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RESEARCH ON A MULTI-WEATHER CHALLENGED 

PEDESTRIAN AND VEHICLE DETECTION METHOD 

BASED ON IMPROVED YOLOv8s 

Jiahuai JIANG1，Zhigui DONG2* 

In order to achieve rapid and accurate detection of pedestrians and vehicles 

under diverse weather conditions, this paper proposes a pedestrian and vehicle 

detection method based on the improved YOLOv8s. This method aims to flexibly adapt 

to the identification and detection of target features in different weather conditions. 

Building upon the YOLOv8s model, we introduce Deformable Convolutional 

Networks version 2 (DCNv2) deformable convolution and Deformable Attention 

Transformer (DAT) module (YOLOv8+DCNv2+DAT, referred to as YOLOv8-Def). 

The model dynamically adjusts the shape, position, and attention weights of 

convolution kernels and combines methods such as sample splitting and Mosaic data 

augmentation to enhance detection accuracy. At an Intersection over Union (IoU) of 

0.3, the size of the YOLOv8-Def model is 48 MB, with a detection accuracy of 83.4%, 

a recall rate of 74.8%, and a detection speed of 76 frames per second. The mean 

Average Precision (mAP@0.5) reaches 82.6%. Compared to the standard YOLOv8s 

model, the absolute mAP improvement is 5.9%. When compared to Faster-RCNN, the 

YOLOv8-Def model shows a 3.7% increase in absolute mAP, with a frame per second 

(FPS) higher than 51. Compared to the RT-DETR model, the YOLOv8-Def model 

demonstrates a 3.5% increase in absolute mAP, with FPS higher than 25. 

Experimental results indicate that the YOLOv8-Def model significantly improves 

detection accuracy while minimizing parameter increase. Moreover, compared to the 

original YOLOv8s, the detection speed of this model is only reduced by 10 frames per 

second, demonstrating outstanding practicality. Therefore, this method provides a 

theoretical foundation for the algorithm research and application of pedestrian and 

vehicle detection under various adverse weather conditions. 

Keywords: improved YOLOv8, multi-weather, object detection, deformable 

convolution, attention mechanism 

1. Introduction 

In today's society, adverse weather phenomena are becoming increasingly 

frequent. The deterioration of climate has resulted in widespread and undeniable 
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global social problems, such as haze, heavy rain, and snowstorms. The adverse 

weather conditions have had broad and profound impacts on human society, 

affecting daily life, production, and the environment. Apart from the direct effects 

on routine activities like transportation, agriculture, and energy, extreme weather 

poses challenges to modern technology and technical applications, particularly in 

the realm of visual recognition and object detection systems. In diverse 

meteorological conditions, adverse weather hinders the clear identification and 

effective detection of target objects. This difficulty makes accurate detection of 

pedestrians and vehicles exceptionally challenging, significantly impacting the 

application, promotion, and popularization of visual recognition and object 

detection systems. Therefore, there is an urgent and crucial need to research and 

improve visual recognition and object detection algorithms under adverse weather 

conditions, enhancing the robustness and accuracy of object detection systems. 

Traditional object detection algorithms rely on the design of complex 

feature extractors and classifiers, such as Haar features, HOG, and SIFT. With the 

maturity and development of deep learning, Convolutional Neural Networks 

(CNN)[1], especially algorithms like Mask R-CNN [2], Fast R-CNN[3], and Faster 

R-CNN [4], have significantly improved detection accuracy and speed by 

introducing mechanisms such as region proposals and Region Proposal Networks 

(RPN). The emergence of single-stage detection algorithms like YOLO [5] (You 

Only Look Once) and SSD [6] (Single Shot MultiBox Detector) further simplified 

the process by treating object detection as a regression problem. These algorithms 

streamline the workflow, enabling end-to-end detection and training. Not only do 

they simplify the algorithmic process, but real-time detection is also enhanced, 

improving the efficiency and accuracy of the detection process. 

Currently, algorithms for target detection under adverse weather conditions 

can be broadly categorized into two types: one involves performing dehazing on 

the images before conducting target detection [7]. This method can reduce or 

eliminate the blurring effect in images, improving image quality and clarity, and 

making targets more easily detectable. However, the dehazing process may lead to 

the loss of some information in the image, particularly in extreme weather 

conditions, where useful details or information may be sacrificed. Additionally, 

performing dehazing incurs additional computational costs, potentially increasing 

the overall time cost of the detection process. The other type of algorithm involves 

joint optimization, where dehazing algorithms are jointly optimized with target 

detection algorithms, as exemplified by IA-YOLO [8]. Joint optimization 

algorithms take into account the mutual influence between dehazing and target 

detection tasks, resulting in a more comprehensive model that performs better in 

addressing target detection challenges under adverse weather conditions. However, 

joint optimization may be more suitable for specific scenes or particular adverse 

weather conditions and may lack universality for a broad range of adverse weather 
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conditions. 

In diverse adverse weather conditions, deep semantic features of objects can 

to some extent alleviate the impact of blurring on image features. By dynamically 

adjusting the shape and position of convolutional kernels, attention weights, etc., it 

is helpful to enhance the robustness of the model to images affected by various 

adverse weather conditions, such as haze. To improve the speed and accuracy of 

target detection under diverse adverse weather conditions, this paper utilizes the 

concept of deformability in the spatial dimension for dynamic adjustments and 

adaptation to process images. We propose an improved method to flexibly capture 

the non-uniformity, blurriness, and changes in target shapes in images under 

adverse weather conditions, particularly haze. The YOLOv8-Def model, based on 

the YOLOv8 framework, incorporates the second-generation deformable 

convolution (DCNv2) [9] to enable dynamic adjustments of convolutional kernels 

in the spatial dimension. This adaptation allows for better accommodation of 

complex target shapes and scene structures. Additionally, a Deformable Attention 

Transformer (DAT) [10] is introduced to provide greater flexibility for challenging 

image conditions, such as haze or occlusion, allowing the model to better adapt to 

changes or deformations in target shapes, further enhancing the model's 

generalization capability. 

2. Based on the improved YOLOv8s object detection model 

2.1 Advantages of YOLOv8 algorithm 

YOLO (You Only Look Once) is an end-to-end object detection model that 

can rapidly and efficiently detect multiple objects in an image, predicting their 

categories and bounding boxes. Currently, YOLOv8 stands as the latest outstanding 

model (State-of-the-Art, SOTA) in the field of object detection, garnering 

widespread attention due to its remarkable performance [11]. On the COCO dataset, 

YOLOv8 demonstrates faster detection speed and higher accuracy when compared 

to YOLOv7 [12] and YOLOv5 [13] as shown in Fig 1. 

 
Fig 1. YOLOv5-v8 data comparison 
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While YOLOv8 retains the CSPDarkNet-53 [14] network as its backbone, 

it introduces the C2f module, which has a richer gradient flow, to replace the C3 

module, achieving model lightweighting. Additionally, YOLOv8 abandons the 

Anchor-Based [15] approach, opting for Anchor-Free [16] methodology to 

determine positive and negative samples without anchor boxes. This not only 

simplifies the process but also surpasses the detection accuracy and speed of models 

using a two-stage Anchor-Based approach. Furthermore, the head layer of YOLOv8 

transitions from a coupled head to the currently prevalent decoupled head structure 

(as illustrated in Fig.2), separating the classification and detection heads in a more 

modular fashion. 

 
Fig. 2. YOLOv8 decoupled header structure 

Another notable advantage of YOLOv8 is the application of the PANet 

(Path Aggregation Network) [17]. PANet, serving as a feature fusion module, 

combines features from different levels of the model's backbone network, 

significantly enhancing the model's ability to detect small objects and objects under 

challenging conditions. 

2.2 Deformable Convolutional Networks v2(DCNv2) 

DCNv2 (Deformable Convolutional Networks version 2) is an evolved 

structure in convolutional neural networks. By introducing the deformable 

convolution mechanism, DCNv2 allows the convolutional kernel to dynamically 

adjust in the spatial dimension, providing better adaptation to complex target shapes 

and scene structures. This enhancement improves the model's perception of subtle 

features and irregular objects, resulting in significant performance improvements 

in tasks such as object detection and image segmentation. 

The standard convolution calculation involves sampling a set of pixels, 

denoted as R, from the input feature map. Subsequently, convolutional operations 

are applied to compute the sampled data, resulting in an output of  

 

0 0(p )= ( ) ( )
n
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       (1) 

In this context, 0p  represents a specific location in the output feature map, 

np denotes the position offset of the convolutional kernel (the offset relative to the 
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center within the receptive field), 0( )nX p p+  signifies the pixel value at the 

corresponding position in the input feature map, ( )nw p represents the weight 

parameters within the convolutional kernel. 

Deformable convolution, in contrast, involves modifying the sampled data 

and does not directly alter the shape of the convolutional kernel. In this study, we 

employ np  to expand the np  point on the feature map, where 1,2,3 ,np n N =  

represents the convolutional kernel offset values predicted through convolution 

operations. At this juncture, the result of the deformable convolution computation 

is as follows: 

 0 0Y(p )= ( ) ( )
n

n n n

p R

w p X p p p


 + +         (2) 

However, the offset values predicted through convolution operations are 

typically fractional. DCNv1[18] utilized bilinear interpolation during sampling, 

wherein the pixel value at the current sampling point is dependent on the four 

integer neighbors surrounding the floating-point position after offset. Nevertheless, 

a major drawback exposed by DCNv1 is that the new position of the sampling point 

after offset may exceed the ideal sampling position. This results in convolution 

points for certain deformable convolutions possibly encompassing areas unrelated 

to the object content, as illustrated in Fig.3. 

 
Fig. 3. Sampling position of DCNv1 

In comparison to DCNv1, DCNv2 possesses enhanced modeling 

capabilities for learning deformable convolutions. The augmentation of this 

modeling capability takes two complementary forms: firstly, equipping more 

convolutional layers with offset learning capabilities, allowing DCNv2 to control 

sampling across a broader range of feature levels; secondly, each sample undergoes 

not only learned offset adjustments but also amplitude modulation through learned 

features. DCNv2 introduces an additional weighting coefficient ( ), 0 1m m   

for each sampling point. Introducing Δ𝑚 to control the magnitude of the offset, the 
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deformable convolution results in DCNv2 are as follows: 

 0 0Y(p )= ( ) ( ) *
n

n n n n

p R

w p X p p p m


 + +          (3) 

Its sampled positions compared to standard ordinary convolution are 

illustrated in Fig.4. 

 
Fig. 4. Comparison of sampling locations 

Fig.4(a) illustrates the sampling grid for standard convolution (blue dots), 

Fig.4(b) depicts the deformed sampling positions based on offset values in 

deformable convolution (purple arrows), and Fig.4(c) and Fig.4(d) showcase two 

specific scenarios of deformed sampling positions  

2.3 Deformable Attention Transformer (DAT) mould 

DAT (Deformable Attention Transformer) is a variant of attention 

mechanisms commonly employed in neural networks for tasks involving non-

uniform shapes, complex spatial relationships, or requiring a more refined 

distribution of attention. In traditional self-attention mechanisms, attention weights 

are computed based on the similarity between Query and Key. However, this 

mechanism may have limitations when dealing with data of non-uniform shapes or 

complex structures. The deformable attention mechanism introduces learnable 

offset values, allowing the model to dynamically adjust the correlation at different 

positions during attention computation, better adapting to the specific shapes or 

spatial distributions of input data. 

Adverse environmental conditions such as haze, rainy weather, and 

snowfall can result in issues such as degraded image quality, blurred targets, and 

lost details, posing significant challenges for target detection and recognition. DAT 

(Deformable Attention Transformer) has the capability to dynamically adjust 

attention weights based on features in different regions, thereby flexibly adapting 

to changes in target characteristics under various weather conditions. This 

contributes to enhancing the model's perceptual ability across different regions. 

Additionally, targets may exhibit non-uniform shapes due to weather-related 

occlusion or deformation, presenting challenges for traditional attention 

mechanisms. DAT, by learning positional adjustment information, can more 
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accurately capture the non-uniform shapes and spatial relationships of targets, thus 

improving the model's capability to detect deformed targets. As shown in Fig.5.  

 
Fig. 5 Visualization of the most important keys 

It can be seen from Fig.5, the red circles in the image represent keys that 

have been moved and have higher Attention Scores. The size of the circle indicates 

the accumulated attention score, with larger circles corresponding to higher scores. 

This figure illustrates that DAT has learned to focus on important regions in the 

input image. 

Traditional attention mechanisms process input data (typically feature 

representations obtained from a certain layer of a neural network) through a linear 

transformation, such as a fully connected layer or convolutional layer, resulting in 

three vectors: the Query vector Q , the Key vector K , and the Value vectorV . Each 

Query vector is attentively matched with all Keys, and the relationship between 

them can be expressed as: 

 
( )Attention , , max

T

k

QK
Q K V Soft V

d

 
=  

 
 

           (4) 

It is important to note that in DAT, the Query vectors are not computed for 

attention weights with every position of the global Key vectors. Instead, for each 

Query, attention is calculated only for sampled positions globally. Moreover, the 

values are sampled and interpolated based on these positions. Finally, the attention 

weights obtained for these local positions are added to the corresponding values, as 

illustrated in Fig.6.  
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Fig.6 Deformable attention module 

Fig.6(a) illustrates the information propagation mechanism of the 

deformable attention. On the feature map of the image, a set of reference points is 

uniformly placed, and their offsets are learned from the Query through an offset 

network. Subsequently, based on these deformed points, we project their deformed 

Keys and Values from the sampled features. This approach, which utilizes 

deformed points to calculate relative positional deviations, contributes to 

strengthening the multi-head attention mechanism, thereby enhancing the 

performance of the output transformed features. Fig.6(b) depicts the detailed 

structure of the offset generation network, with the size labeled according to the 

feature map. 

This can effectively reduce computational complexity, enhance the model's 

flexibility and adaptability, increase attention to local information, and 

simultaneously reduce the model's parameter count. 

2.4 Improved YOLOv8 algorithm 

This study adopts the YOLOv8 object detection model as the baseline 

and replaces a portion of the C2f modules in its backbone with the second-

generation deformable convolution, enhancing the model's ability to detect targets 

of different scales, shapes, and positions. This modification improves the model's 

feature extraction and adaptability in complex environments. Additionally, the 

deformable attention mechanism (DAT) is incorporated before the SPPF feature 

fusion to enhance the model's flexibility in adapting to target shapes. The network 

structure is illustrated in Fig.7. 
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Fig. 7 Network structure of improved YOLOv8 Model 

3. Experimental data and methods 

3.1 Experimental data and preprocessing 

This paper utilizes the Real-world Task-Driven Testing Set (RTTS) dataset. 

RTTS is a comprehensive real-world dataset encompassing adverse weather 

conditions such as foggy, snowy, and rainy days. The dataset comprises a total of 

4332 images captured under different weather conditions, covering five object 

categories: cars, pedestrians, buses, bicycles, and motorcycles. Refer to Fig.8 for 

illustration. 

 
Fig. 8 Example of an RTTS dataset 
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To facilitate the learning of target features under adverse weather 

conditions, this paper divides the dataset into training, validation, and test sets in a 

ratio of 8:1:1. Specifically, the training set comprises 3449 images, while both the 

validation and test sets consist of 432 images each. 

During the training process, the Mosaic data augmentation method 

embedded in YOLOv8 is employed to enhance data quality. The implementation of 

this method involves the following steps: Firstly, four images are randomly selected 

from the dataset. Subsequently, various operations such as translation, flipping, and 

scaling are applied to these four images. Afterward, the processed images are 

concatenated based on their positions. Finally, using a matrix approach, fixed 

regions from the four images are extracted and combined to create a new image 

containing candidate boxes and other content. 

3.2 The software and hardware platform of the experiment 

This experiment is based on the PyTorch 1.9.0 deep learning framework, 

CUDA 11.1, Python 3.8.10, and other deep learning environments for model 

training and testing. The experiment was conducted on the Ubuntu 18.04 operating 

system. The CPU used in the experimental platform is a 12-core Intel(R) Xeon(R) 

Platinum 8352V, and the GPU is an NVIDIA GeForce RTX 4090 with a VRAM 

capacity of 24GB. 

3.3 Experimental parameter setting 

The experiment chose yolov8s.pt as the pretraining weight, with the model 

trained for 200 epochs. To prevent overfitting or a decrease in generalization ability, 

training was early stopped after 50 epochs without significant performance 

improvement. The batch size was set to 8, and the optimizer was selected as 'auto.' 

The initial learning rate was 0.01, confidence threshold set to 0.25, and the 

intersection over union (IOU) threshold set to 0.3. 

3.4 Evaluation index 

The experiment employed precision (P), recall (R), mean average precision 

(mAP), and average frame rate (Frames Per Second, FPS) as evaluation metrics to 

assess the model's performance. The model parameters were stored in FP32 (4 

bytes), and the model size was calculated as the product of the parameter quantity 

and 4. In the context of size conversions, 1 kilobyte (KB) equals 1024 bytes, and 1 

megabyte (MB) equals 1024 kilobytes. The final model size can be expressed as: 

 
4

MB
1024 1024

Params
=


      (5) 

If the model has 60 million parameters, the total number of bytes would be 240 

million bytes, equivalent to 228 megabytes (MB). 
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4. Experimental results and analysis 

4.1 YOLOv8 version comparison test 

YOLOv8 introduces a total of 5 versions, with model sizes ranging from 

smallest to largest as YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and 

YOLOv8x, denoted as nano, small, medium, large, and x-large (n, s, m, l, x). 

YOLOv8n is the smallest model in the YOLOv8 series, but it may not be 

sufficient for the tasks in this paper. Target detection under certain adverse weather 

conditions requires a deeper network structure to extract potential information from 

images, and YOLO8n may produce suboptimal results. YOLOv8x, on the other 

hand, is the most complex model in YOLOv8. However, this model might be overly 

complex for the tasks in this paper. Although it can learn well from our dataset, it 

may lead to overfitting. Therefore, experiments were conducted on these five 

versions separately on our dataset, and the results are shown in Fig.9. 

From Fig.9, it can be observed that YOLOv8s shows the most significant 

improvement in mAP with a relatively smaller number of parameters, and its fps 

also reaches around 80 frames. In this study, YOLOv8s is chosen as the base model 

to ensure that the YOLOv8-Def model achieves higher accuracy and faster 

detection speed. 

 

Fig.9. Experimental comparison of different versions of YOLOv8 

4.2 Ablation experiment 

In order to achieve efficient detection of pedestrians and vehicles in adverse 

weather conditions, this study builds upon the original YOLOv8s model and 

proposes a more effective network model. Specifically, we replace some C2f 

modules in the network backbone with deformable convolutions and introduce 

DAT deformable attention. Additionally, we compare the results with the CBAM 

[19] attention mechanism. Six sets of ablation experiments were conducted, and the 

results are shown in Table 1. 
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Table 1 

Results of ablation experiment 

DAT CBAM DCNV2 
mAP@ 

0.5/% 

Detectionspeed 

(frame /s) 

Modelsize 

/MB 

- - - 76.7 86 41 

√ - - 79.1 79 46 

- - √ 78.6 82 44 

- √ - 78.3 67 52 

- √ √ 80.6 63 57 

√ - √ 82.6 76 48 
[Note] “√” in the table indicates that the module is integrated into the basic model of 

YOLOv8s, and “-” indicates that the module is not added. 
 

According to Table 1, it can be observed that individually adding DCNv2, 

DAT, and CBAM to the YOLOv8s model each contributes to a certain degree of 

performance improvement. It is noteworthy that under the condition of an increase 

in parameters by only 5M and 3M, DAT and DCNv2 achieved the most substantial 

mAP improvements, with an increase of 2.4% and 1.9%, respectively. Additionally, 

compared to the DCNv2+CBAM model, the DCNv2+DAT model reduced the 

parameter count by 9M, while achieving a 2.0% increase in mAP. These 

experimental results clearly indicate that the proposed YOLOv8-Def model based 

on deformable thinking exhibits significant advantages in detecting pedestrians and 

vehicles in adverse weather conditions. 

4.3 Compared with other models 

The performance of the YOLOv8-Def model has been extensively analyzed 

in the previous sections, further comparing its superiority and feasibility with 

current mainstream detection algorithms. The comparative experimental results 

with other models are shown in Table 2. 
Table 2 

Results of ablation experiment 

Model 
mAP@0.5 

/% 

Detectionspeed 

(frame /s) 
Model size /MB 

F-RCNN 78.9 25 189 

RT-DETR 79.1 51 122 

YOLOv5s 69.7 101 21 

YOLOv7X 74.6 89 69 

YOLOv8s 76.7 86 41 

Ours 82.6 76 48 

 

According to the experimental results in Table 2, the YOLOv8-Def model 

demonstrates a superior mAP, surpassing Faster-RCNN and RT-DETR [20], 

widely acknowledged for high detection accuracy, by 3.7% and 3.5%, respectively. 

Moreover, the detection speed (FPS) of YOLOv8-Def is significantly better than 
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both of these algorithms. Although YOLOv5s and YOLOv7 exhibit higher 

detection speeds than the YOLOv8-Def model, the mAP values of YOLOv8-Def 

surpass them by 12.9% and 8.0%, respectively, with minimal differences in model 

size. 

These experimental results indicate that compared to current lightweight 

improvement algorithms and mainstream object detection algorithms, the proposed 

YOLOv8-Def model demonstrates a significant performance advantage. This 

algorithm not only maintains a good FPS with the minimal increase in parameters 

and a smaller model size but also achieves the highest level of mAP. 

To demonstrate the robustness of the YOLOv8-Def model, a random 

selection of test images from the dataset was taken to perform comparative tests 

with mainstream algorithm models. The results are presented in Fig.10. 

 
Fig. 10 Test comparison of images of different models  

According to Fig.10, in the second and fourth images, where objects 

are nearly completely occluded under adverse weather conditions, both the 

YOLOv8-Def model and the RT-DETR model can effectively recognize them. 

However, YOLOv8 and YOLOv7 exhibit accuracy issues in both recognition 

and detection. Additionally, in the third image, it is evident that RT-DETR 

struggles to effectively detect the smaller target cars in the rear. In contrast, the 

YOLOv8-Def model can rapidly and accurately detect these targets, providing 

another perspective on the effectiveness of the proposed model in this study. 

In this study, about 500 pieces of pedestrian and vehicle data under normal 
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weather conditions were integrated into the original data to improve the stability 

and generalization ability of the model through data fusion, and to ensure correct 

identification under normal weather conditions. The detection and recognition of 

normal weather conditions as shown in Fig.11. 

  

  
Fig.11 Detection and recognition of normal weather conditions 

5. Conclusions 

This study addresses the challenge of detecting vehicles and pedestrians 

under diverse meteorological conditions by proposing an enhanced YOLOv8s 

algorithm, denoted as YOLOv8-Def. The main contributions of YOLOv8-Def are 

as follows: 

(1) YOLOv8-Def replaces the C2f module in the Backbone part of YOLOv8 

with the second-generation deformable convolution. Additionally, YOLOv8-Def 

incorporates the Deformable Attention Transformer (DAT) before the SPPF feature 

fusion module, allowing the model to dynamically adjust its receptive field to better 

adapt to the features of targets under different adverse weather conditions. 

(2) When the Intersection over Union (IoU) is set to 0.3, the YOLOv8-Def 

model has a size of 48MB, a detection accuracy of 83.4%, a recall rate of 74.8%, a 

detection speed of 76 frames per second (FPS), and a mean Average Precision 

(mAP@0.5) of 82.6%. 

(3) Compared to the original standard YOLOv8s model, the absolute mAP 

has improved by 5.9%. Compared to Faster-RCNN, YOLOv8-Def model's absolute 

mAP value is 3.7% higher, with a higher FPS of over 51 frames/s. In comparison 

with the RT-DETR model, YOLOv8-Def model's absolute mAP value is 3.5% 

higher, with an FPS higher than 25 frames/s. The experimental results demonstrate 

that the YOLOv8-Def model significantly improves detection accuracy while 

minimizing parameter increase. 

(4) It only reduces the detection speed by 10 frames per second, but 

improves the mAP value by 5.9 percentage points compared to the original 
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YOLOv8s, exhibiting excellent practicality. This study provides a valuable 

exploration for addressing the challenges of target detection and recognition under 

diverse meteorological conditions, offering valuable insights and references for 

future research and development in this field. 
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