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MAXIMAL INVARIANT SUBSPACES AND OBSERVABILITY OF
MULTIDIMENSIONAL SYSTEMS

Valeriu PREPELITA!, Tiberiu VASILACHE?

The Geometric Approach techniques are extended to a class of multidimensional
(rD, > 2) linear systems. An algorithm is provided for determining the mazimal
subspace which is invariant with respect to r commuting drift matrices and is
included in a given subspace. When this subspace is the kernel of the output
matrix, this algorithm determines the subspace of the unobservable states of the
system. A Matlab program is presented, which implements the algorithm and
computes an orthonormal basis of this maximal invariant subspace.
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1. Introduction

Since its birth before the middle of the 20th century, System theory was first
studied as control theory by mathematicians and engineers. Now it is applied in
engineering, economics, finance, political science, military science, sociology, biology,
ecology etc. Different approaches have been developed during its history, which
include the frequency domain techniques, the state space representations of Bellman
and Kalman (around 1960), the polynomial approach (Popov and Rosenbrock, in
the early 1970s). At the same time, the geometric direction enriched the field of
System theory with new concepts and techniques and provided simpler and elegant
solutions for many important problems such as controller synthesis, decoupling, pole-
assignment, minimality, duality, etc. The history of the Geometric Approach started
with the papers of Basile and Marro (see [3]) and was developed by Wonham and
Morse [13], Silverman, Hautus, Willems et al. The landmark of this approach is the
concept of invariance of a subspace with respect to a linear transformation.

In the past four decades a lot of published paper and books have been designed
to the theory of multidimensional (rD) systems, which become a distinct and im-
portant branch of the systems theory. The reasons for the increasing interest in this
domain are on one side the richness in potential application fields (signal processing,
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image processing, computer tomography, gravity and magnetic field mapping, seis-
mology etc.) and on the other side the richness and significance of the theoretical
approaches due to the fact the domain of rD systems needs a specific approach, since
many aspects of the 1D systems do not generalize and there are many rD systems
phenomena which have no 1D systems counterparts. Various state space 2D discrete-
time models have been proposed in literature by Roesser [12], Fornasini-Marchesini
[4], Attasi [1] etc.

The concept of observability, which is fundamental in control theory, originates
both from classical automata theory and from basic linear systems. It was introduced
for 1D systems by Kalman in [6] (see also Popov [8]), being imposed by engineering
problems. The characterization of the observability of 2D discrete-time systems was
provided by Attasi [1] with the use of the 2D observability matrix.

The aim of this paper is to extend the Geometric Approach techniques to
multidimensional Attasi type rD linear systems by providing an algorithm to de-
termine the maximal subspace which is invariant with respect to r commutative
drift matrices and is included in the kernel of the output matrix, and to emphasize
its connection with the concept of observability. The dual algorithm which deter-
mines the minimal invariant subspace that includes the image of the input matrix
is described in [11].

In Section 2 the state space representation of these systems is given and the
formulas of the state as well as of the input-output map are obtained on the basis
of a variation-of-parameters formula.

Section 3 presents the notion of completely observable systems. Using the
observability matrix, one obtains necessary and sufficient conditions of observability
for LTI systems. The space X, of all unobservable states of a system is character-
ized as the maximal invariant subspace with respect to the drift matrices which is
included in the kernel of the the output matrix. In the case of time-variable systems
(which also have many applications, see [5]), observability can be studied by using
the rank of a suitable observability Gramian(see [10]).

Section 4 provides an algorithm which computes the maximal invariant sub-
space with respect to r > 2 commuting matrices which is included in a given sub-
space. This algorithm is a generalization of the 1D method of G. Marro (see [7]).

Section 5 provides a Matlab program that implements the algorithm presented
in Section 4 which computes an orthonormal basis of the maximal invariant subspace.
An example illustrates the behavior of the provided method.

We shall use the following notations: 7 := {1,2,...,7} where r € N*. A
function x(ty,...,t,) is denoted by z(t), where t = (t1,...,t.), and t; € Z™ are the
discrete variables. By s < t, s,t € Z" we mean s; < t; Vi € 7 and s < t means
s<t, s#t Fort' tt € Z", t* < !, we denote by [t°,¢!] the set (the rD interval)
10,6 = [T, [0, ).

For § = {i1,...,i;} a subset of 7, we consider the notations |§] :=1, § :=7\ &
and |@| := 0; for i € 7, 1 := 7\ {i}. The notation § C 7 means that § is § or
0 is a subset of 7 and § # 7. For § = {i1,...,4;} the operator o; is defined by
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o5x(t) = x(t + es5) where es = ¢€;, +---+ ¢, ¢, = (0,...,0,1,0,...,0) € Z"; when
———
j—1

0 =T we denote o5 = o, hence oz(t1,ta,...,t,) =x(t1 + 1, ta+1,...,t, + 1).
If A;, i € m is a family of matrices, then H A, =1
i€0

2. The state space representation of the discrete-time rD model

Consider a field K and the time set T'=Z", r € N, r > 2. The K-spaces
X =K", U =K"™ and Y = KP? are called respectively the state space, the input
space and the output space.

Definition 2.1. An rD discrete-time linear system is an ensemble ¥ = (A4y,..., A;;
B;C; D) where A;(t;), i €T are commuting n X n matrices over K Vt; € Z, Vi € 7
and B(t), C(t), D(t) are respectively n x m, p x n and p X m matrices over K;
the following equations are called respectively the state equation and the output
equation:

ox(t) =Y (1) P TT Aitts) | osz(t) + B(t)ul(t), (1)
ich

0CT

y(t) = C()x(t) + D(t)u(d), (2)

where z(t) = z(t1,...,t,) € X is the state, u(t) € U is the input and y(t) € Y is the
output of the system X.

For any set 6 = {i1,...,4} CT and for t; € Z™, i € 6, t? € Zt, i€ é, we use
the notation

x(tg,tg) 1 (5 P R T T SRS FH A PO ) B

One defines the discrete-time fundamental matriz F;(t;,t?) of the matrix A, (¢;),
for ti,t? € Z, by

Aiti—lAiti—Qn-Ait? for ti>tg
B(ti,t%:{( Ml A

I, for t; =1
F;(t;,tY) is the unique matrix solution of the following initial value problem

Y (t; 4+ 1,t9) = A (t)Y (£, 1)), Y(2,¢9) = I.

1771

40
If A; is a constant matrix then Fj(t;,t)) = ATl

(2
Since the matrices A;(¢;), ¢ € T commute, their discrete-time fundamental

matrices F;(t;,tY) commute too.
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Definition 2.2. The vector xqg € K" is called an initial state of the system % if

(s, 1) (H Fy(ti, ) (3)

€S

for any § C F; equalities (3) are called initial conditions of 3.

By adapting the proof of Proposition 2.3 from [9] one obtains a discrete-type
variation-of-parameters formula for rD systems, which can be used to obtain the
following result.

Proposition 2.1. The state of the system X determined by the control w € U and
the initial state xq is

r t1—1 tr—1 r
_ (H mz-,t?)) SR SIRS (H o 1)) BOuey @
=1

l]_:tg) lT:tQ =1
here t = (t1,...,t,) €T and l = (Iy,...,1,) € T.

By replacing the state z(t) (4) in the output equation (2) one obtains

Proposition 2.2. The input-output map of the system 3 is

t) (H E(W?)) zo+ (5)
=1
t1—1 tr—1
D el(: (H (ti1; +1)> B(l)u(l) + D(t)uf(t).

ll to lr _tO =1

3. Observability of time-invariant discrete-time rD systems

The system ¥ = (Ay, ..., Ay, B,C, D) is said to be time-invariant (or station-
ary) if all its matrices are constant. In this case we can consider the time set 7= N”"
and the initial moment t° =0 € T.

The fundamental matrices become Fj(tj,();tj) = A;j , 7 € T and the input-
output map (5) can be written in the form

r t1—1 tr—1
[M47]="+> .3 ¢ HA 57 Bu(l) + Duf(t). (6)
j=1 =0  1,=0 j=1

Definition 3.1. A state z € K" is said to be unobservable if, for any input wu(t),
the initial states 2° = 2 and 2° = 0 produce the same output y(t), V¢t € T
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Proposition 3.1. The state x € K" is unobservable if and only if

c|T[A47 |z=0vt;eNVjeT. (7)
j=1

Proof. Let us denote by y,(t) and yo(t) the outputs produced by the initial state

2% = x and 2" = 0 respectively, for an arbitrary input u(t). We obtain by (6) that

Yz (t) — yo(t) = 0 Vk € T if and only if (7) holds. O

In the sequel we will consider the system X reduced to the ensemble ¥ =

(Ay,..., A 0).

Proposition 3.2. The state x € K™ is unobservable if and only if

,
Cl][A7 |z=0v; eN, t;<n-1VjeT. (8)
j=1

Proof. Obviously, (7) implies (8). Conversely, assume that (8) holds. Consider the
characteristic polynomial of the matrix A;, j € 7:

det(sI — Aj;) =s" + aj,n_lsnfl + -4 aj15 + ajp.
By Hamilton-Cayley theorem, p;(A4;) = 0, hence

A} = —ajn 1 AT =t ajn A — ajol. (9)

Recurrently, one obtains from (9) that for any N > n, Aév can be represented as
a linear combination of the matrices A?_l, ...,A; and I. Tt follows that for any
T

t=(t1,...,t,) €T, C H A;j x can be represented as a linear combination of
j=1

the matrices C H A;j x, where t; <n —1,Vj € T, hence (8) implies (7). O
j=1

Definition 3.2. A subspace V of K" is said to be (A1,..., A;)-invariant if Ajv €
V, YveV, VjeTr.

Let € be a proper subspace of K”. A subspace V of K" is said to be
(Ay,..., Ap; C)-tnvariant if V is (Aq,..., A, )-invariant and it is included in C. V is
called mazimal if, for any subspace V which is (Ay,..., Ay )-invariant and included
in C, V.

Let us denote by X, the set of the unobservable states of X. Now we give a
geometric characterization of the set of unobservable states of 3.
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Theorem 3.1. X, is the mazimal (Ay, ..., Ay; C)-invariant subspace of K™, where
C=KerC.

Proof. Let  be an unobservable state of X. Obviously, one obtains from (7), for
tj =0, Vj €7, that Cz = 0, hence X, C KerC.

For arbitrary ¢ € 7and t; € N, j € 7 one obtains from (7 H Al A“Jrl =
J#l
T
C(H A;j)Aim, hence A;x € X0, Vi €T, i.e. Xyp is (A, ..., Ay; C)-invariant.

Now, consider an arbitrary (A, ..., A,; C)-invariant subspace V of K™ and let
v be an element of V. Since V is (Al, ..., Ay)-invariant and it is included in KerC'

one obtains HA vGVandCHA v=0,Vt; >0, Vj eT. By (7), v € Xyo,

Jj=1 7j=1
hence V C X,0. O

Definition 3.3. The matrix

Os. = [CT ATCT .. (AT 10T ATCTATATCT .. (AT 1ATCT ... (10)
r—1 r—1 T
(JTAhhe” Al T@Ehhe” . JEhrhe"
=1 =1 =1

is called the observability matrixz of the system 3.

Definition 3.4. The system X is said to be completely observable if there is no
unobservable state x # 0.

Theorem 3.2. The system ¥ = (Aq,..., A, C) is completely observable if and only
if {0} is the greatest subspace of K™ which is (Ax, ..., Ay; C)-invariant.

Proof. This criterion is a consequence of theorem 3.1 and of the fact that the system
¥ =(A1,..., A, C) is completely observable if and only if X,, = {0}. O

One obtains by Proposition 3.2 the following result.
Proposition 3.3. X, = KerOy.

Theorem 3.3. The system ¥ = (Ay,..., A, C) is completely observable if and only
if
rank Os, = n. (11)

Proof. This follows from Proposition 3.3 and the fact that X,, = KerOy, = {0} if
and only if (11) holds. O
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4. Algorithm of minimal invariant subspaces

Let € be a proper subspace of K™ and Ay, ..., A, € K™*" commuting matrices.
Let us denote by maxI(Aj,...,A,;C) the maximal (A, ..., A,)-invariant subspace
included in C.

For a subspace V of K", we consider the subspaces (]];_ 1A OV = {v €
K"|([Ti—; A¥)v € V}, ki € N, where ([TI_, A7)V = V. If v € A;7V, then Aw €

A, G- I)V,Vz er,Vj> 1.

Proposition 4.1. The mazimal (Ay, ..., A,)-invariant subspace included in C is
mazl (A, ..., A m m HA (12)
=0 =1

Proof. Let us denote by V; the subspace (;7_- g —o(ITi A;ki)e. IfveV

then v € ([[i=: A;ki)Aj_(ij)G, hence Ajv € ([[_, A;%)€, Vk; € N, j e 7. Tt
i#]

follows that Ajv € Vi, Vj € 7 ie. Vi is (Ay,...,A,)-invariant. We can write by
(12) Vi = N NIz A7 7)€ where (ki ..., k) # (0,...,0), hence
Vy is included in C.

Now, let V be an (44, ..., A,)-invariant subspace included in €. Then, for any
veV, ([T, Afi)v €V C €, hencev e ([];_, A;ki)G,Vki > 0, Vi € 7, which implies

v € V1. Therefore V C Vq, i.e. V1 is the maximal such subspace. O
Proposition 4.2. The mazimal (Ay, ... ,A )—invariant subspace included in € is
maxl(Ay,..., A ﬂ ﬂ HA (13)
=0 =1

Proof. Let us denote by Vy the subspace given in the right-hand member of (13).
Obviously, by Proposition 4.1, V1 C Vo, where Vi = maxI(A1,...,A,;C).
Now, for any v € Vo, ([]i_; Afi)v eCVkeN, 0<k <n-—1,Vier.
Let p;(s) = det(sI — A;) = s" + ap—1,;8" "1 + -+ + a1 s + ap; be the characteristic
polynomial of the matrix A;, j € 7. By Hamilton-Cayley Theorem, p;(A4;) = 0y,
hence
A;L = *an,LjA?il — s = CLL]‘A]' — aoyjln. (14)
n—1
Then, for any vector v € Vs, A?v =— Z al,jAév. Since A; are commutative matri-
=0

ces, we can premultiply this equality by (HZ : Ak ) and we obtain ([]}-, Ak AT =
i#£]

- Zal] HAk Alv hence (sz#; AFyA 1)A%v € Csince (H;Z Afi)Aé-v €Cfor0<i<
i=1

i#j
n—1 and € is a subspace. Similarly, by postmultiplying (14) by (], Afi)A§v, t=
i#]

1,2,..., one obtains recurrently that (], Afi)A?thv € € and finally that (T]}_, A¥)v €
i#]
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C, Vk; > 0, hence v € V;. It follows that Vo C Vq, hence Vo =V = maxI(Ay,...,A,;C).
O

Algorithm 4.1.
Stage 1. Determine the sequence of subspaces (.S;, o.....0,0)0<i,<n Of the space
X =K"

S0,0,...,00 = C; (15)
Si.0..00=CNATS: 10, 00, i1 =1,...,n; (16)

Stage 2. Determine Y, the first index in {0,1,...,n — 1} which verifies
Si941,0,..,0,0 = 519,0,...,0,0° (17)

If i = n — 1, then maxI(A,...,A4,;€) = {0} ¢ K®. STOP
If iY <n—1, put j := 1 and GO TO Stage 3.

Stage 3. Determine the sequence of subspaces (Slo 80541, 70)0§ij+1§n of

the space X = K": for i;,1 =1,2,...,n,
S’L(I),ZQ, ,z ,1541,0,...,0 7 S’L(IJ,ZQ, ,z ,ii4+1—1,0,...,0 N AJ+1SZO oy ,z yij+1—1,0,...,0° (18)
Stage 4. Determine ZJH, the first index 4;41 in {0,1,...,n — 1} which verifies
S’L?,’L2, ,z ?+1+1,0,...,0 Sz?,zQ, ,9 J+1,O, .,0° (19)

If Z'?H =n — 1 then maxI(Ay,...,A4,;C) = {0} Cc K". STOP

If i?_H <n —1 then GO TO Stage 5.

Stage 5. If j < r — 1 then put j:= 7+ 1 and GO TO Stage 3.

If j =r—1, then max/(A;,...,4,;€) = Sj0,0 0.0 STOP

7417127 SLYEL>NE FIE ’7‘

The proof is based upon Propositions 4.1 and 4.2, but it is too long and it is
omitted for lack of space.

5. Matlab program

The Matlab program presented below and based upon the algorithm above
calculates the dimension and an orthonormal basis of the unobservable states space.
The instructions make use of the m-functions ints, invt and ker included in the
Geometric Approach toolbox published by G. Marro and G. Basile at
http://www3.deis.unibo.it /Staff/FullProf/GiovanniMarro/geometric.htm;
this GA toolbox works with Matlab and Control System Toolbox.

More precisely, given the matrices Ay, As .... A, that commute and the matrix
C, the next commands will compute and display the dimension of a basis and an
orthonormal one in the space S = maxI(Ay, As,...A,;C), where € = KerC. The
matrices are loaded from the m-File MatricesAC, where A, Ay .... A, are stored in
an n x n X r— dimensional array A.
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% begin m-file

% ints(A,B)=an orthonormal basis for Im(A) intersected with Im(B)

% invt(A,X)=an orthonormal basis for the inverse image of X through A
% ker(C) = an othhonormal basis in the kernel of C

MatricesAC; % for loading A and C
[n, 7, r] = size(A); % A is nxnxr, its "pages" being Al...Ar
Osigma= []; % The observability matrix

Ctemp = C; for j =1:r
A_current = A(:, :, j); % successively A1, A2,..., Ar
Osigma = obsv(A_current, Ctemp);
Ctemp = Osigma;
end rk = rank(Osigma); if (rk == n) disp(strcat(’The
(’,int2str(r),’D)-system is completely observable.’)) else S =
ker(C);

[n, dimUno] = size(S); % will be the dim of the unobs. sp.
index = zeros(1l, r); % the index of the calculated subspace
for j = 1:r % loop for index position
A_current = A(:, :, r—-j+1); % successively Ar, A(r-1),..., Al
for i= 1:n-1 % loop for index value
S = ints(S, invt(A_current,S)); [n, ml] = size(S); index(j) = i;
if (m1 == dimUno) break; else dimUno = ml; end

end if (dimUno == n) break; end end disp([’The dimension of the
unobservable space is ’]) disp([ num2str(dimUno)]) disp(’and an
orthonormal basis is:’) disp(S) end

% end m-file

For example, given the matrices

1 00 2 4 0 1 00
Al=|010|,4=|3 1 0|, 4=]010]|,C=[1 -1 0],
1 0 2 -1 -4 1 0 0 3
the m-File MatricesAC will be

A=[100; 010;102]; A(:,:,2) =[240; 310; -1 -41];
A(:,:,3) =[100; 010; 0031; C=11-10];

and the above Matlab program will give the answers:

The dimension of the unobservable space is 1 and an orthonormal
basis is:
0

1
while, with the same Aj, Az, A3 but with C =[1 —1 1] the answer will be
The (3D)-system is completely observable.
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6. Conclusions

In the lines of the Geometric Approach, the observability of a class of multidi-

mensional LTI systems was studied in this paper. The list of the complete observ-
ability criteria can be extended by using the duality of the concepts of controllability
and observability or by using the rank of a suitable observability Gramian, in the
case of time-variable systems (see [8]). The algorithm which determines the maxi-
mal invariant subspace can be used to find the canonical form of the unobservable

systems and the Kalman canonical decomposition of a system.
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