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ENTROPY GENERATION ANALYSIS OF A REACTIVE
HYDROMAGNETIC FLUID FLOW THROUGH A CHANNEL

Anthony Rotimi HASSAN'"and Jacob Abiodun GBADEY AN?

This research investigates the entropy generation analysis of a reactive
hydromagnetic fluid flow through a channel with isothermal wall temperature,
under various chemical kinetics namely: Sensitized, Arrhenius and Bimolecular
kinetics.

The analytical solutions of the nonlinear dimensionless equations governing
the fluid flow are obtained using Adomian Decomposition Method (ADM). Effects of
all — important flow properties on the fluid flow are presented and discussed.
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1. Introduction

In a reacting material undergoing an exothermic reaction, in which
reactant consumption is neglected, heat is being produced in accordance with
chemical kinetics. That has been of great concern in the study of any reactive
hydromagnetic flows, which is important in many engineering applications.

During the last few decades, many insightful studies have been done on
reactive hydromagnetic fluid flow [1] — [4]. For example, [1] studied the inherent
and thermal stability in a reactive electrically conducting fluid flowing steadily,
through a channel with isothermal walls, under the influence of a transversely
imposed magnetic field. Also, [2] conducted detailed numerical analysis of
unsteady hydromagnetic generalized Couette flow of a reactive third — grade fluid
with asymmetric convective cooling.

In addition, [5] pointed out that hydromagnetic reactive flows are often
accompanied with heat transfer which is an integral part of natural convection
flow and belongs to the class of problems in boundary layer theory. This occurs in
various physical phenomena such as fire engineering, combustion modelling,
nuclear reactor, heat exchangers, etc.

Meanwhile, extensive research studies in [6] — [8] have been carried out
on the properties and importance of fluid flow under Arrhenius kinetics. However,
little attention has been given to hydromagnetic fluid flow under other chemical
kinetics such as sensitized and bimolecular kinetics.
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Therefore, the aim of this study is to respectively obtain and compare the
temperature profiles and entropy generation rate of Sensitized, Arrhenius and
Bimolecular kinetics with a numerical exponent (m) such thatm € {-2,0,0.5} and

to investigate other effects of all — important flow property on the fluid flow due
to its importance in several applications such metallurgical and petro — chemical
engineering. The problem is strongly nonlinear involving exponential
nonlinearity. Hence, analytical solution shall be obtained using Adomian
Decomposition Method (ADM). The rest of the paper is organized as follows: the
problem is formulated in section 2; in section 3 the problem is solved together
with other properties. Section 4 gives the results while section 5 concludes the
research work.

2. Problem Formulation

We considered the steady flow of a reactive, incompressible and
electrically conducting fluid; flowing through a channel, between two parallel
plates, with isothermal wall temperature, under the influence of a transverse
magnetic field strength By. When the consumption of the reactant is neglected, the
continuity, momentum and energy equations governing the flow in a non
dimensionless form can be written as:

a—EJra—X:O (1)
ox Oy
— - B
AP G Bu=0 ?)
dx dy2
&IT  (du) - kT L
k—+u| — | +0,Bu +QCA| — | e &7 =0 (3)
dy’ dy vl
with the following boundary conditions
d—z:d—Z:Oony=0andu=O,T=00ny=a 4)
dy dy

where the bar on each variable represents the non dimensionless form.

However, the additional chemical kinetics term in the energy equation (3)
is due to [9]. Also, in equations (1) — (4), u is axial velocity, v is normal velocity,
T represent the fluid temperature, a is channel half width, C, is reactant species
initial concentration, E£ is activation energy, R is the universal gas constant, 4 is
reaction rate constant, k£ thermal conductivity coefficient, x is fluid viscosity, Q is
the heat of reaction term, P is the modified pressure, / is the Planck’s number, v is
the vibration frequency, oy represents electrical conductivity and m is a numerical
constant such thatm € {-2,0,0.5}. The three values taken by the parameter m
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represent the numerical exponent for Sensitized, Arrhenius and Bimolecular
kinetics.
Introducing the following dimensionless variables into equations (1) — (4)

v < . v E(T-T, 2
[ A Tz(_zo), p=4l s_RT,
a a U U RT, uu E
m E
G=-P p LM . 0B, QFACC, (ﬂj e (5)
dx’ kRT; u KRT? \ v
and obtain the following dimensionless governing equations:
du + P _ 0 (6)
dx dy
2
G+%—Ha2u=0 7)
'y
2 T 2
d T+/1(1+§T)me1+5T + Br du +Ha*u’ |=0 (8)
2 dy
satisfying the following boundary conditions.
ﬂzd—T=Oony=Oandu=0,T=0 ony=1 9)
dy dy

where G is constant axial pressure gradient, Ha represents Hartmann number, Br
is Brinkman number, / is Frank — Kamenettski parameter and ¢ is the activation
energy parameter.

3. Method of solution

Solving (7) with the appropriate boundary conditions, one obtains
G - Cosh(Ha y)
Ha’ Cosh(Ha) |

(a) Case 1: when m = - 2 (Sensitized Kinetics)
Substituting (10) and making m = -2 in equation (8), we have:

s L BG (Cosh(2Hay) _ 2Cosh(Hay) | 1) 0

(10)

u(y)=

—+ A1+ 6T) e +—— -
dy Ha Cosh”Ha CoshHa

(1)

Hence,
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T Cosh(2Hay)
LI X el BrG* L & Cosh’H. -
T(»)=B-Af| [ ——=d -—F]| | 2C05h Ha dy  (12)
ol o (1+0T) Ha” 5| osh( ay)_l_1

CoshHa
Where B =T(0) and is to be determined using the boundary conditions (9).
We now introduce a series solution of the form

T(y)=2.T,(») (13)
n=0
Substituting (13) in (12), we get
iTn(y)
Y e = BrG’ t| 1| Cosh>H.
T =82\ [————dp - 1]y |09
o 0(1+8Y T.(») N+
( ; ) CoshHa
We let the nonlinear term be represented by
iTn(y)
1+§iTn(y)
00 e n=0
260 =—— (15)
" (1+6).T,(»)
n=0
such that
Cosh(2Hay)
(¥ o BrG? | % Cosh’Ha -
T(y)=B-4 C, (y)dy dy ~ y |dy  (16)
'! J;; Ha’ 1[ £ 2Cosh(Hay) ol
CoshHa
The few Adomian polynomials of (15) are given as follows:
L)
el+¢5Tﬂ(y)
Co=———s (17)
(1+3T,())
L)
o (125 =28 T, () (s
1

(1+38T,(»)*
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[2162)
L0 [(1-65+66° 68 (-1+26) () + 65T, (v ) T(v)
©2(1401,0) | 21+ ST0IP (14254 28 T, ()

Then, the zeroth component of (16) can be written following the new modification
in [7], [10] and [11] as follows:

Iy(y)=0

(19)

(20)
Cosh(2Hay)

tf 7 BrG* t| t| Cosh’Ha
T, =B-1 C d - d
) j(j ,() yjdy | ot ¥ |°

0o 0
CoshHa

T.(= —ij[j C, (y)dy}dy

21)

and
(22)

Hence

Ti(y)=-

2 2Ha’

YA  BrG’ (yz

A1
2 24

1 BrG*

+— + )
T+ (-1+20) 24Ha

J’_
Ha’

BrG*
5 1+
2Ha

1 (Sech[Hal(4 —4Cosh|Hay]+
Sech[ Ha]Sinh[ HayT")

S —(-1+25)4°

(=1+28)A(Ha* +24(2 + Ha®
—2Cosh[Ha))Sech[Ha] + +
Sech[ Hal* (-3Ha®* + 3Sinh[Hal"))

1 (Sech[Ha)(4—4Cosh[Ha]
Ha* \ +Sinh[HaTanh[ Ha])

(23)

(b) Case 2: when m =0 (Arrhenius Kinetics)
In a similar way, substituting (10) and making m = 0 in (8), we have

2 T 2
d—f+/1€”"7 N BrG2 (Cosh(22Hay) _ 2Cosh(Hay) +1j _0
dy Ha Cosh”Ha CoshHa
Cosh(2Hay)
iy T 20|\ vl T A 1277
— BrG Cosh*Ha
T(y)=D-1 1+or g - d
) '([('([e y]d’y Ha? -([ ;’; 3 2Cosh(Hay) ol i
CoshHa

where D = T (0) and is to be determined using the boundary conditions (9).
We let the nonlinear term be represented by

(24)

(25)
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>,
® l+(5i7’,,
D E(»=e 7 (26)
n=0
such that
Cosh(2Hay)
1) =D-af| [SE, oy - B[ | CosttHalulyy
A= Ha® {| 7| 2Cosh(Hay) 1
CoshHa
The few Adomian polynomials of (26) are given as follows:
()
EOZ e”‘”u(y) (28)
Lh(»)
el+6T0(y)T
1: l(yz (29)
(1+0T,(y))
Lh(»)
b L €O (=28 228 T, ()T ()} + 20+ ST, () T (7)) 0
’ 201+ 8T (»)*
In a similar way as in case 1, we have,
I,(y)=0 €1y
Cosh(2Hay)
il BrG® t| t| Cosh*Ha
T(y)=D-A|| | E,(»)d - d 32
= frow -GN G wle o
CoshHa
yiy
T,.(»)==4] ( [E, (y)dy}dy (33)
0\ 0
Hence,
21 BrG? 1 [ Sech[Hal(4 —4Cosh[Hay]
L) === Y , : (34)
2  2Ha Ha~ \ +Sech[ Ha]Sinh[Hay]")
(c) Case 3: when m = 0.5 (Bimolecular Kinetics)
In a similar way, substituting (10) and making m = 0.5 in (8), we have
2 T 2
d 72“4_/1 (7 oT)e " + BrG2 (Cosh(ZZHay) _ 2Cosh(Hay) +1j _0 (35)
dy Ha Cosh"Ha CoshHa

Also,
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T(y)=F —/IJXU‘«/(I + 5T)e”;dy]dy

BrG* +( +( Cosh(2Ha 2Cosh(Ha
_HZII( (2 y) ( y)+ljdyy
a” \y\ Cosh"Ha CoshHa

Where F' = T (0) and is to be determined using the boundary conditions (9).
We let the nonlinear term be represented by

(36)

o

27,

n=0

S H,0)= 1463 )0 (37)

such that
YY) o«
T(y)= F—AJ[ | ZHn(y)dy]dy
o\ o n=0
BrG* ¢ t( Cosh(2Ha 2Cosh(Ha
Ha” ¢\ 4\ Cosh"Ha CoshHa
The few Adomian polynomials of (37) are given as follows:
L)
H, =" J1+6T,(y) (39)
L)
4 Q8+ ST,0NE0) o)
1 201+ 8T, ()™
2162)
o ST (A58 125 QL) + ST, 0NRGY
81+ ST 41+ ST, (1) 2+ 5+ ST, (L ()
Similarly,
L(»)=0 (41)
Cosh(2Hay)
ol 7 BrG® t| 1| Cosh*Ha
T.(y)y=F—-A|| | H,(y)d - d 42
() {U o(¥) y}'y Ha ! { 2Cosh(Hay) (7| (42)
- 41
CoshHa
v
T, (y)=—4] an(y)ddey (43)
0\ 0

Therefore, we have
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T,(y) = _ﬁ - BrG [ ¥+ # (Sech[Ha] (4 —AcoshlHay ] Dj
a

2 2Hd +Sech| Ha)Sinh| Hay}
i BrG*(2+8)A(Ha' + 1
ﬂ 1 2 5 ( 4 4)
5T Q2+ - R 242+ Ha® —2Cosh[ Ha))Sech[ Ha] +
a
+; Sech[HaT' (-3Ha® + 3Sinh[ HaT'))
1-L+o
4 N BrG* - 1 ( Sech[Ha)(4—4Cosh[Ha]
2H'\  Hd’ \ +Sinh[ Ha)Tanh[ Ha])

Equations (23), (34) and (44) are the respective solutions for temperature
under Sensitized, Arrhenius and Bimolecular Kinetics.

3.2. Entropy Generation Analysis

Inherent irreversibility in a channel flow arises due to exchange of energy
and momentum within the fluid and the solid boundaries. The entropy production
is due to heat transfer and the combined effects of fluid friction and Joules
dissipation. Following [12], the general equation for the entropy generation per
unit volume in the presence of a magnetic field is given by:

—\2 —\2 2—2
s = iz[d—fj +ﬁ(d—ﬁ) LB (45)
Iy \dy) Ty\dy I

The first term in (45) is the irreversibility due to heat transfer, the second
term is the entropy generation due to viscous dissipation and the third term is the
local entropy generation due to the effect of the magnetic field.

We express the entropy generation number in dimensionless form using
the existing non — dimensional variables and parameter in (5) as:

m 2 2 2 2
N, = S"% = [d—Tj B (d—“j + Ha’u® |. (46)
kR°T; dy Q| \dy
arY . . o .
The first term, ra is assigned N; which is the irreversibility due to heat
y

2

Bri|(d :

transfer and the second term, Erhd—uj + Hazuzlreferred to as NV, is the entropy
y

generation due to the combined effects of viscous dissipation and magnetic field

where Q= RT,/E is the wall temperature parameter.

We defined ¢ = % 47)

1
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as the irreversibility distribution ratio. Relation (47) shows that heat transfer
dominates when 0 < ¢ <1and fluid friction dominates when ¢ > 1. This is used to

determine the contribution of heat transfer in many engineering designs.
As an alternative to irreversibility parameter, the Bejan number (Be) is
defined as

Be=—=L¢ where 0< Be<l. (48)

4. Discussion of results

In this section, we compare the temperature profiles and entropy
generation rates for various chemical kinetics and the effects of all — important
flow properties were discussed.

Table 1 shows that the heat transfer dominates at both the upper and lower
regions of the plate surfaces as 0 <@ <1 and that the fluid friction dominates at
the core region of the flow where ¢ > 1. Also, the Bejan numbers lie between 0

and 1 for various chemical kinetics.

Table 1: Computation of the Entropy Analysis for Various Chemical Kinetics.

Ha=1,G=14=01,6=01Br=0.1,BrQ'=0.1

N = dT ’ Br [d”j q):£ BezL
1= d_y M=\ N, 1+®
+Ha’
Y Nis Ny Nip (0N (O (O Bes Bea Bep
-1 0.1200 | 0.1214 | 0.1218 0.0580026 | 0.4835 | 0.4777 | 0.4762 | 0.6741 | 0.6767 | 0.6774
-0.75 | 0.0456 | 0.0464 | 0.0466 0.0309902 0.6802 | 0.6685 | 0.6655 | 0.5951 | 0.5993 | 0.6004
-0.5 0.0160 | 0.0164 | 0.0165 0.0186529 1.1631 | 1.1382 | 1.1320 | 0.4623 | 0.4677 | 0.4690
-0.25 | 0.0036 | 0.0037 | 0.0037 0.0136751 3.8263 | 3.7352 | 3.7126 | 0.2072 | 0.2112 | 0.2122
0 0 0 0 0.0123866 ) o0 ) 0 0 0
0.25 | 0.0036 | 0.0037 | 0.0037 0.0136751 3.8263 | 3.7352 | 3.7126 | 0.2072 | 0.2112 | 0.2122
0.5 0.0160 | 0.0164 | 0.0165 0.0186529 1.1631 | 1.1382 | 1.1320 | 0.4623 | 0.4677 | 0.4690
0.75 | 0.0456 | 0.0464 | 0.0466 0.0309902 0.6802 | 0.6685 | 0.6655 | 0.5951 | 0.5993 | 0.6004
1 0.1200 | 0.1214 | 0.1218 0.0580026 | 0.4835 | 0.4777 | 0.4762 | 0.6741 | 0.6767 | 0.6774

In Fig. 1, the maximum temperature increases as the numerical exponents
(m) increases from — 2 to 0.5. It is generally noticed that the fluid temperature is
zero at both the upper and lower stationary surfaces of the channel while the
maximum temperature occurred at the central line of the channel.
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The result in Fig. 2 showed that the fluid temperature increases as the magnetic
intensity (Ha) decreases; this is due to the presence of magnetic forces which have
retarding effects on the fluid flow. The reverse is the case in Figs. 3 and 4 where
an increase in the values of Brinkman number (Br) and Frank — Kamenettski
parameter (A) give a rise in the temperature profiles which is due to the initial
concentration of the reactant.

Ha 1,6 LI, Br LI, C L, oL
T

: y
0.5 10 -
Fig. 1: Comparison of Temperature Profiles for Various Kinetics

G LI, Br L1, oloa, ol

10 05 05 107

Fig. 2: Effects of Hartmann Number for Various Kinetics
Ha L 1,6 L1, olloa, cLoal

05 10”7
Fig. 3: Effects of Brinkman number for various kinetics.

The effect of entropy generation rate is shown in Fig. 5. On a general note,
the entropy generation rate is at minimum around the core region of the channel
and rises to its maximum values at the plate surfaces. This is clearly observed in
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Fig. 5 where an increase in the numerical exponents (m) gives an increase in the
entropy generation rate.

Fig. 6 displays the Bejan number versus the channel width. It is clearly
observed that the heat transfer irreversibility dominates at both the upper and
lower plate surfaces while the fluid friction irreversibility dominates around the

central line of the channel.
Ha 1,6 L1, CL01,Br L
Ts

P4 FXISRAEN

10 05 05 10”7
Fig. 4: Effects of Frank — Kamenettski Parameter for Various Kinetics.

B
a1, ¢ Uy ee U ol o0, 2 Ol

‘ .
05 10
Fig. 5: Entropy Generation Rates for Various Kinetics
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Fig. 6: Bejan number for various kinetics
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5. Conclusion

A review of the diverse roles of entropy and the second law analysis in
computational thermo fluids has been investigated for Sensitized, Arrhenius and
Bimolecular kinetics. The result shows that the temperature increases as the
numerical exponentsm € {—2,0,0.5} increases respectively. Also, the entropy

generation rate is at minimum around the core region of the channel and rises to
its maximum values at the plate surfaces and that an increase in the numerical
exponents (m) gives an increase in the entropy generation rate.

Our results will also be of interest to lubrication companies in improving
the efficiency and effectiveness of hydromagnetic lubricants used in engineering
systems as mentioned in [1] using appropriate chemical kinetics.
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