned, by is bias. o(-)is the ReLU activation function.
The loss function can be formulated as:
L:= |Iﬂ—..£1d||: (8)
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Finally, in order to express the attribute features more fully, we add the
initial attribute feature A and the reconstructed attribute feature A, to get
A, € RE*E;

Agp = A+ 4y )

3.4 Mapping model

loss

/ T \ (O000Q| v
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Fig. 3. The framework of mapping model. The feature vector 4 ;; is mapped into the dimensional
space of the feature vector ¥ by ReLU+FC Block (two ReLU+FC activation function layers).
A _;; is an optimized attribute feature obtained by a visual semantic correlation autoencoder, and
I represents an initial visual feature.

The mapping model we borrowed from the method proposed in [16]. As
shown in Fig. 3, the right side is the initial visual feature V trained by the deep
neural network. This D-dimensional visual feature space will be used as an
embedding space that will embed the image content and semantic representation
of the class to which the image belongs. In the left part, [16] uses the initial
semantic feature vector A, and our model uses the optimized semantic feature
vector 4,;;. A,; obtains a D-dimensional semantic embedding vector through two
ReLU+FC activation function layers. The loss is then calculated for the visual
feature vector and the semantic feature vector using the least squares method on
the visual feature space. The loss function can be formulated as:

Ly = llo(a(A.;W; + b)W; +bg) — VII? (10)
where W, € R¥*¥and W, € R**P are the weights which will be learned, b; and
by are bias. o(-)is the ReLU activation function.

In the process of testing, calculate the visual distance ¥; of an image and the
Euclidean distance of all the optimized attribute features in the test set. The one
with the smallest distance is the category we predict to belong to.
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4. Experiment
4.1 Dataset and settings

Datasets: We use the classic zero-shot learning datasets of AwA and CUB
in this experiment. AWA data set [18] contains 30,745 pictures of animals, with 50
categories, of which 40 are training sets and 10 are test sets. CUB data set [19]
contains 11,788 images of birds, with 200 categories, 150 as a training set and 50
as a test set.

Semantic space: For AwA datasets, we use 85-dimensional continuous
attribute vectors. For CUB, we use a 312-dimensional continuous attribute vector.
It should be noted that only attribute features are used in this experiment, and no
additional word vector features or text features are added.

Model setting and training: Experiment uses the pytorch deep learning
framework to assist the training and learning model.For initial visual feature
vectors, we use VGG and Inception-V2 networks to train and extract them. The
extracted visual feature vector size is 1024 dimension. Adam is used to optimise
our model with a learning rate of 0.0001.

Parameter setting: Weight matrix of two FC layers in the construction of
visual feature autoencoder, W, € 1024 x 700, W, € 700 X 1024, The weight
matrix involved in the construction of the visual semantic correlation autoencoder,
in the data set CUB, W; € 312 x 200, W, € 700 x 500,
W; € 500 X 200, W, € 200 X 312, in the data set AwA, W; € 85 x 50,
W, € 700 x 500, W, €500 x 50, W, € 50 x 85. The weight matrix of two
FC layers in the mapping model, in the data set CUB, W; € 312 X 700,
W; €700 x 1024, inthe data set AWA, W, € 85 x 700, W; € 700 x 1024,

4.2 Experimental results on the AWA dataset and CUB dataset

Since these two data sets are relatively classical in the field of zero-shot
learning and are relatively small in scale, a lot of work has been done to deal with
them and some achievements have been made. As shown in Table 1, we have
selected some representative results for comparison.

Comparative results on AwWA: Using our model, 86.935% accuracy can be
achieved on AwA dataset. This improves the accuracy by 0.2% compared with
DEM method which directly uses original semantic space for mapping.

Comparative results on CUB: On the CUB dataset, our model can be 1.1%
more accurate than the DEM model, reaching 59.4181%.
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Table 1
Compare accuracy with CUB on the dataset AwWA. SS in the table represents the semantic
space, where A represents the attribute space, W represents the word vector space, and D
represents the text description space (valid only for CUB data set). F represents the method
of obtaining visual space, where Fg represents the overfeat method; F represents the
GoogLeNet network structure; and Fyr represents the VGG network structure. Ng
represents the Inception-V2.

Model F SS AwWA CUB
AMP[11] Fy A+W 66.0 -
SJE[7] F; A 66.7 50.1
SJE[7] F; A+W 739 51.7
ESZSL[6] F; A 76.3 47.2
SSE-Relu[4] F A 76.3 304
JLSE[20] F A 80.5 421
SS-Voc[10] Fy A/W 78.3/68.9 -
SynC-struct[21] F; A 729 545
SEX-ML[13] F A 77.3 43.3
DeViSE[5] N A/W 56.7/50.4 335
Socher et al.[22] | N A/W 60.8/50.3 39.6
MTMDL[23] N A/W 63.7/55.3 32.3
Ba et al.[24] N A/W 69.3/58.7 34.0
DS-SJE[15] N A/D - 50.4/56.8
DEM[16] N A/W(D) 86.7/78.8 58.3/53.5
Ours N A 86.9 59.4

4.3 Experimental results using different feature maps

As shown in table 2, we mapped different attribute features and initial
visual features. The experimental results are as follows:

A — V: Map the initial attribute features to the initial visual features. This
is what [16] does. The accuracy rate of 58.3% was obtained in CUB data set and
86.7% accuracy in the AWA dataset.

A, — V: The reconstructed attribute feature is mapped to the initial visual
feature. Through experiments, we found that this kind of mapping method has
different effects on different data sets. For CUB datasets, the effect is not as good
as A — V, with 57.5% accuracy. For AWA datasets, the effect is similar to A — V|
with 86.6% accuracy.

A — V. The final experiment proves that this mapping method of
remapping the reconstructed attribute features plus the initial attribute features to
the initial visual features is the best.It has had good results in both the AWA and




74 Ming Jiang, Zhiyong Liu, Pengfei Li, Min Zhang, Jingfan Tang

CUB data sets. The accuracy rate of 59.4% was obtained in CUB data set and
86.9% accuracy in the AWA dataset.

The experimental results show that the attribute features obtained after the
reconstruction are added to the original attribute features have better semantic
representation. The added attribute features not only have the original attribute
features but also contain additional hidden information of visual feature blessing,
which makes the expression of attribute features more complete and more
granular.

Table 2
Results of different feature mappings.
CUB AWA
A=V 58.3 86. 7
Ay =V 57.5 86. 6
A =V 59.4 86.9

5. Conclusion

In this paper, we propose a novel autoencoder model for zero-shot
learning. This model mainly contains three submodels. The visual feature
autoencoder model is to obtain the encoded visual features. The visual semantic
correlation autoencoder model plays the role of optimizing semantic features. It
combines the coded visual features generated by the previous model so that the
semantic features are affected by the visual features so that the semantic features
can be described better and more completely. The last model is the mapping
model. We map the optimized semantic features to the visual feature space and
then classify and identify them according to the Euclidean distance. Our model
optimizes semantic features to improve the accuracy of the final classification.
Extensive experiments on two benchmark datasets show the superiority of the
proposed approach.
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