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RESEARCH ON A MULTI-WEATHER CHALLENGED
PEDESTRIAN AND VEHICLE DETECTION METHOD
BASED ON IMPROVED YOLOvS8s

Jiahuai JIANG!, Zhigui DONG*

In order to achieve rapid and accurate detection of pedestrians and vehicles
under diverse weather conditions, this paper proposes a pedestrian and vehicle
detection method based on the improved YOLOVSs. This method aims to flexibly adapt
to the identification and detection of target features in different weather conditions.
Building upon the YOLOv8s model, we introduce Deformable Convolutional
Networks version 2 (DCNv2) deformable convolution and Deformable Attention
Transformer (DAT) module (YOLOVE8+DCNv2+DAT, referred to as YOLOvS-Def).
The model dynamically adjusts the shape, position, and attention weights of
convolution kernels and combines methods such as sample splitting and Mosaic data
augmentation to enhance detection accuracy. At an Intersection over Union (IoU) of
0.3, the size of the YOLOVS-Def model is 48 MB, with a detection accuracy of 83.4%,
a recall rate of 74.8%, and a detection speed of 76 frames per second. The mean
Average Precision (mAP@0.5) reaches 82.6%. Compared to the standard YOLOvSs
model, the absolute mAP improvement is 5.9%. When compared to Faster-RCNN, the
YOLOv8-Def model shows a 3.7% increase in absolute mAP, with a frame per second
(FPS) higher than 51. Compared to the RT-DETR model, the YOLOvVS-Def model
demonstrates a 3.5% increase in absolute mAP, with FPS higher than 25.
Experimental results indicate that the YOLOvVS-Def model significantly improves
detection accuracy while minimizing parameter increase. Moreover, compared to the
original YOLOVSSs, the detection speed of this model is only reduced by 10 frames per
second, demonstrating outstanding practicality. Therefore, this method provides a
theoretical foundation for the algorithm research and application of pedestrian and
vehicle detection under various adverse weather conditions.

Keywords: improved YOLOvV8, multi-weather, object detection, deformable
convolution, attention mechanism

1. Introduction

In today's society, adverse weather phenomena are becoming increasingly
frequent. The deterioration of climate has resulted in widespread and undeniable
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global social problems, such as haze, heavy rain, and snowstorms. The adverse
weather conditions have had broad and profound impacts on human society,
affecting daily life, production, and the environment. Apart from the direct effects
on routine activities like transportation, agriculture, and energy, extreme weather
poses challenges to modern technology and technical applications, particularly in
the realm of visual recognition and object detection systems. In diverse
meteorological conditions, adverse weather hinders the clear identification and
effective detection of target objects. This difficulty makes accurate detection of
pedestrians and vehicles exceptionally challenging, significantly impacting the
application, promotion, and popularization of visual recognition and object
detection systems. Therefore, there is an urgent and crucial need to research and
improve visual recognition and object detection algorithms under adverse weather
conditions, enhancing the robustness and accuracy of object detection systems.

Traditional object detection algorithms rely on the design of complex
feature extractors and classifiers, such as Haar features, HOG, and SIFT. With the
maturity and development of deep learning, Convolutional Neural Networks
(CNN)[1], especially algorithms like Mask R-CNN [2], Fast R-CNN[3], and Faster
R-CNN [4], have significantly improved detection accuracy and speed by
introducing mechanisms such as region proposals and Region Proposal Networks
(RPN). The emergence of single-stage detection algorithms like YOLO [5] (You
Only Look Once) and SSD [6] (Single Shot MultiBox Detector) further simplified
the process by treating object detection as a regression problem. These algorithms
streamline the workflow, enabling end-to-end detection and training. Not only do
they simplify the algorithmic process, but real-time detection is also enhanced,
improving the efficiency and accuracy of the detection process.

Currently, algorithms for target detection under adverse weather conditions
can be broadly categorized into two types: one involves performing dehazing on
the images before conducting target detection [7]. This method can reduce or
eliminate the blurring effect in images, improving image quality and clarity, and
making targets more easily detectable. However, the dehazing process may lead to
the loss of some information in the image, particularly in extreme weather
conditions, where useful details or information may be sacrificed. Additionally,
performing dehazing incurs additional computational costs, potentially increasing
the overall time cost of the detection process. The other type of algorithm involves
joint optimization, where dehazing algorithms are jointly optimized with target
detection algorithms, as exemplified by IA-YOLO [8]. Joint optimization
algorithms take into account the mutual influence between dehazing and target
detection tasks, resulting in a more comprehensive model that performs better in
addressing target detection challenges under adverse weather conditions. However,
joint optimization may be more suitable for specific scenes or particular adverse
weather conditions and may lack universality for a broad range of adverse weather
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conditions.

In diverse adverse weather conditions, deep semantic features of objects can
to some extent alleviate the impact of blurring on image features. By dynamically
adjusting the shape and position of convolutional kernels, attention weights, etc., it
is helpful to enhance the robustness of the model to images affected by various
adverse weather conditions, such as haze. To improve the speed and accuracy of
target detection under diverse adverse weather conditions, this paper utilizes the
concept of deformability in the spatial dimension for dynamic adjustments and
adaptation to process images. We propose an improved method to flexibly capture
the non-uniformity, blurriness, and changes in target shapes in images under
adverse weather conditions, particularly haze. The YOLOv8-Def model, based on
the YOLOv8 framework, incorporates the second-generation deformable
convolution (DCNv2) [9] to enable dynamic adjustments of convolutional kernels
in the spatial dimension. This adaptation allows for better accommodation of
complex target shapes and scene structures. Additionally, a Deformable Attention
Transformer (DAT) [10] is introduced to provide greater flexibility for challenging
image conditions, such as haze or occlusion, allowing the model to better adapt to
changes or deformations in target shapes, further enhancing the model's
generalization capability.

2. Based on the improved YOLOV8s object detection model

2.1 Advantages of YOLOVS algorithm

YOLO (You Only Look Once) is an end-to-end object detection model that
can rapidly and efficiently detect multiple objects in an image, predicting their
categories and bounding boxes. Currently, YOLOV8 stands as the latest outstanding
model (State-of-the-Art, SOTA) in the field of object detection, garnering
widespread attention due to its remarkable performance [11]. On the COCO dataset,
YOLOv8 demonstrates faster detection speed and higher accuracy when compared
to YOLOv7 [12] and YOLOV5 [13] as shown in Fig 1.
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Fig 1. YOLOVS5-v8 data comparison
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While YOLOVS retains the CSPDarkNet-53 [14] network as its backbone,
it introduces the C2f module, which has a richer gradient flow, to replace the C3
module, achieving model lightweighting. Additionally, YOLOvV8 abandons the
Anchor-Based [15] approach, opting for Anchor-Free [16] methodology to
determine positive and negative samples without anchor boxes. This not only
simplifies the process but also surpasses the detection accuracy and speed of models
using a two-stage Anchor-Based approach. Furthermore, the head layer of YOLOv8
transitions from a coupled head to the currently prevalent decoupled head structure
(as illustrated in Fig.2), separating the classification and detection heads in a more
modular fashion.
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Fig. 2. YOLOVS8 decoupled header structure

Another notable advantage of YOLOVS8 is the application of the PANet
(Path Aggregation Network) [17]. PANet, serving as a feature fusion module,
combines features from different levels of the model's backbone network,
significantly enhancing the model's ability to detect small objects and objects under
challenging conditions.

2.2 Deformable Convolutional Networks v2(DCNv2)

DCNv2 (Deformable Convolutional Networks version 2) is an evolved
structure in convolutional neural networks. By introducing the deformable
convolution mechanism, DCNv2 allows the convolutional kernel to dynamically
adjust in the spatial dimension, providing better adaptation to complex target shapes
and scene structures. This enhancement improves the model's perception of subtle
features and irregular objects, resulting in significant performance improvements
in tasks such as object detection and image segmentation.

The standard convolution calculation involves sampling a set of pixels,
denoted as R, from the input feature map. Subsequently, convolutional operations
are applied to compute the sampled data, resulting in an output of

(1)
Y(po):ZRw(pn)* X (P, + P,)
e

In this context, p, represents a specific location in the output feature map,
p, denotes the position offset of the convolutional kernel (the offset relative to the
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center within the receptive field), X(p,+p,) signifies the pixel value at the
corresponding position in the input feature map,w(p,) represents the weight

parameters within the convolutional kernel.
Deformable convolution, in contrast, involves modifying the sampled data
and does not directly alter the shape of the convolutional kernel. In this study, we

employ Ap, to expand the p, point on the feature map, where Ap,[n=1,2,3---,N

represents the convolutional kernel offset values predicted through convolution
operations. At this juncture, the result of the deformable convolution computation
is as follows:
Y(po)= 2 W(p,)* X (py + P, +Ap,) )
pneR
However, the offset values predicted through convolution operations are
typically fractional. DCNv1[18] utilized bilinear interpolation during sampling,
wherein the pixel value at the current sampling point is dependent on the four
integer neighbors surrounding the floating-point position after offset. Nevertheless,
a major drawback exposed by DCNv1 is that the new position of the sampling point
after offset may exceed the ideal sampling position. This results in convolution
points for certain deformable convolutions possibly encompassing areas unrelated
to the object content, as illustrated in Fig.3.

'
Kenel | ! The region of interest of the madel
i

Fig. 3. Sampling position of DCNv1

In comparison to DCNvl, DCNv2 possesses enhanced modeling
capabilities for learning deformable convolutions. The augmentation of this
modeling capability takes two complementary forms: firstly, equipping more
convolutional layers with offset learning capabilities, allowing DCNv2 to control
sampling across a broader range of feature levels; secondly, each sample undergoes
not only learned offset adjustments but also amplitude modulation through learned

features. DCNv2 introduces an additional weighting coefficient Am,(0<Am <1)
for each sampling point. Introducing Am to control the magnitude of the offset, the
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deformable convolution results in DCNv2 are as follows:
Y(Po)=2 W(p,)* X (P, + P, +Ap,)*Am, 3)
p,eR
Its sampled positions compared to standard ordinary convolution are
illustrated in Fig.4.
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Fig. 4. Comparison of sampling locations

Fig.4(a) illustrates the sampling grid for standard convolution (blue dots),
Fig.4(b) depicts the deformed sampling positions based on offset values in
deformable convolution (purple arrows), and Fig.4(c) and Fig.4(d) showcase two
specific scenarios of deformed sampling positions

2.3 Deformable Attention Transformer (DAT) mould

DAT (Deformable Attention Transformer) is a variant of attention
mechanisms commonly employed in neural networks for tasks involving non-
uniform shapes, complex spatial relationships, or requiring a more refined
distribution of attention. In traditional self-attention mechanisms, attention weights
are computed based on the similarity between Query and Key. However, this
mechanism may have limitations when dealing with data of non-uniform shapes or
complex structures. The deformable attention mechanism introduces learnable
offset values, allowing the model to dynamically adjust the correlation at different
positions during attention computation, better adapting to the specific shapes or
spatial distributions of input data.

Adverse environmental conditions such as haze, rainy weather, and
snowfall can result in issues such as degraded image quality, blurred targets, and
lost details, posing significant challenges for target detection and recognition. DAT
(Deformable Attention Transformer) has the capability to dynamically adjust
attention weights based on features in different regions, thereby flexibly adapting
to changes in target characteristics under various weather conditions. This
contributes to enhancing the model's perceptual ability across different regions.
Additionally, targets may exhibit non-uniform shapes due to weather-related
occlusion or deformation, presenting challenges for traditional attention
mechanisms. DAT, by learning positional adjustment information, can more
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accurately capture the non-uniform shapes and spatial relationships of targets, thus
improving the model's capability to detect deformed targets. As shown in Fig.5.

Fig. 5 Visualization of the most important keys

It can be seen from Fig.5, the red circles in the image represent keys that
have been moved and have higher Attention Scores. The size of the circle indicates
the accumulated attention score, with larger circles corresponding to higher scores.
This figure illustrates that DAT has learned to focus on important regions in the
input image.

Traditional attention mechanisms process input data (typically feature
representations obtained from a certain layer of a neural network) through a linear
transformation, such as a fully connected layer or convolutional layer, resulting in

three vectors: the Query vector Q, the Key vector K, and the Value vectory . Each

Query vector is attentively matched with all Keys, and the relationship between
them can be expressed as:

.
Attention(Q, K,V ) = Soft max(?/ls_JxV @
k

It is important to note that in DAT, the Query vectors are not computed for

attention weights with every position of the global Key vectors. Instead, for each

Query, attention is calculated only for sampled positions globally. Moreover, the

values are sampled and interpolated based on these positions. Finally, the attention

weights obtained for these local positions are added to the corresponding values, as
illustrated in Fig.6.
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Fig.6 Deformable attention module

Fig.6(a) illustrates the information propagation mechanism of the
deformable attention. On the feature map of the image, a set of reference points is
uniformly placed, and their offsets are learned from the Query through an offset
network. Subsequently, based on these deformed points, we project their deformed
Keys and Values from the sampled features. This approach, which utilizes
deformed points to calculate relative positional deviations, contributes to
strengthening the multi-head attention mechanism, thereby enhancing the
performance of the output transformed features. Fig.6(b) depicts the detailed
structure of the offset generation network, with the size labeled according to the
feature map.

This can effectively reduce computational complexity, enhance the model's
flexibility and adaptability, increase attention to local information, and
simultaneously reduce the model's parameter count.

2.4 Improved YOLOVS algorithm

This study adopts the YOLOV8 object detection model as the baseline
and replaces a portion of the C2f modules in its backbone with the second-
generation deformable convolution, enhancing the model's ability to detect targets
of different scales, shapes, and positions. This modification improves the model's
feature extraction and adaptability in complex environments. Additionally, the
deformable attention mechanism (DAT) is incorporated before the SPPF feature
fusion to enhance the model's flexibility in adapting to target shapes. The network
structure is illustrated in Fig.7.
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Backbone Necly

Fig. 7 Network structure of improved YOLOv8 Model

3. Experimental data and methods

3.1 Experimental data and preprocessing

This paper utilizes the Real-world Task-Driven Testing Set (RTTS) dataset.
RTTS is a comprehensive real-world dataset encompassing adverse weather
conditions such as foggy, snowy, and rainy days. The dataset comprises a total of
4332 images captured under different weather conditions, covering five object
categories: cars, pedestrians, buses, bicycles, and motorcycles. Refer to Fig.8 for
illustration.

g

Fig. 8 Example of an RTTS dataset
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To facilitate the learning of target features under adverse weather
conditions, this paper divides the dataset into training, validation, and test sets in a
ratio of 8:1:1. Specifically, the training set comprises 3449 images, while both the
validation and test sets consist of 432 images each.

During the training process, the Mosaic data augmentation method
embedded in YOLOVS is employed to enhance data quality. The implementation of
this method involves the following steps: Firstly, four images are randomly selected
from the dataset. Subsequently, various operations such as translation, flipping, and
scaling are applied to these four images. Afterward, the processed images are
concatenated based on their positions. Finally, using a matrix approach, fixed
regions from the four images are extracted and combined to create a new image
containing candidate boxes and other content.

3.2 The software and hardware platform of the experiment

This experiment is based on the PyTorch 1.9.0 deep learning framework,
CUDA 11.1, Python 3.8.10, and other deep learning environments for model
training and testing. The experiment was conducted on the Ubuntu 18.04 operating
system. The CPU used in the experimental platform is a 12-core Intel(R) Xeon(R)
Platinum 8352V, and the GPU is an NVIDIA GeForce RTX 4090 with a VRAM
capacity of 24GB.

3.3 Experimental parameter setting

The experiment chose yolov8s.pt as the pretraining weight, with the model
trained for 200 epochs. To prevent overfitting or a decrease in generalization ability,
training was early stopped after 50 epochs without significant performance
improvement. The batch size was set to 8, and the optimizer was selected as ‘auto.’
The initial learning rate was 0.01, confidence threshold set to 0.25, and the
intersection over union (I0U) threshold set to 0.3.

3.4 Evaluation index
The experiment employed precision (P), recall (R), mean average precision
(mAP), and average frame rate (Frames Per Second, FPS) as evaluation metrics to
assess the model's performance. The model parameters were stored in FP32 (4
bytes), and the model size was calculated as the product of the parameter quantity
and 4. In the context of size conversions, 1 kilobyte (KB) equals 1024 bytes, and 1
megabyte (MB) equals 1024 kilobytes. The final model size can be expressed as:
_ Params x4 5)
1024 x1024 (
If the model has 60 million parameters, the total number of bytes would be 240
million bytes, equivalent to 228 megabytes (MB).
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4. Experimental results and analysis

4.1 YOLOVS version comparison test

YOLOVS introduces a total of 5 versions, with model sizes ranging from
smallest to largest as YOLOv8n, YOLOv8s, YOLOv8m, YOLOvS8I, and
YOLOV8X, denoted as nano, small, medium, large, and x-large (n, s, m, I, x).

YOLOvVS8n is the smallest model in the YOLOVS series, but it may not be
sufficient for the tasks in this paper. Target detection under certain adverse weather
conditions requires a deeper network structure to extract potential information from
images, and YOLO8n may produce suboptimal results. YOLOvV8X, on the other
hand, is the most complex model in YOLOV8. However, this model might be overly
complex for the tasks in this paper. Although it can learn well from our dataset, it
may lead to overfitting. Therefore, experiments were conducted on these five
versions separately on our dataset, and the results are shown in Fig.9.

From Fig.9, it can be observed that YOLOV8s shows the most significant
improvement in mAP with a relatively smaller number of parameters, and its fps
also reaches around 80 frames. In this study, YOLOVSs is chosen as the base model
to ensure that the YOLOv8-Def model achieves higher accuracy and faster
detection speed.
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Fig.9. Experimental comparison of different versions of YOLOv8

4.2 Ablation experiment

In order to achieve efficient detection of pedestrians and vehicles in adverse
weather conditions, this study builds upon the original YOLOv8s model and
proposes a more effective network model. Specifically, we replace some C2f
modules in the network backbone with deformable convolutions and introduce
DAT deformable attention. Additionally, we compare the results with the CBAM
[19] attention mechanism. Six sets of ablation experiments were conducted, and the
results are shown in Table 1.
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Table 1
Results of ablation experiment
oA | coa] ooz | pacE | Deeconspeed | Wi
- - - 76.7 86 41
N - - 79.1 79 46
- - N 78.6 82 44
- \ - 783 67 52
- \ N 80.6 63 57
\ - \ 82.6 76 48

[Note] “v” in the table indicates that the module is integrated into the basic model of
YOLOVSs, and “-” indicates that the module is not added.

According to Table 1, it can be observed that individually adding DCNv2,
DAT, and CBAM to the YOLOv8s model each contributes to a certain degree of
performance improvement. It is noteworthy that under the condition of an increase
in parameters by only 5M and 3M, DAT and DCNv2 achieved the most substantial
mMAP improvements, with an increase of 2.4% and 1.9%, respectively. Additionally,
compared to the DCNv2+CBAM model, the DCNv2+DAT model reduced the
parameter count by 9M, while achieving a 2.0% increase in mAP. These
experimental results clearly indicate that the proposed YOLOv8-Def model based
on deformable thinking exhibits significant advantages in detecting pedestrians and
vehicles in adverse weather conditions.

4.3 Compared with other models

The performance of the YOLOv8-Def model has been extensively analyzed
in the previous sections, further comparing its superiority and feasibility with
current mainstream detection algorithms. The comparative experimental results
with other models are shown in Table 2.

Table 2
Results of ablation experiment
Model MAP@0.5 Detectionspeed Model size /MB
1% (frame /s)

F-RCNN 78.9 25 189
RT-DETR 79.1 51 122
YOLOv5s 69.7 101 21
YOLOvV7X 74.6 89 69
YOLOVSs 76.7 86 41

Ours 82.6 76 48

According to the experimental results in Table 2, the YOLOv8-Def model
demonstrates a superior mAP, surpassing Faster-RCNN and RT-DETR [20],
widely acknowledged for high detection accuracy, by 3.7% and 3.5%, respectively.
Moreover, the detection speed (FPS) of YOLOvV8-Def is significantly better than
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both of these algorithms. Although YOLOv5s and YOLOv7 exhibit higher
detection speeds than the YOLOV8-Def model, the mAP values of YOLOv8-Def
surpass them by 12.9% and 8.0%, respectively, with minimal differences in model
size.

These experimental results indicate that compared to current lightweight
improvement algorithms and mainstream object detection algorithms, the proposed
YOLOv8-Def model demonstrates a significant performance advantage. This
algorithm not only maintains a good FPS with the minimal increase in parameters
and a smaller model size but also achieves the highest level of mAP.

To demonstrate the robustness of the YOLOv8-Def model, a random
selection of test images from the dataset was taken to perform comparative tests
with mainstream algorithm models. The results are presented in Fig.10.
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RT-DETR
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Fig. 10 Test comparison of images of different models

According to Fig.10, in the second and fourth images, where objects
are nearly completely occluded under adverse weather conditions, both the
YOLOvV8-Def model and the RT-DETR model can effectively recognize them.
However, YOLOV8 and YOLOV7 exhibit accuracy issues in both recognition
and detection. Additionally, in the third image, it is evident that RT-DETR
struggles to effectively detect the smaller target cars in the rear. In contrast, the
YOLOvV8-Def model can rapidly and accurately detect these targets, providing
another perspective on the effectiveness of the proposed model in this study.

In this study, about 500 pieces of pedestrian and vehicle data under normal
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weather conditions were integrated into the original data to improve the stability
and generalization ability of the model through data fusion, and to ensure correct
identification under normal weather conditions. The detection and recognition of
normal weather conditions as shown in Fig.11.

|
Fig.11 Detection and recognition of normal weather conditions

5. Conclusions

This study addresses the challenge of detecting vehicles and pedestrians
under diverse meteorological conditions by proposing an enhanced YOLOvV8s
algorithm, denoted as YOLOV8-Def. The main contributions of YOLOv8-Def are
as follows:

(1) YOLOV8-Def replaces the C2f module in the Backbone part of YOLOVS
with the second-generation deformable convolution. Additionally, YOLOv8-Def
incorporates the Deformable Attention Transformer (DAT) before the SPPF feature
fusion module, allowing the model to dynamically adjust its receptive field to better
adapt to the features of targets under different adverse weather conditions.

(2) When the Intersection over Union (loU) is set to 0.3, the YOLOv8-Def
model has a size of 48MB, a detection accuracy of 83.4%, a recall rate of 74.8%, a
detection speed of 76 frames per second (FPS), and a mean Average Precision
(mAP@0.5) of 82.6%.

(3) Compared to the original standard YOLOv8s model, the absolute mAP
has improved by 5.9%. Compared to Faster-RCNN, YOLOv8-Def model's absolute
MAP value is 3.7% higher, with a higher FPS of over 51 frames/s. In comparison
with the RT-DETR model, YOLOv8-Def model's absolute mAP value is 3.5%
higher, with an FPS higher than 25 frames/s. The experimental results demonstrate
that the YOLOvV8-Def model significantly improves detection accuracy while
minimizing parameter increase.

(4) It only reduces the detection speed by 10 frames per second, but
improves the mAP value by 5.9 percentage points compared to the original
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YOLOVS8s, exhibiting excellent practicality. This study provides a valuable
exploration for addressing the challenges of target detection and recognition under
diverse meteorological conditions, offering valuable insights and references for
future research and development in this field.
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