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MAXIMAL INVARIANT SUBSPACES AND OBSERVABILITY OF

MULTIDIMENSIONAL SYSTEMS
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The Geometric Approach techniques are extended to a class of multidimensional

(rD, ≥ 2) linear systems. An algorithm is provided for determining the maximal

subspace which is invariant with respect to r commuting drift matrices and is

included in a given subspace. When this subspace is the kernel of the output

matrix, this algorithm determines the subspace of the unobservable states of the

system. A Matlab program is presented, which implements the algorithm and

computes an orthonormal basis of this maximal invariant subspace.
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1. Introduction

Since its birth before the middle of the 20th century, System theory was first

studied as control theory by mathematicians and engineers. Now it is applied in

engineering, economics, finance, political science, military science, sociology, biology,

ecology etc. Different approaches have been developed during its history, which

include the frequency domain techniques, the state space representations of Bellman

and Kalman (around 1960), the polynomial approach (Popov and Rosenbrock, in

the early 1970s). At the same time, the geometric direction enriched the field of

System theory with new concepts and techniques and provided simpler and elegant

solutions for many important problems such as controller synthesis, decoupling, pole-

assignment, minimality, duality, etc. The history of the Geometric Approach started

with the papers of Basile and Marro (see [3]) and was developed by Wonham and

Morse [13], Silverman, Hautus, Willems et al. The landmark of this approach is the

concept of invariance of a subspace with respect to a linear transformation.

In the past four decades a lot of published paper and books have been designed

to the theory of multidimensional (rD) systems, which become a distinct and im-

portant branch of the systems theory. The reasons for the increasing interest in this

domain are on one side the richness in potential application fields (signal processing,
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image processing, computer tomography, gravity and magnetic field mapping, seis-

mology etc.) and on the other side the richness and significance of the theoretical

approaches due to the fact the domain of rD systems needs a specific approach, since

many aspects of the 1D systems do not generalize and there are many rD systems

phenomena which have no 1D systems counterparts. Various state space 2D discrete-

time models have been proposed in literature by Roesser [12], Fornasini-Marchesini

[4], Attasi [1] etc.

The concept of observability, which is fundamental in control theory, originates

both from classical automata theory and from basic linear systems. It was introduced

for 1D systems by Kalman in [6] (see also Popov [8]), being imposed by engineering

problems. The characterization of the observability of 2D discrete-time systems was

provided by Attasi [1] with the use of the 2D observability matrix.

The aim of this paper is to extend the Geometric Approach techniques to

multidimensional Attasi type rD linear systems by providing an algorithm to de-

termine the maximal subspace which is invariant with respect to r commutative

drift matrices and is included in the kernel of the output matrix, and to emphasize

its connection with the concept of observability. The dual algorithm which deter-

mines the minimal invariant subspace that includes the image of the input matrix

is described in [11].

In Section 2 the state space representation of these systems is given and the

formulas of the state as well as of the input-output map are obtained on the basis

of a variation-of-parameters formula.

Section 3 presents the notion of completely observable systems. Using the

observability matrix, one obtains necessary and sufficient conditions of observability

for LTI systems. The space Xuo of all unobservable states of a system is character-

ized as the maximal invariant subspace with respect to the drift matrices which is

included in the kernel of the the output matrix. In the case of time-variable systems

(which also have many applications, see [5]), observability can be studied by using

the rank of a suitable observability Gramian(see [10]).

Section 4 provides an algorithm which computes the maximal invariant sub-

space with respect to r ≥ 2 commuting matrices which is included in a given sub-

space. This algorithm is a generalization of the 1D method of G. Marro (see [7]).

Section 5 provides a Matlab program that implements the algorithm presented

in Section 4 which computes an orthonormal basis of the maximal invariant subspace.

An example illustrates the behavior of the provided method.

We shall use the following notations: r := {1, 2, . . . , r} where r ∈ N∗. A

function x(t1, . . . , tr) is denoted by x(t), where t = (t1, . . . , tr), and ti ∈ Z+ are the

discrete variables. By s ≤ t, s, t ∈ Zr we mean si ≤ ti ∀i ∈ r̄ and s < t means

s ≤ t, s ̸= t. For t0, t1 ∈ Zr, t0 < t1, we denote by [t0, t1] the set (the rD interval)

[t0, t1] =
∏r

i=1[t
0
i , t

1
i ].

For δ = {i1, . . . , il} a subset of r, we consider the notations |δ| := l, δ̃ := r \ δ
and |∅| := 0; for i ∈ r, ĩ := r \ {i}. The notation δ ⊂ r means that δ is ∅ or

δ is a subset of r and δ ̸= r. For δ = {i1, . . . , il} the operator σδ is defined by
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σδx(t) = x(t + eδ) where eδ = ei1 + · · · + eil , ej = (0, . . . , 0︸ ︷︷ ︸
j−1

, 1, 0, . . . , 0) ∈ Zr; when

δ = r we denote σδ = σ, hence σx(t1, t2, . . . , tr) = x(t1 + 1, t2 + 1, . . . , tr + 1).

If Ai, i ∈ m is a family of matrices, then
∏
i∈∅

Ai = I.

2. The state space representation of the discrete-time rD model

Consider a field K and the time set T = Zr, r ∈ N, r ≥ 2. The K-spaces

X = Kn, U = Km and Y = Kp are called respectively the state space, the input

space and the output space.

Definition 2.1. An rD discrete-time linear system is an ensemble Σ = (A1, . . . , Ar;

B;C;D) where Ai(ti), i ∈ r are commuting n× n matrices over K ∀ti ∈ Z, ∀i ∈ r

and B(t), C(t), D(t) are respectively n × m, p × n and p × m matrices over K;

the following equations are called respectively the state equation and the output

equation:

σx(t) =
∑
δ⊂r

(−1)r−|δ|−1

∏
i∈δ̃

Ai(ti)

σδx(t) +B(t)u(t), (1)

y(t) = C(t)x(t) +D(t)u(t), (2)

where x(t) = x(t1, . . . , tr) ∈ X is the state, u(t) ∈ U is the input and y(t) ∈ Y is the

output of the system Σ.

For any set δ = {i1, . . . , il} ⊂ r and for ti ∈ Z+, i ∈ δ, t0i ∈ Z+, i ∈ δ̃, we use

the notation

x(tδ, t
0
δ̃
) := x(t01, . . . , t

0
i1−1, ti1 , t

0
i1+1, . . . , t

0
il−1, til , t

0
il+1, . . . , t

0
r).

One defines the discrete-time fundamental matrix Fi(ti, t
0
i ) of the matrix Ai(ti),

for ti, t
0
i ∈ Z, by

Fi(ti, t
0
i ) =

{
Ai(ti − 1)Ai(ti − 2) · · ·Ai(t

0
i ) for ti > t0i

In for ti = t0i .

Fi(ti, t
0
i ) is the unique matrix solution of the following initial value problem

Y (ti + 1, t0i ) = Ai(ti)Y (ti, t
0
i ), Y (t0i , t

0
i ) = I.

If Ai is a constant matrix then Fi(ti, t
0
i ) = A

ti−t0i
i .

Since the matrices Ai(ti), i ∈ r commute, their discrete-time fundamental

matrices Fi(ti, t
0
i ) commute too.
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Definition 2.2. The vector x0 ∈ Kn is called an initial state of the system Σ if

x(tδ, t
0
δ̃
) =

(∏
i∈δ

Fi(ti, t
0
i )

)
x0 (3)

for any δ ⊂ r; equalities (3) are called initial conditions of Σ.

By adapting the proof of Proposition 2.3 from [9] one obtains a discrete-type

variation-of-parameters formula for rD systems, which can be used to obtain the

following result.

Proposition 2.1. The state of the system Σ determined by the control u ∈ U and

the initial state x0 is

x(t) =

(
r∏

i=1

Fi(ti, t
0
i )

)
x0 +

t1−1∑
l1=t01

. . .

tr−1∑
lr=t0r

(
r∏

i=1

Fi(ti, li + 1)

)
B(l)u(l); (4)

here t = (t1, . . . , tr) ∈ T and l = (l1, . . . , lr) ∈ T .

By replacing the state x(t) (4) in the output equation (2) one obtains

Proposition 2.2. The input-output map of the system Σ is

y(t) = C(t)

(
r∏

i=1

Fi(ti, t
0
i )

)
x0+ (5)

+

t1−1∑
l1=t01

. . .

tr−1∑
lr=t0r

C(t)

(
r∏

i=1

Fi(ti, li + 1)

)
B(l)u(l) +D(t)u(t).

3. Observability of time-invariant discrete-time rD systems

The system Σ = (A1, . . . , Ar, B, C,D) is said to be time-invariant (or station-

ary) if all its matrices are constant. In this case we can consider the time set T = Nr

and the initial moment t0 = 0 ∈ T .

The fundamental matrices become Fj(tj , 0; tj̃) = A
tj
j , j ∈ r and the input-

output map (5) can be written in the form

y(t) = C

 r∏
j=1

A
tj
j

x0 +

t1−1∑
l1=0

. . .

tr−1∑
lr=0

C

 r∏
j=1

A
tj−lj−1
j

Bu(l) +Du(t). (6)

Definition 3.1. A state x ∈ Kn is said to be unobservable if, for any input u(t),

the initial states x0 = x and x0 = 0 produce the same output y(t), ∀t ∈ T .
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Proposition 3.1. The state x ∈ Kn is unobservable if and only if

C

 r∏
j=1

A
tj
j

x = 0, ∀tj ∈ N, ∀j ∈ r. (7)

Proof. Let us denote by yx(t) and y0(t) the outputs produced by the initial state

x0 = x and x0 = 0 respectively, for an arbitrary input u(t). We obtain by (6) that

yx(t)− y0(t) = 0 ∀k ∈ T if and only if (7) holds. �

In the sequel we will consider the system Σ reduced to the ensemble Σ =

(A1, . . . , Ar;C).

Proposition 3.2. The state x ∈ Kn is unobservable if and only if

C

 r∏
j=1

A
tj
j

x = 0, ∀tj ∈ N, tj ≤ n− 1, ∀j ∈ r. (8)

Proof. Obviously, (7) implies (8). Conversely, assume that (8) holds. Consider the

characteristic polynomial of the matrix Aj , j ∈ r:

det(sI −Aj) = sn + aj,n−1s
n−1 + · · ·+ aj,1s+ aj,0.

By Hamilton-Cayley theorem, pj(Aj) = 0, hence

An
j = −aj,n−1A

n−1
j − · · ·+ aj,1Aj − aj,0I. (9)

Recurrently, one obtains from (9) that for any N ≥ n, AN
j can be represented as

a linear combination of the matrices An−1
j , . . . , Aj and I. It follows that for any

t = (t1, . . . , tr) ∈ T , C

 r∏
j=1

A
tj
j

x can be represented as a linear combination of

the matrices C

 r∏
j=1

A
tj
j

x, where tj ≤ n− 1,∀j ∈ r, hence (8) implies (7). �

Definition 3.2. A subspace V of Kn is said to be (A1, . . . , Ar)-invariant if Ajv ∈
V, ∀v ∈ V, ∀j ∈ r.

Let C be a proper subspace of Kn. A subspace V of Kn is said to be

(A1, . . . , Ar;C)-invariant if V is (A1, . . . , Ar)-invariant and it is included in C. V is

called maximal if, for any subspace Ṽ which is (A1, . . . , Ar)-invariant and included

in C, Ṽ ⊂ V.

Let us denote by Xuo the set of the unobservable states of Σ. Now we give a

geometric characterization of the set of unobservable states of Σ.
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Theorem 3.1. Xuo is the maximal (A1, . . . , Ar;C)-invariant subspace of Kn, where

C=KerC.

Proof. Let x be an unobservable state of Σ. Obviously, one obtains from (7), for

tj = 0, ∀j ∈ r, that Cx = 0, hence Xuo ⊂ KerC.

For arbitrary i ∈ r and tj ∈ N, j ∈ r one obtains from (7): 0 = C(

r∏
j=1

j ̸=i

A
tj
j )A

ti+1
i x =

C(
r∏

j=1

A
tj
j )Aix, hence Aix ∈ Xuo, ∀i ∈ r, i.e. Xuo is (A1, . . . , Ar;C)-invariant.

Now, consider an arbitrary (A1, . . . , Ar;C)-invariant subspace V of Kn and let

v be an element of V. Since V is (A1, . . . , Ar)-invariant and it is included in KerC

one obtains (

r∏
j=1

A
tj
j )v ∈ V and C(

r∏
j=1

A
tj
j )v = 0, ∀tj ≥ 0, ∀j ∈ r. By (7), v ∈ Xuo,

hence V ⊂ Xuo. �

Definition 3.3. The matrix

OΣ = [CT AT
1 C

T . . . (AT
1 )

n−1CT AT
2 C

TAT
1 A

T
2 C

T . . . (AT
1 )

n−1AT
2 C

T . . . (10)

. . . (

r−1∏
i=1

(AT
i )

n−1)CT AT
r (

r−1∏
i=1

(AT
i )

n−1)CT . . . (

r∏
i=1

(AT
i )

n−1)CT ]T .

is called the observability matrix of the system Σ.

Definition 3.4. The system Σ is said to be completely observable if there is no

unobservable state x ̸= 0.

Theorem 3.2. The system Σ = (A1, . . . , Ar, C) is completely observable if and only

if {0} is the greatest subspace of Kn which is (A1, . . . , Ar;C)-invariant.

Proof. This criterion is a consequence of theorem 3.1 and of the fact that the system

Σ = (A1, . . . , Ar, C) is completely observable if and only if Xuo = {0}. �

One obtains by Proposition 3.2 the following result.

Proposition 3.3. Xuo = KerOΣ.

Theorem 3.3. The system Σ = (A1, . . . , Ar, C) is completely observable if and only

if

rankOΣ = n. (11)

Proof. This follows from Proposition 3.3 and the fact that Xuo = KerOΣ = {0} if

and only if (11) holds. �
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4. Algorithm of minimal invariant subspaces

Let C be a proper subspace ofKn and A1, . . . , Ar ∈ Kn×n commuting matrices.

Let us denote by maxI(A1, . . . , Ar;C) the maximal (A1, . . . , Ar)-invariant subspace

included in C.

For a subspace V of Kn, we consider the subspaces (
∏r

i=1A
−ki
i )V = {v ∈

Kn|(
∏r

i=1A
ki
i )v ∈ V}, ki ∈ N, where (

∏r
i=1A

−0
i )V = V. If v ∈ A−j

i V, then Aiv ∈
A

−(j−1)
i V, ∀i ∈ r, ∀j ≥ 1.

Proposition 4.1. The maximal (A1, . . . , Ar)-invariant subspace included in C is

maxI(A1, . . . , Ar;C) =
∞∩

k1=0

· · ·
∞∩

kr=0

(
r∏

i=1

A−ki
i )C. (12)

Proof. Let us denote by V1 the subspace
∩∞

k1=0 · · ·
∩∞

kr=0(
∏r

i=1A
−ki
i )C. If v ∈ V1

then v ∈ (
∏r

i=1
i̸=j

A−ki
i )A

−(kj+1)
j C, hence Ajv ∈ (

∏r
i=1A

−ki
i )C, ∀ki ∈ N, j ∈ r. It

follows that Ajv ∈ V1, ∀j ∈ r i.e. V1 is (A1, . . . , Ar)-invariant. We can write by

(12) V1 = C ∩
∩∞

k1=0 · · ·
∩∞

kr=0(
∏r

i=1A
−ki
i )C where (k1, . . . , kr) ̸= (0, . . . , 0), hence

V1 is included in C.

Now, let V be an (A1, . . . , Ar)-invariant subspace included in C. Then, for any

v ∈ V, (
∏r

i=1A
ki
i )v ∈ V ⊂ C, hence v ∈ (

∏r
i=1A

−ki
i )C, ∀ki ≥ 0, ∀i ∈ r, which implies

v ∈ V1. Therefore V ⊂ V1, i.e. V1 is the maximal such subspace. �

Proposition 4.2. The maximal (A1, . . . , Ar)-invariant subspace included in C is

maxI(A1, . . . , Ar;C) =

n−1∩
k1=0

· · ·
n−1∩
kr=0

(

r∏
i=1

A−ki
i )C. (13)

Proof. Let us denote by V2 the subspace given in the right-hand member of (13).

Obviously, by Proposition 4.1, V1 ⊂ V2, where V1 = maxI(A1, . . . , Ar;C).

Now, for any v ∈ V2, (
∏r

i=1A
ki
i )v ∈ C, ∀ki ∈ N, 0 ≤ ki ≤ n − 1, ∀i ∈ r.

Let pj(s) = det(sI −Aj) = sn + an−1,js
n−1 + · · ·+ a1,js+ a0,j be the characteristic

polynomial of the matrix Aj , j ∈ r. By Hamilton-Cayley Theorem, pj(Aj) = 0n,

hence

An
j = −an−1,jA

n−1
j − · · · − a1,jAj − a0,jIn. (14)

Then, for any vector v ∈ V2, A
n
j v = −

n−1∑
l=0

al,jA
l
jv. Since Aj are commutative matri-

ces, we can premultiply this equality by (
∏r

i=1
i̸=j

Aki
i ) and we obtain (

∏r
i=1
i̸=j

Aki
i )An

j v =

−
n−1∑
i=0

al,j(

r∏
i=1
i̸=j

Aki
i )Al

jv, hence (
∏r

i=1
i ̸=j

Aki
i )An

j v ∈ C since (
∏r

i=1
i̸=j

Aki
i )Al

jv ∈ C for 0 ≤ l ≤

n−1 and C is a subspace. Similarly, by postmultiplying (14) by (
∏r

i=1
i̸=j

Aki
i )At

jv, t =

1, 2, . . ., one obtains recurrently that (
∏r

i=1
i̸=j

Aki
i )An+t

j v ∈ C and finally that (
∏r

i=1A
ki
i )v ∈
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C, ∀ki ≥ 0, hence v ∈ V1. It follows that V2 ⊂ V1, hence V2 = V1 = maxI(A1, . . . , Ar;C).

�

Algorithm 4.1.

Stage 1. Determine the sequence of subspaces (Si1,0,...,0,0)0≤i1≤n of the space

X = Kn:

S0,0,...,0,0 = C; (15)

Si1,0,...,0,0 = C ∩A−1
1 Si1−1,0,...,0,0, i1 = 1, ..., n; (16)

Stage 2. Determine i01, the first index in {0, 1, . . . , n− 1} which verifies

Si01+1,0,...,0,0 = Si01,0,...,0,0
. (17)

If i01 = n− 1, then maxI(A1, . . . , Ar;C) = {0} ⊂ Kn. STOP

If i01 < n− 1, put j := 1 and GO TO Stage 3.

Stage 3. Determine the sequence of subspaces (Si01,i
0
2,...,i

0
j ,ij+1,0,...,0

)0≤ij+1≤n of

the space X = Kn: for ij+1 = 1, 2, . . . , n,

Si01,i
0
2,...,i

0
j ,ij+1,0,...,0

= Si01,i
0
2,...,i

0
j ,ij+1−1,0,...,0 ∩A−1

j+1Si01,i
0
2,...,i

0
j ,ij+1−1,0,...,0. (18)

Stage 4. Determine i0j+1, the first index ij+1 in {0, 1, . . . , n− 1} which verifies

Si01,i
0
2,...,i

0
j ,i

0
j+1+1,0,...,0 = Si01,i

0
2,...,i

0
j ,i

0
j+1,0,...,0

. (19)

If i0j+1 = n− 1 then maxI(A1, . . . , Ar;C) = {0} ⊂ Kn. STOP

If i0j+1 < n− 1 then GO TO Stage 5.

Stage 5. If j < r − 1 then put j := j + 1 and GO TO Stage 3.

If j = r − 1, then maxI(A1, . . . , Ar;C) = Si01,i
0
2,...,i

0
j ,i

0
j+1,...,i

0
r
. STOP

The proof is based upon Propositions 4.1 and 4.2, but it is too long and it is

omitted for lack of space.

5. Matlab program

The Matlab program presented below and based upon the algorithm above

calculates the dimension and an orthonormal basis of the unobservable states space.

The instructions make use of the m-functions ints, invt and ker included in the

Geometric Approach toolbox published by G. Marro and G. Basile at

http://www3.deis.unibo.it/Staff/FullProf/GiovanniMarro/geometric.htm;

this GA toolbox works with Matlab and Control System Toolbox.

More precisely, given the matrices A1, A2 .... Ar that commute and the matrix

C, the next commands will compute and display the dimension of a basis and an

orthonormal one in the space S = maxI(A1, A2, . . . Ar;C), where C = KerC. The

matrices are loaded from the m-File MatricesAC, where A1, A2 .... Ar are stored in

an n× n× r− dimensional array A.
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% begin m-file

% ints(A,B)=an orthonormal basis for Im(A) intersected with Im(B)

% invt(A,X)=an orthonormal basis for the inverse image of X through A

% ker(C) = an othhonormal basis in the kernel of C

MatricesAC; % for loading A and C

[n, ~, r] = size(A); % A is nxnxr, its "pages" being A1...Ar

Osigma= []; % The observability matrix

Ctemp = C; for j = 1: r

A_current = A(:, :, j); % successively A1, A2,..., Ar

Osigma = obsv(A_current, Ctemp);

Ctemp = Osigma;

end rk = rank(Osigma); if (rk == n) disp(strcat(’The

(’,int2str(r),’D)-system is completely observable.’)) else S =

ker(C);

[n, dimUno] = size(S); % will be the dim of the unobs. sp.

index = zeros(1, r); % the index of the calculated subspace

for j = 1:r % loop for index position

A_current = A(:, :, r-j+1); % successively Ar, A(r-1),..., A1

for i= 1:n-1 % loop for index value

S = ints(S, invt(A_current,S)); [n, m1] = size(S); index(j) = i;

if (m1 == dimUno) break; else dimUno = m1; end

end if (dimUno == n) break; end end disp([’The dimension of the

unobservable space is ’]) disp([ num2str(dimUno)]) disp(’and an

orthonormal basis is:’) disp(S) end

% end m-file

For example, given the matrices

A1 =

 1 0 0

0 1 0

1 0 2

 , A2 =

 2 4 0

3 1 0

−1 −4 1

 , A3 =

 1 0 0

0 1 0

0 0 3

 , C =
[
1 −1 0

]
,

the m-File MatricesAC will be

A = [1 0 0; 0 1 0; 1 0 2]; A(:,:,2) =[2 4 0; 3 1 0; -1 -4 1];

A(:,:,3) = [1 0 0; 0 1 0; 0 0 3 ]; C= [1 -1 0];

and the above Matlab program will give the answers:

The dimension of the unobservable space is 1 and an orthonormal

basis is:

0

0

1

while, with the same A1, A2, A3 but with C = [1 − 1 1] the answer will be

The (3D)-system is completely observable.
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6. Conclusions

In the lines of the Geometric Approach, the observability of a class of multidi-

mensional LTI systems was studied in this paper. The list of the complete observ-

ability criteria can be extended by using the duality of the concepts of controllability

and observability or by using the rank of a suitable observability Gramian, in the

case of time-variable systems (see [8]). The algorithm which determines the maxi-

mal invariant subspace can be used to find the canonical form of the unobservable

systems and the Kalman canonical decomposition of a system.
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