U.P.B. Sci. Bull., Series C, Vol. 80, Iss. 1, 2018 ISSN 2286-3540

RESEARCH ON THE COMPLEXITY MEASUREMENT
TECHNOLOGY OF SOFTWARE STRUCTURE BASED ON
AST

Qiao LIPING?, Li JING?, Song YAQING?®

With the increasing scale and complexity of software, people are demanding
more and more analysis and measurement of software complexity, on this basis, this
paper proposes an approach to measure software structure complexity based on
abstract syntax tree (AST). The method firstly removes the redundant code
information by preprocessing and carries out lexical semantic analysis to generate
the corresponding AST; On the AST traversal basis, secondly records the frequency
of the program key, and gets the sequence of program attributes and method calls by
the information marking algorithm, finally, obtains the measurement results by the
methods of the Line Count metric calculation, McCabe metric calculation and
Halsted metric calculation. The experimental results show that this method can
effectively measure the complexity of software structure.

Keywords: Abstract Syntax Tree, Software Complexity, Complexity Measure,
Program Structure

1. Introduction

Now society has entered the era of big data information, Computer
software has changed enormously in terms of size and complexity. According to
authoritative statistics, software complexity is the main cause of software errors.
When software complexity exceeds a certain limit, errors and failures in the
software will rise rapidly and even cause failure in software development. At
present, the research on software complexity analysis technology is not yet mature
interiorly, and it is even on the traditional method of traversing pile. In this
context, this paper puts forward a research on the complexity measurement
technology of program structure based on AST, which is the most stable analysis
result of the program codes, this method can be more effective and more accurate
to analyze the structure complexity of the target program, especially for national
defense, military industry, and aerospace software which require high accuracy
and stability of the software [1-2].

! Department of Information Engineering, Xingtai Polytechnic College, Xingtai, Hebei, China,
e-mail: cheast@163.com

2 Department of Information Engineering, Xingtai Polytechnic College, Xingtai, Hebei, China

3 Department of Information Engineering, Xingtai Polytechnic College, Xingtai, Hebei, China

40 Qiao Liping, Li Jing, Song Yaging

It is of great significance to analyze and research the Software complexity
analysis technology which is a key point and a difficult point, during the software
process. Today, the domain, scale, and cost of computer software have increased
dramatically, but the stability and reliability of software have not improved [3]. In
order to change this situation, people begin to study and analyze the software
complexity which is a measure of resource depletion in software development,
software maintenance, and software usage process [4].

At present, the research on the complexity analysis of program structure is
not mature. Some technologies are also in the second stage of source code
analysis, which is a centralized analysis phase; they mainly use code piling and
path traversal to get the analysis data. This method can reflect the complexity of
the program structure to a certain extent, but it does not get the most direct
information from the code structure, so it is not timely to deal with errors
introduced by developers in the program. However, the technology based on the
AST proposed by this paper, directly established the static analysis basis of code,
and got the code structure information in time, which can comprehensively and
accurately analyze the complexity of program structure.

This paper firstly introduces the parameters of the software structure
complexity measure, and gives the simulation function of the complexity gradient,
then obtains the program control flow by analyzing the structure of the AST, and
designs a program analysis algorithm to record all the analysis data. On the basis
of the algorithm, this paper uses McCabe metric, Halstead metric and code line
metric calculation methods to measure the complexity of program code, finally,
compares the similarity between the real results of the code complexity and the
measurement results used by complexity measurement technology based on AST

2. Software Structure Complexity

Software structure complexity which is the inherent attribute of software
mainly refers to the complexity of program code. Software product is an invisible
logic product, and its development process is the complex thinking process of
human brain. During the software development process, the complexity changes
gradually, and the mutation occurs after reaching a certain value gradually. In this
process, there are stable and unstable states. The complexity of software, from
user's demand to the final product, is actually the process of function
transformation. Set this function as:

y = f(x.x, ...x,) (1)
Among the formula (1), y is a function of time t; in this transformation
process, it is affected by many conditions (x; ...x,) effect. Among the

conditions, x; represents the size of the program, x, represents the difficulty of

Research on the complexity measurement technology of software structure based on AST 41

the development program, x5stands for program structure, x, stands for program

intelligence, x5 stands for the change in requirements, and xgstands for other
factors, then (1) is equivalent to (2).
v = f(x, Xg, X3, Xy, X5, Xg) ()
Since y is a function of the time t variable, after the derivative of the time t,
we get the formula (3):
dy
dt
The formula (3) represents the rate at which the function
f(x,, Xy, X3, X4, X5, Xg) varies from time t. When the function y has a mutation,

the function curve will have an inflection point. As a result, we know that
software complexity varies from development time and even changes. Therefore,
the measurement of software complexity is definitely not evaluated after the
completion of software development, but is constantly carried out in the entire
development process [5-6]

= f;(Xl,X2,X3,X4,X5,X6) 3)

3. Program Analysis Algorithm Based on AST

The measurement of software complexity is based on the analysis of
program structure. The more thorough we analyze the procedure, the more
accurate the result of complexity measurement will be. In the Program parsing
algorithm based on AST, we first study the formation and structure of the abstract
syntax tree and the information contained in the nodes of the tree. Then, we use
the Information Mark Parsing algorithm to traverse all the nodes, and form the
hash table data model, the model records complex parameters of program
structure, which is used as a data base for subsequent measurements [7].

3.1 The Abstract Syntax Tree

Abstract syntax tree is the product of parse tree after lexical analysis and
syntax analysis of program understanding. The static analysis will translate the
abstract syntax tree according to the actual needs and generate the data which the
static analysis needs finally, such as, the program control flow chart, the data flow
diagram, the function call diagram and so on. Thus, the abstract syntax tree can be
used either as and output of intermediate results or as an input to other data forms
[8-10], the abstract syntax tree is a graphical representation of a program'’s syntax
structure, and the nodes in the syntax tree are derived directly from the rules of the
grammar. Fig. 1 provides an abstract syntax tree for some test code.

42 Qiao Liping, Li Jing, Song Yaging

G-E-0-6

@)@ () &
CICRG

Fig.1. The Sketch map of abstract syntax tree

As seen in Fig.1, the operands in program codes usually are leaf nodes,
and their operators are used as parent nodes. The information about the nodes of
an abstract syntax tree can be roughly divided into three categories: 1. the name of
a word code represented by a node, also known as the label of a node; 2. attribute
of label which can be stored in the nodes or stored in the symbol table; 3. several
pointers to their child nodes. The abstract syntax tree consists of leaf nodes that
represent a non - reserved word terminator and intermediate nodes that represent a
syntax structure.

3.2. Information Mark Parsing Algorithm

The abstract syntax tree resolves the key information in the program into a
tree structure, and clearly describes how many branches and how many loops are
in the program control structure. According to the above analysis, it is easy to
obtain the measurable data basis of the program structure complexity, by using the
information mark parsing algorithm.

Procedural language, like human language, is the most important way to
obtain the key information in a language if you want to know the complexity of
the language. For example, a book written in human language is compared to
software developed in Procedural language, the language structure and the key
information between the two are almost similar, details are shown in Table 1:

Table 1
Comparison of human language and procedural language
Term Human Language | procedural language
Product book software

chapter sub-system
paragraph modular

Product Structure

Research on the complexity measurement technology of software structure based on AST 43

section assembly
Sentences, phrases | Operator, expression
subject object

. Predicate Event

Product composition .

noun variable
verb Method
Modifiers attribute

We know that the information rules of human language conform to the law
of Zipf. For example, there is an article containing n words. We sort and classify
these words according to the frequency of their occurrence, and use the letter r to
indicate the vocabulary number, we will get the formula:

n= S, @)
r=1

Among them, s is the total number of lexical categories, "ris the number
of category r words, if we use the f.to indicate the frequency of the category r
words, so:

nI‘
fo= - (5)
n
We know that f.and T are linear, by the law of Zipf, then:
f..r=C (6)
According to formulas (5) and (6), we can obtain:
n, = =L)
r

If we interpret frequency f. as the probability of the occurrence of words,
we can see from the definition of probability:
S S nr
df=>-Lt=1 (8)
r=1 r=1 n
According to formulas (7), we get:

Z n. =C.n Z 1 9
r=1 r=1 r
We expand the formula (9), then:
Zl 057724 Int —— — — 1 (10)
o 2s 2s(s+1)

1

~ — (12)
0.5772 + 1ns

44 Qiao Liping, Li Jing, Song Yaging

Now we suppose that we already knew the total number of lexical
categories, and we can estimate the value C, r,,, = s . In addition, we
supposen, =l. It means that the smallest probability word occurs only once.

According to formulas (11), we get:
c=2 (12)
n
Combining formulas (11) and (12), we can obtain formula (13) for
calculating the total number of words:
n = s(0.5772+ 1ns) (13)
According to the above structure comparison of human language and
procedural language, we know that the program language also accords with the
formula (13), if a program code contains 500 types of operands and operators,
then the calculation formula for the length of the program will be:
n = 500(0. 5772 + 1n 500) = 3396
Human language and programming language are similar in both ways of
expression and purpose of expression. Therefore, they have the same law of
information about the expression process. We can guide the information entropy
of the information source according to Shannon theory.

n n
H(U) = E[-logyp;] = =) pilogop; = Y. pilogy L (14)
i=1 i=1 Pj

p; is the probability of the occurrence of information, If the program to be
measured is a sequence of symbols that are randomly taken out of the alphabet
consisting of n, operators andn, operands, and the probability that each symbol is

taken out of the alphabet isequal, itis 1, according to formulas (13), we get:
N, + Ny

N s
1
i=1 j=1 ij
According to Zipf's law, the probability that each symbol is taken out of
the alphabet of operands and operators is not equal. According to the formula (12),
the formula (15) can be converted to

N (1ns)?

H) = 7 2(Inst 7/ 12)

+ In(lns+ 7 /12) (16)

If s>100, we can omit the 7/12, and1lns = 1n 2. logys, thus the formula
(16 can be reduced to:
H=HU) ~ Nlogz(\/g + Ins) (17)

Research on the complexity measurement technology of software structure based on AST 45

If the program code is long and the S is large, thenlns = 1n 2. log,s, we
can obtain the formula:

N N
H = 5 logys = 5 logy(M+ ny) (18)

According to the information theory, when the probability of each
message in the information source appears, H is the largest. From the formula (18),
we know that the complexity of the program code is directly related to the times
of operands and the operators appear in the code. As a result, the program markup
parsing algorithm traverses the abstract syntax tree in a quantized way, during the
traversal [11-13]; we use the key value pairs at hash table to record the frequency
of the operands and the operators. The storage structure of AST nodes is attached
to the appendix.

In the traversal of the above algorithm, we set up the variable infoMark to
mark the program information about the software complexity statistics. The leaf
nodes of an abstract syntax tree are generally operands, and branch nodes are
generally operators that connect leaf nodes. Through this parsing algorithm, we
obtain a hash table containing complex parameters of the program.

4. Complexity Measurement of Software Structure

The research of software complexity analysis technology should be
applied to the research of one or more software complexity measurement
algorithms, so the most important problem is the data measurement metrics.
Based on program comprehension, these metrics are directly or indirectly from the
abstract syntax tree, according to the results of the information mark parsing
algorithm, we can measure the structure complexity of the program by using two
kinds of methods: the McCabe structure complexity measurement method and the
Halstead software science measurement method, the McCabe complexity is
mainly a measure of the complexity of software program structure. It needs to
analyze the program control flow chart of software, so it belongs to the indirect
call from the abstract syntax tree. The Halstead complexity uses the operands and
operators in the program as a statistical object. It belongs to the direct call from
the abstract syntax tree. In addition, we can statistic the number of code lines, the
blank lines, and the commented lines of a comprehensive analysis [14-15].

4.1. McCabe Metric Calculation Method

McCabe complexity is essentially a measure of the complexity of the
program topology. It needs to analyze the software program control flow chart, so
it belongs to the indirect call to the abstract syntax tree. Fig. 2 illustrates the
function call relationship based on the McCabe metric of AST.

46 Qiao Liping, Li Jing, Song Yaging

CFGprint cp.go() printCircle()
I

1
dfg(root) countGraph()
——{edgum nodenu]

Fig. 2 Function Call Relations

When the McCabe complexity measuring, the object cp of the type
CFGprint is firstly generated, we initialize some data by the function go of the
object cp. Then we call the dfg (root) function, which implements recursive
traversal of the program control flow, so that, we can analyze the number of arcs
and the number of nodes in the control flow graph, we mark these two values with
variables edgnum and nodenum, and then we call the function printCircle and the
function countGraph to calculate the complexity by the variables edgnum and
nodenum. Finally, the output is computed by using the function sendResult.
Specific algorithm codes are attached to the appendix

4.2. Halstead Metric Calculation Method

The Halstead complexity uses the operands and operators in the program
as a statistical object. The Information Mark Parsing Algorithm described earlier
in this article has parsed the parameters of the operators and operands in the
program [16-18]. We know that all the analysis results from the AST are stored in
the hash table, on this basis, we can carry out the calculation of Halstead
complexity, and its specific algorithm is attached to the appendix.

4.3 Experimental Analysis of the Complexity Measurement
Technology

We see that, our measurement of the complexity of software structures is
primarily the complexity of program code. According to the AST and the
Information Mark Parsing Algorithm, we design the experimental test flow, as
shown in Fig. 3

Research on the complexity measurement technology of software structure based on AST 47

Load code

Code
preprocessing

Build

AST

Program control
structure analysis

it

Information mark
parsing algorithm

LineCount metric

| McCabe metric | | Halstead metric

Generate results

i

validation

Fig. 3 Experiment flow design

During this experimental process, we first load the test code named test.c,
and generate the AST; then on the basis of the AST, we obtain metadata for the
program complexity analysis, by the Information Mark Parsing Algorithm and
program control structure analysis. According to these metadata, we get the
McCabe metric results, the Line Count metric results, and the Halstead metric
results of the test code. Finally, we compare the measurement results with the
actual complex metrics of the test code, the results are as shown in Table 2.

Comparison table of experimental data with actual data revle

Code Lines Experiment Data | Real Data | Accuracy Rate | Result

Total Lines 327 327 100% | Accurate
Blank Lines 13 13 100% | Accurate
Comment lines 21 21 100% | Accurate
McCabe 7 7 100% | Accurate
Halstead 97.26 97.33 99.92% | Accurate
Normalization 2.53 2.534 99.84% | Accurate

From the table, we can see that the results of the calculation using the
software architecture complexity metric technology are almost identical with the
actual data. Especially, in aspects of Line Count Metrics and McCabe metrics,
they are exactly the same; and in aspects of Halstead metrics and Normalization
metrics, the accuracy is close to 99.9%. To clarify the consistency of the two

48 Qiao Liping, LiJing, Song Yaqing

kinds of data, we draw their histogram comparison and line chart comparison, as
shown in Fig. 4:

350
300

250 -

200 -
150 +

M Experimental Data

100 ~ Real Data
0 - — | —

Fig.4.The histogram between experimental data and real data
In the histogram, we see that the experimental data are almost identical to
the actual data onto the Y axis, which is also the numerical axis. These results
furtherly prove the rationality and accuracy of the techniques under study.

5. Conclusion

The technology of Software complexity measurement technique based on
AST used the abstract syntax tree which is a key factor as the main source of the
program code complexity analysis. After the preprocessing of the irrelevant
information about the program code, the efficiency of the abstract syntax tree
analysis will be further improved. We use the information mark parsing algorithm
to get the operands and operators from the program code and use the hash table
structure to save the analysis result by key value pairs. This data storage method
will greatly improve the speed of data reading, and directly affect the efficiency of
subsequent complexity computing methods.

In this paper, we extract the required parameter factors of code complexity
analysis, by abstract the syntax tree, and use the Line Count metric calculation
method, the McCabe metric calculation method and the Halstead metric
calculation method to analyze and calculate the program structure of software and
give a comprehensive analysis report finally. In the end of this paper, we establish
the environment of application tests, and design the application test flow in detail,
and then test the complexity metric for the randomly selected program code. The
analysis of the experimental results shows the consistency between the system test
results and the program complexity analysis results; therefore, from the point of
view of practical application, it proved that the technology of Software
complexity measurement technique based on AST is accurate and feasible.

Research on the complexity measurement technology of software structure based on AST 49

REFERENCES

[1]. Nalinee Sophatsathit, Complexity Measure of Software Composition Framework. Journal of
Software Engineering and Applications, (2017), No.4, pp.324-337

[2]. Jagvir Brar; Hans van der Meij, Complex software training: Harnessing and optimizing video
instruction. Computers in Human Behavior, (2015), vol.70, pp.475-485.

[3]. Einollah Pira; Vahid Rafe; Amin Nikanjam, Deadlock detection in complex software systems
specified through graph transformation using Bayesian optimization algorithm. Journal of
Systems and Software, (2017), vol.131, pp.181-200.

[4]. CherylL.Coyle; Mary Peterson, Learnability Testing of a Complex Software
Application.Design, User Experience, and Usability: Novel User Experiences, (2016),
vol.9747, pp.560-568.

[5]. José Roberto C. Piqueira, Weighting order and disorder on complexity measures. Journal of
Taibah University for Science, (2017), vol.11, No.2, pp.337-343.

[6]. Ning Cai.On quantitatively measuring controllability of complex networks. Physica A:
Statistical Mechanics and its Applications, (2017), vol.474, pp.282-292.

[7]. I Hong Suh; Sang Hyoung Lee; Nam Jun Cho; Woo Young Kwon.Measuring motion
significance and motion complexity. Information Sciences, (2017), vol.388, pp.84-98.

[8]. Kimio Kuramitsul). Fast, Flexible, and Declarative Construction of Abstract Syntax Trees
with PEGs. Journal of Information Processing, (2016), vol.24, No.1, pp.123-131

[9]. Hiroshi Kikuchi; Takaaki Goto; Mitsuo Wakatsuki; Tetsuro Nishino, A Source Code Plagiarism
Detecting Method Using Sequence Alignment with Abstract Syntax Tree Elements.
International Journal of Software Innovation, (2015), vol.3, No.3, pp.41-56.

[10]. Emma Soderberg; Torbjorn Ekman; Gorel Hedin; Eva Magnusson, Extensible
intraprocedural flow analysis at the abstract syntax tree level. Science of Computer
Programming, (2013), vol.78, No.10 pp.1809-1827.

[11]. Degiang Fu; Yanyan Xu; Haoran Yu; Boyang Yang, WASTK: A Weighted Abstract Syntax
Tree Kernel Method for Source Code Plagiarism Detection.Scientific Programming, (2017),
vol.2017, doi:10.1155/2017/7809047.

[12]. Wafaa S. Sayed; Hossam A. H. Fahmy, What are the Correct Results for the Special Values of
the Operands of the Power Operation?; ACM Transactions on Mathematical
Software,(2016), vol.42,No0.2,d0i:10.1145/2809783.

[13]. Yalin Chen; Jamie I. D. Campbell, Operator and operand preview effects in simple addition
and multiplication: A comparison of Canadian and Chinese adults. Journal of Cognitive
Psychology, (2015), vol.27, No.3 pp.326-334.

[14]. José Roberto C. Piqueira, Weighting order and disorder on complexity measures. Journal of
Taibah University for Science (2017), vol.11, No.2 pp.337-343

[15]. Mortoza LP; Piqueira JR., Measuring complexity in Brazilian economic crises...PL0S One.
(2017), Vol.12, No.3, pp e0173280

[16]. NicholasV.Sarlis. Entropy in Natural Time and the Associated Complexity Measures. Entropy.
(2017), Vol.19, No.4, pp: 177.

[17]. Measuring Pregnancy Intention: The Complexity of Comparison., Perspect Sex Reprod
Health (2017), Vol. 49, No.1, pp: 69-70.

[18]. Nalinee Sophatsathit.Complexity Measure of Software Composition Framework.Journal of
Software Engineering and Applications, (2017), No.4, pp:324-337.

APPENDIX

Code 1. The storage structure of AST nodes

50 Qiao Liping, Li Jing, Song Yaging

Struct Type
{ BTNode* ptr; // Pointer to node
Enum {0, 1, 2} visitMark; // Access mode flag
Enum {0, 1} infoMark; // Information type marker
String key; // the key name of a hash table
}; /* Node pointer type with mark field */

Code 2. Mccabe method algorithm codes
Int edgnum=0, nodenum=0; / the number of arcs and the number of nodes
/*dfg () is used to statistic the number of nodes and arcs*/
Void dfg (NextPtr node)
{ Nodenum++; //the number of nodes add 1
(node.cont ()? seenCont: seen).add (node.stmt ());
NextPtrList successors;
node.stmt () ->getSuccessors (successors, node.cont ());
If (! rootNodePrinted)
{ Edgnum++; // the number of arcs add 1
Nodenum++; // the number of nodes add 1
RootNodePrinted = true;

For (int i=0; i < successors.length (); i++)
{ NextPtr succ = successors[i];
Bool haveSeenlt = (succ.cont ()? seenCont: seen).contains (succ.stmt ());
Edgnum++;
If (haveSeenlt) ;
Else
Dfg (succ); // visit the succeeding node of this node

Code 3. Healstead method algorithm codes
Int HalStead_Calculate (int nl, int n2)
{//n1 is the number of the operands; n2 is the number of the operators
Intn;
If (n1! =0&&n2! =0) // the value of the Halstead Complexity measure
n=nllog2nl+n2log2n2;
Return n; // return the finally result

}

