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OPERADIC STRUCTURES ON THE CONNES-KREIMER
HOPF ALGEBRA

Gefry BARAD'

In several papers connected with Yukawa Theory and Schwinger- Dyson
equations, D. Kreimer defined two shuffle-type products on a decorated Connes-
Kreimer Hopf algebra. We prove that one of these different products interacts with
the coalgebra structure in an operadic manner: there are compatibilities among
them and co-products which are not of classical Hopf-type. They can be described
using the notion of generalized bialgebra. We identify the (co)actions of several
operads already studied in Hamiltonian Physics, on the decorated version of
Connes-Kreimer Hopf algebra and its graded dual, the Grossman-Larson Hopf
algebra.
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1. Introduction

The Connes-Kreimer Hopf algebra plays a major role in the combinatorics
of perturbative renormalization. It has a universal property with respect to
Hochschild cohomology ([4]. Thm.2, pag 34).1t is the symmetric algebra of the
free co-preLie algebra of one element ([19] section 5.7). The graded dual of the
Connes-Kreimer Hopf algebra is isomorphic with the Grossman-Larson Hopf
algebra [9], [10],[19]. Two new associative products were defined on this Hopf
algebra of trees by D.Kreimer. The first one was defined in [1] Section 2 (the
definition and the proof of associativity). It has the following recursive

definitition: ¢ *¢, = B’ (u(Bﬁ (1)) t2) +B® (tl *u(B. (tz)))where the map u si

k k
also defined recursively U{Htj =t *u[Ht] [1is the regular commutative
i=1 1=2

product. The =product was applied to massless Yukawa theory; in this case it is
associative modulo certain quantities defined by the Feynmann diagrams. It is an
open question if higher coherences laws are needed to describe this lack of
associativity in Yukawa theory, which is a consequence of the non-associativity of
a certain product on primitive 1P1 graphs. ([2]. Section 2).
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Kreimer defined a second, different product ([3], section 2.2 ;Theorem
2),[6](section 2.3;theorem 3),[7] (section 3.1) )and established a connection
between Dyson-Schwinger equations, which are quantum equation of motion
usually unsolvable and Euler products. He gave an affirmative answer on the
existence in QFT of similar relations involved in Riemann ¢ function

:Z%: 11 N 1 — ,Re(s) > 1(Euler product decomposition). A stated non-
wn -p

obvious theorem ( from [3]) and an open question (sect. 2.2 of [3]) are connected
with v, the second Kreimer product.

There is no references about an interaction between these above mentioned
products*and v and the already known Connes-Kreimer Hopf algebra structure.

p prime

2. The Connes —Kreimer Hopf algebra

The Connes-Kreimer Hopf algebra, as well as its vertex-decorated version and its
role in Quantum Field Theory was defined and described in the following articles:
[4],[5],[6].[9].[10]. We follow these articles to define several combinatorial
objects and operators.

A rooted tree t is a connected and simply-connected set of oriented edges
and vertices such that there is one distinguished vertex which has no incoming
edge, the root of #, every edge connects two vertices and the fertility f(v) of a
vertex v is the number of edges outgoing from v.

The Connes-Kreimer Hopf algebra #, is the free commutative algebra of

polynomials over Q@ having indeterminates rooted trees. Any rooted tree ¢ with
root r yields f(r) trees t,...,t,, which are the trees attached to r. The unit
element of this algebra is 1, corresponding, as a rooted tree, to the empty set. We
denote by B be the operator which removes the root » from a tree

B :t— B (t)=tt,...t,, B, be the operation which maps a monomial of n
rooted trees to a new rooted tree ¢ which has a root » with fertility f(r) = n which
connects to the nroots of ¢,....,t, B, :t...t, > B, (t...t,) =1t .

An elementary cut is a cut of a rooted tree at a single chosen edge.

An admissible cut is any assignment of elementary cuts to a rooted tree t such that
any path from any vertex of the tree to the root has at most one elementary cut.
The coalgebra structure is given by the counit e¢: A — Q is e(X)=0 for any

X #1;€(1) =1. The comultiplication(coproduct) is an algebra map. The equations
AL =1@1,A( ...t) = At)...At,), A(t) = 1®t + (B, ® id) [ A(B_(t))]
define the coproduct on trees with » vertices iteratively .
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A)=1®t+t®1+ > RIHOP () =1® L+t ®1+A'(t)

admisible cuts C of t

m[(S ®id)A(t)]| =2(t) =0="D St ), ;we used Sweedler’s notation
A(t) =) t, ®t, and idis the identity map H, — H,.

2.1. The shuffle product on a tensor algebra.
Let A be a vector space over the complex numbers. Over the tensor algebra

T(A):(C@(-T}A®K there is a Hopf algebra structure, with comultiplication A

k=1

AlLeL ®..eL n):i(g@cha...@Lj)@(L

j=0

®...®L,).The shuffle  producta

j+1

between two homogenous elements is
(a,®a,®...®a,)A(b,®b,®...®b )= (c,®c,®...®c,,,), where the sum is over all

m+n
{ j ways to “shuffle” a's among b's : The elements ¢’s are equal to one of a’s or
n

b’s ; the elementsa,,a,,...,a, will appear in the same order in c's. The same for b 's.

a®b)A(X®Y)=xRa®b®Yy+a®Xx®b®Yy+a®b®Xx®y +
+X®Yy®a®b+x®a®y®b+a®x®y ®b

Example:
2.2. The structure of the Connes-Kreimer Hopf algebra. Algebraic Operads
The importance of the decorated C-K Hopf algebra in the theory of Operads is
mentioned in the articles: [18](Section 11) and [19] (Introd.,,Sections 5.7;6.6)
Theorem Let H(V) be the decorated Connes-Kreimer Hopf algebra, where the
vertices of the trees are decorated by a basis of a finite-dimensional vector space
V. Then H(V) is isomorphic as Hopf algebra with a shuffle Hopf algebra T(A),
where A is a graded vector space G(V). This conclusion is based on the following
fundamental results:

-the graded dual of H(V) is isomorphic with the universal enveloping algebra of a
Lie algebra ([9] Prop.2.1. and [10] Prop 4.4).

-This Lie algebra is the underlying Lie algebra of the free preLie algebra over a

basis of V; according to the results of [12] (Corol. 5.3) and [13](Theorem 3.3), it
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is the free Lie algebra generated by a basis of a vector space G(V), so its universal
enveloping algebra is a tensor algebra. The dual of the tensor algebra is the shuffle
Hopf algebra T(A=G(V)), isomorphic with the decorated Connes-Kreimer Hopf
algebra, where the vertices of the trees are decorated by a basis of a finite-
dimensional vector space V.

About a basis of the vector space G(V) not many things are known; G(V) is the free G-
algebra generated by V over an operad G defined in [11], [12]. G is a sub-operad of the

preLie operad and it was conjectured in [11] to be a free operad.

Definition 1: a preLie algebra is a vector space V together with a binary operation such
that (z*y)*z—a*x(y*2)=(r*2)*xy—ax=*(z*y) forany x,y,z.
In this case x*y —y*x defines a Lie bracket.

2.3 Definition ([15],[17],[20],[25]) A non-X operad O is a collection of sets O(n),
n>1 such that: there is a composition law
f:0m)®0(n)®...90(n,) > O0(n, +...+n,) There is a unit ee0(1).

f(g;e,e,e,...e) = g Torany g e O(k). The composition law f'is associative:

. SR . | 1 2 .2 2 n n n _
f[f(gvglugm"'?gn)ar] 77/"27"'77}177’1 1o 7"'77.71-._,7"'77’1 1o 7"'7rm,1:| -

= Fof (gt smnr ) (g2 ) (gl )-
A vector space V is an O-algebra if there is a morphism of operads between O
and End(V)-the endomorphism operad of V. So each element of O(n) defines an
algebraic operation V*'—— V, subject to the composition law above.
Associative, Lie, Poisson algebras are all O-algebras for various operads.

2.4 The dual notion is that of a co-operad and a co-algebra over a co-operad. In
the finite-dimensional case, taking the duals will “change the arrows”. The graded

vector space C is an co-operad if and only if C"is an operad. If D is a C-
coalgebra, every § € C(n) define a cooperation from D to D®".

Prim(D,r) = {:z: e D|8(z) =0 for every 8 € C(n), n > r}. The primitive part of D,
Prim(D)=Prim(D,1). A coalgebra D is connected if D =| JPrim(D,r).

r1
2.5 Definition ([17],[19],[20],[27]) A generalized bialgebra is a vector space H
which is a C-coalgebra, an 4-algebra and there are compatibility relations (also
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called distributivity) between operations and cooperations denoted by (Q).H is

called an(C*,(Q),.A) -algebra. These compatibility relations are formalized by the
following axiom : (Q) For every co-operation & e C(m) and every operation
pe A(n) there is the following equality of maps

Bou=2 (1 ®..0u )c0(8®..88 ) H” ——H"", where:

pe A, € Ak,), ..., € Ak, ),

§eC(n),s; e Ck,),....,5! € C(k,),

k+. k, =L+...+1 =1,

o e K[S,].
The axiom above is the generalization of the classical bialgebra case, where we
have the Hopf compatibility condition : a product of two elements followed by co-

multiplication is equal to the product, in a tensor algebra, of separate co-products
(we can switch the order of operations and co-operations).

Our result is : the Kreimer * product is a part of a generalized bialgebra structure
on H(V) for which there is a compatibility relation as above with respect to the
regular Hopf-algebra co-product; we have to define several other operations and
co-operations to be in the framework of the definition 2.5. We conjecture that the
second product is also part of a generalized bialgebra structure which satisfies the
conditions of the following theorem. The interest in these structures came from
the structure theorem to be given below

Theorem ([17]Theorem 2.5.1.). Let H be a generalized (C°,(Q),.A) -bialgebra.
Under additional hypotheses, the following statements are equivalent :

‘H is connected < There is a bialgebra isomorphism H = U(PrimH) < H is
cofree, i.e. H = C°(PrimH) , isomorphism of connected coalgebras.

3. Shuffle products on the decorated Connes —Kreimer Hopf algebra H(V)

3.1 We define the following co-product d: H(V) - H(V) ® H(V)
dt) =1t + > RO(t)®T(t)

super-elementary cuts C of ¢
A super-elementary cut is an elementary cut such that the falling tree which does
not contain the root is a single vertex or has the fertility greater than 1.

d has the following recursive definition: d(B, (1)) = 1® B, (1) + (B, (t) ® id ) d(#)
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On the entire H(V), d is defined as a co-derivation: d(zy) = zy, ® y, + yz, ® x,

Contrary to the regular coproduct, d is not co-associative; d is a co-preLie
operation: its dual operation in the graded dual of H(V) satisfies Definition 1.

Also, there are compatibility relations between d and A :

Lemma 3.2 Any linear combinations of d and A is a preLie co-product.
According to [9] and [10], the graded dual of H(V) is isomorphic to the
Grossman-Larson Hopf algebra. f: H,, — H" f(t)(v) =(B.(t),u) = (¢ B,(u))
(w,u) = (B.(w), B.(u,)) the inner product (¢,t,) =|SG(t,)[s,, , where |SG(t)| is
the cardinality of the symmetry group of a tree. Based on this isomorphism, the
relations between d and A are exactly the relations between the duals of these co-

operations in H

1
tt,

..+ Which are binary operations. A" will be the associative

producto and d* will be a pre-Lie operation denoted by *. Then for every x,y,z
there is the following relation:  (zoy)*z—zo(y*2)=(z*2)oy—x*(20y)

Remark. Let [o] and ] be Lie brackets on a common vector space .One can
then define [a,b] := afa o b]+ Bla-b], for any a,p e C'. The Jacobi identity for [,]
[[a,b],c] +[[b, c],a] + [[c,a],a] = Ois equivalent to:
[[aob]-c]+][[bec]-a]+[[coa]ed]+[[aob]oc|+[[b-c]eal+][c-a]ob]=0.
Two pre-Lie products - and - on V are compatible if any linear combination of
the two products, aaob+Ba-b, is a pre-Lie product for any o, e K. This
property is equivalent to the condition that
(aob)-c—ao(b-c)+(a-b)oc—a-(boc)=(aoc)-b-ac(c-b)+(a-c)ob—a-(cob)
for any a,b,ceV. Both compatibility conditions, for preLie and for the
associated Lie products are implied by the relation:
(zoy)*z—zo(y*z)=(z*2)oy—z*(zoy). This relation appears in [25] (page 52).
The algebraic operads which encode these compatible operations were recently
studied in: [22].[23],[24].

3.2.1 On H(V) it was defined in [8] an associative flat-shuffle product awb .The
shuffle algebra T(V) is seen as subspace of H(V), monomials being the linear
trees. p: H(V) —> H(T) < H(V). pis defined inductively, being identity on linear

(unbranched)trees and p (B, (u))=B,(p(u)) . plabj=shuifie prochcs; between pf a) ancl pfb) = b
For example: p(hV:) = p(abc) + p(ach)= abc + ach.
3.2.2 We define an associative quasi-tensor product x on H(V): (axb)xc=ax(bxc)
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axb=p(a) > b, where each monomial from p(a) is glued (notation — )on top of

the tree b (we apply the linear combination of iterated Hochschild operators with
the decorations provided by p(a); A(axb)=a,x1®a,xb+axb ®b,

Theorem 3.3 a*b=p(ab) > a, +p(ba) > b, = (ad)xa, + (ba)xb,
where * is the Kreimer shuffle product and d(a)=a, ® a, is the Sweedler’s notation

for the d-coproduct.

Corollary: A and * have compatibility relations of the type described by
Definition 2.5. H(V) is a generalized bialgebra, the relevant co-operations are
Aand d. The operations are the regular product, *, x, =. We recall several
relations satisfied by the binary operations: (ab)*c=axbx*c,

(ab)xc:(awb)xc:(a*b)xc

Proof. We prove by induction over the number of vertices of involved trees that
the two products ¢ *¢, = B/ (u(Bﬁ (1)) tz) +B® (z&1 *u(B. (tz))) and
p(ab) > a, + p(ba) > b, = (ab) x a, + (ba) x b, are equal.
Let a = B (zyz..) and b= B (apS..) be two trees.
d(B,(2y2)) =1®a +(B, ®id)d(zyz) = 1®a + B ((xyz)l) ® (zy2),
(Thm.3.3) = B/ (z*y*z%b)+ B/ (a*p* S *a)=
B ((ay2), )b — (zu2), + B ((aBS), ) a = (aBS),
= B [(xy2),b > (ayz), + B ((aBS),) zyz — (aBS), |+

B[ (aBS),a — (aBS), + B ((zy2), ) oBS — (ay2), |
© axyrzrb=(m2)b > (ayz), + B\ ((aBS),)1yz — (apS),
(which is true according to the induction hypothesis applied to x,y,z,b)

= leyzb =z, + B[ ((aBS),)z *y * z > (ap9),
dlz*y*2)—(p® zd)z z,yz ® x,—(p ® id)d(xyz)

We esentially used that d is a co-derivation d(zy) = zy, ® y, + yz, ® z, and the
following property of Kreimer’s *: awb =p(a *b) = (ab) x T=(awb) x T=(a *b) x T
which can be easily proved by induction:a *b and awb have the same image
under p. Ala *b) = Ala,b — a,) + Alba > b,)
=Aab — (| ®a,) + Aab, — (| ®b,) + (a,b® |) = Aa, +(ab,®|) — Ab,

So, the Kreimer * product , A and d have a distributivity relation in the sense of Defn.
2.5. A(a *b) can be computed by first applying co-operations and after that x and @ .
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Definition 1. A dendriform algebra is a vector space V, together with two binary
operations A and * such that: * is associative, *=v + A, and:
(zAy)Az=zA(y*2) (zvyvz=zv(ynz) (zxy)vz=zv(yvz)
Definition 2. A Zinbiel algebra is a vector space V and one binary operation such
that (z>y)>z=2>Wy>2)+x>(z>y)=z>(y*z2),where z*xy=a>y+y>zx
We can decompose Kreimer * product into 4 different binary operations:
VRV aNb = b\a a’b =bcva
a*b=ab—>a,+ba—>b =B" (u(B_(a)) * b) +B" (u(B_(b)) * a)

a>b=ab— a,=a’b+ax=sum of trees with root r(a) + sum of trees with root
r(b)

a <b=ba—> b, =a~b+arb=sum of trees with root r(a) + sum of trees with root
r(b)

anb=B" (u(B_(a))*b)

avb=DB"(u(B(b)*a)

=a’b+ aNb

=aNb + avb

One can verify that ( A, v and *) forms a dendriform algebra on H(V).

Also, x>(y*z) + y> (x*z) = (X * y) > z. This is the relation which quantify the
fact H(V) is not a Zinbiel algebra. The relations above were checked following
the program initiated on [16], on quadri-algebras: associative algebras where the
associative product is splitted into four different products satisfying several
axioms.

6. Conclusions

a)Remark 4.3, pag. 11 [26](,,Any quasi-shuffle algebra associated with a
commutative algebra V is isomorphic as a Hopf algebra with the shuffle Hopf
algebra T(V) *) and Theorem 3.3 has the following corollary: the shuffle-type
algebra structures defined in [1] section 2 equations (5) and (6) are isomorphic for
a commutative algebra V. It is not a Hopf algebra isomorphism because of the
intricate operadic structures involved.

b) We conjecture a good triple of operads in the sense of [17], Section 2.5.6.,
which would imply a structure or rigidity theorem for the V-decorated Connes-
Kreimer Hopf algebras(see also [18] sect. 11), the two operads being given by (
one associative,the other one preLie operation satisfying
(zoy)*z—zo(y*z)=(x*2)oy—xz*(z0y)) and an operad of four operations (*,
X, wand a commutative associative product, satisfying the axioms of Section
3.2)
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c) Exotic algebraic structures encoded by specific operads already appeared in
Theoretical Physics: [14] preLie algebras, vertex algebras, [23] Poisson algebras,
quantization [22] Bi-Hamiltonial operad and Bi-Hamiltonian structures [28], [25] and
[15]. This is also the case of the first Kreimer * product, where various operadic
structures met in: [13],[16],[171,[19].[21]-[27] appeared.
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