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CT IMAGE PROCESSING IN HIP ARTHROPLASTY 

Anca MORAR1, Florica MOLDOVEANU2, Alin MOLDOVEANU3, Victor 
ASAVEI4, Alexandru EGNER5 

The use of dedicated software for medical image processing and analysis has 
become a common practice. One of the domains where medical image processing 
can be of real help to doctors is hip arthroplasty. Using X-rays and CT images, 
doctors have to choose the most appropriate implant to insert in the femur at the 
level of the hip. The prosthesis replaces some dysfunctional parts of the bones. 
Computers can be very helpful in the analysis of the medical images, before and 
after hip surgeries. They can also be used in the process of prototyping the  implants 
based on CT images, highly increasing the quality of the medical procedure, 
because in this case the implant is personalized. The problem with the automatic 
processing of CT images is their poor quality regarding the low contrast between 
bones and other tissues and the inhomogeneity within bones. This paper proposes a 
new method for the segmentation of bones in CT images and the reconstruction of 
the femoral bone. These processing steps represent parts of a software system whose 
aim is to produce 3D models of personalized prostheses. The proposed method can 
highly reduce the time spent for the preparation of the surgeries in hip arthroplasty. 
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1. Introduction 

Nowadays computers have proven to be useful tools in many domains and 
medicine does not make an exception. Medical image processing can be used for 
diagnosis and assistance in treatment prescribing, for the visualization of possible 
results after surgeries (for example in plastic surgeries), for assistance during 
surgeries, but also for following the patient’s evolution after surgeries. In this 
context we propose a new method for the processing of CT images in order to 
help doctors in the hip arthroplasty field. One of the biggest problems with the 
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majority of medical images is their poor quality, due to the low contrast between 
image components representing different human tissues (for example, muscles 
and bones) and the noise introduced by the image acquisition devices. There are 
further imperfections, like those caused by the position shifting of a patient during 
the scan, but these will not be taken into account because they rarely occur.  

The human eye can easily distinguish features in medical images even in 
case of very poor quality (blurred and noisy images). For example, a radiologist 
can differentiate very well between bones and other tissues in a CT image. But 
how long does it take a human specialist to segment the bones from a whole CT 
dataset (for example a dataset with 256 slices)? Computers can help with the 
speedup of the process. Medical software can interpret images much faster than a 
human being. They can also provide a way of analyzing the whole scanned body 
(a 3D image), not only a section through the body (a 2D image). A CT dataset is a 
stack of 2D images, but with the help of specialized software the 3D model of the 
scanned body parts can be obtained. The 3D model can be further processed in a 
way that would be difficult or even impossible without the use of a computer. For 
example, after obtaining the 3D model of a femur, the axis of the femoral body 
can be determined, or the volume occupied by the femoral head can be computed.  

The ultimate goal of the research described in this paper is to develop a 
software system capable to automatically generate the 3D model of a personalized 
prosthesis, starting from a stack of CT femoral images. The second chapter of this 
paper provides a general presentation of hip arthroplasty and the use of CT 
images. The third chapter discusses the past work that was conducted by our team 
in this field and presents several other image processing techniques and software 
applications that can be used in arthroplasty. The forth chapter proposes a new 
algorithm for 3D segmentation, which extracts the volumes occupied by bones (in 
this particular case, femoral bones) in CT image. The fifth chapter shows some 
results regarding the computing times and the obtained 3D models. The sixth 
chapter presents the conclusions and the future possible research directions in 
order to automatically or semi-automatically generate the 3D model of a 
personalized artificial implant that can be produced by a prototyping device. 

2. Medical background 

This chapter provides some general concepts of hip arthroplasty and 
shortly describes the use of medical images in this particular field. 

 
2.1. Arthroplasty – general presentation 
 
Hip arthroplasty [1] is a surgical procedure in which the arthritic or 

dysfunctional joint at hip level is replaced with prosthesis or by remodeling or 
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realigning the joint. Fig. 1 presents a femur and a pelvic bone, before and after 
inserting an artificial implant. 

 

 
 

Fig. 1. Hip arthroplasty: before (left) and after (right) inserting a prosthesis 
 
The parts of the femoral bone that are of interest in hip arthroplasty are the 

head, the neck and the body (as in Fig. 1). Based on the characteristics of these 
bone parts (dimension, position, etc), a prosthesis is inserted in the interior of the 
femoral body. The neck and the head of the femur are replaced by the neck and 
the head of the prosthesis. 

 
2.2. Medical images in hip arthroplasty 
 
Doctors make decisions regarding the insertion of prostheses based on 

medical images. X-rays (radiographic images) are used in the pre-operatory stage 
in order to decide whether a patient needs surgery, based on some measurements 
at hip level [2,3]. But X-rays cannot provide a very good description of the 3D 
characteristics of the bones since they are only a projection of the scanned body. 
A CT dataset consists of a stack of 2D images that represent sections through the 
scanned body. Fig. 2 shows the connection between X-rays and CT images. 

 

 
 

Fig. 2. A vertical view of the human body at the level of the hip provided by a radiographic image 
(left) and a stack of CT images (right) that represent sections through the scanned body 
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3. Previous work in medical image processing and hip arthroplasty 

Among the research projects in medical image processing some of the 
most relevant are: 

• SCANIP [9], an image processing software that provides a broad range of 
image analysis and visualization tools for medical purposes. 

• 3D-DOCOTOR [10], a project that comes with an advanced 3D modeling 
software, with strong processing and measurement functions for medical 
images. 

• Hip-OpCT [11], a software that allows importing CT images in DICOM 
format. Once imported, the CT dataset is visualized through several 
modalities from which the doctors can plan the surgeries in hip 
arthroplasty. 
We have worked on a project whose aim was to assist doctors in hip 

arthroplasty. The first contribution in this field was a software for femoral and hip 
radiographic image processing. This software makes, automatically or semi-
automatically, some measurements which otherwise have to be done manually by 
doctors on radiographic images. [2] and [3] propose some algorithms based on 
Canny edge detector and Hough transform that automatically extract important 
parameters in hip replacement from X-ray images.  

[4] describes a semi-automatic method for the 3D simulation of fitting 
prostheses inside femoral bones. But the user interaction is time consuming. This 
paper proposes a fully automated pipeline for the final goal of obtaining 
personalized implants. 

The first problem is the segmentation of bones from other tissues. The 
poor quality of the CT images poses some difficulties to the existing segmentation 
algorithms. [5] presents a new segmentation algorithm based on active contours 
without edges. This algorithm takes into account all of the characteristics of CT 
images in order to differentiate between bones and other tissues, but also between 
different bones. 

The next subsection shortly describes the new segmentation algorithm as 
compared to other techniques. 

 
3.1. New segmentation algorithm based on active contours without edges 
 
The algorithm proposed in [5] has seven steps that are briefly described: 
Step 1. Gaussian filter and active contours without edges: this step is 

based on active contours without edges proposed by Chan and Vese [6]. It uses an 
evolving curve, the frontier between foreground and background, in a manner that 
minimizes the differences in intensity within the foreground and within the 
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background. Instead of segmenting the image into a binary image like in [6], this 
step only enhances the contrast between the foreground and the background. 

Step 2. Gaussian and nonlinear anisotropic diffusion: this step is 
applied to smooth the resulting image, but with the preservation of the edges. 

Step 3. Adaptive threshold: this step uses two thresholds (T1 and T2) that 
separate the pixels into three categories: background pixels (with the intensity 
lower than T1), foreground pixels (with the intensity greater than T2) and 
candidate pixels. The pixels in the third category are filtered with an adaptive 
threshold in order to be labeled as object or background pixels. 

Step 4. Adaptive threshold and Gaussian: the fourth step applies 
another adaptive threshold, but this time on the initial image. 

Step 5. Combining images: the output images from the third and forth 
steps are combined, obtaining an image with very few incorrect labeled pixels. 

Step 6. Island extraction: in this step the foreground pixels that are 
connected to each other are grouped into islands. The islands are further referred 
to as slice islands, because an island belongs to one slice. Based on the average 
intensity of the pixels contained in the current slice island, it is decided whether 
that island is removed from the foreground or not. 

Step 7. Hole filling step: the last step solves the problem of 
inhomogeneity within the foreground. It starts from the first background pixel in 
the image and does a breadth first search (BFS) in order to extract all the 
background pixels connected with that one. All the other background pixels that 
were not visited in the BFS search are re-labeled as belonging to the foreground. 

Fig. 3 presents the output of each step of the segmentation algorithm. 
 

 
 

Fig. 3. Output images in the steps of the segmentation algorithm: initial image (a), output of Step 1 
(b), output of Step 2 (c) , output of  Step 3 (d), output of  Step 4 (e), output of  Step 5 (f), output of  

Step 6 (g), output of Step 7 (h) 
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3.2. Comparison with other segmentation algorithms 
 
This new segmentation algorithm was compared in [5] with three other 

segmentation techniques, active contours without edges [6] and two 
implementations based on graph cuts [7]. The tests were conducted on ten noisy 
CT datasets. The error of incorrectly labeled pixels (“bones” or “other tissues”) 
and the percentage of slices where two objects were wrongly connected were 
taken into account. Our approach was better than the three segmentation 
algorithms (but comparable with active contours) regarding the labeling of pixels. 
But, unlike the other methods, our method discriminated quite well between 
different bones. 

4. Bone reconstruction algorithm 

This chapter proposes a new method of bone reconstruction from CT 
images which is composed of two stages: the segmentation of the bones in CT 
images and the reconstruction from the segmented images (in this particular case, 
the reconstruction of the femur). The input of the bone reconstruction stage is 
composed of the binary segmented CT images into foreground (bone) and 
background (other tissues) pixels. Even if any bone segmentation algorithm can 
be incorporated in this method, we use the technique presented in the previous 
chapter, slightly altered. Fig. 4 presents the steps of the bone reconstruction 
algorithm. 

 

 
 

Fig. 4. Bone reconstruction process 
 

4.1. Alteration to the segmentation phase 
 
The last step in the segmentation phase, i.e., the hole filling, has a 

disadvantage that was discussed in [5]. The method starts a BFS search from the 
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first encountered background pixel and visits all the background pixels that are 
connected to the first one. All the other background pixels that are not visited in 
the BFS are considered as being part of the object. This step re-labels all the 
background pixels that are surrounded by slice islands, either representing 
inhomogeneities within the foreground or real cavities inside the object. A 
possible solution for differentiating between inhomogeneities and cavities is given 
in [5]. If there is the certainty that some pixels belongs to real cavities, and not to 
inhomogeneities within the object, these pixels can be set as other seed points for 
the BFS that searches for all the connected background pixels. These seed points 
could be found based on the intensity. However, in CT images, the difference in 
intensity between inhomogeneities and cavities is sometimes insignificant. Fig. 
5(a) provides such an example. As can be observed, the bone marrow has a 
similar intensity with the tissue that is located between the femoral bone and the 
pelvis. Another solution would be a user interaction scenario where the doctors 
would choose the seed points belonging to the cavities. But the user interaction is 
time consuming. This chapter proposes an automatic solution for this problem that 
moves from the processing of each slice individually to a technique that takes into 
account the relationship between slices. The algorithm proposed in [5] is altered 
by the removal of the hole filling step. Thus, the input for the bone reconstruction 
phase is the segmented dataset, composed of the slice islands and the background. 
An example of a slice from an input dataset is given in Fig. 3(g) and Fig. 5(b).   

 

 
 

Fig. 5. Hole filling step: (a) initial image, (b) result of island extraction (Step 6) from segmentation 
algorithm, (c) result of hole filling (Step 7) from segmentation algorithm, (d) result of volume 
island extraction: there are two volume islands, one marked with green and one marked with 

yellow, (e) illustration of hole filling step in the bone reconstruction phase, (f) correct 
segmentation obtained by applying the hole filling step in the bone reconstruction phase 

 
 4.2. Volume islands extraction 
 

This step consists of connecting slice islands from adjacent slices, 
belonging to the same objects, forming volume islands. A volume island consists 
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of all the slice islands from the dataset that are considered to be neighboring 
islands. The concept of neighboring islands is further described. 
 Let SI1 and SI2 be two slice islands from adjacent images in the CT dataset 
and let size(SI) be the number of pixels belonging to a slice island SI. Two 
foreground pixels from adjacent slices m1(x1,y1,z1) and m2(x2,y2,z2) are neighbors 
if and only if: 
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Let connection(SI1,SI2) be the number of neighboring pixels pairs (m1,m2) where 
m1∈SI1 and m2∈SI2. A rule for deciding whether two slice islands are neighbors 
was experimentally determined. If 
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where 0 < β < 1 is a fixed parameter, then SI1 and SI2 are considered neighboring 
slice islands. In the tests we have chosen the value of β = 0.25. This value is big 
enough to ensure that islands from different objects do not wrongly connect, and 
small enough to ensure that islands belonging to the same object are considered 
neighbors. 
 The next step in the workflow is to delete the volume islands with the size 
(number of pixels) smaller than a given threshold T. T is chosen so that only the 
volume islands composed of noise pixels are deleted. In our tests the variable T 
was set to 10000. This does not erase bone tissue, since the bone volume islands 
are composed of tens of thousands of pixels. 
  
 4.3. Hole filling 

 
After identifying all the volume islands, the hole filling step can be 

applied on each slice individually, as illustrated in Fig. 5(e). The first stage 
consists of a BFS starting from a background pixel . It can be assumed, without 
loss of generality, that the seed point of the BFS is a background pixel that does 
not belong to the interior of a slice island. The pixels discovered with this BFS are 
marked with blue in Fig. 5(e). All the background pixels that were not visited in 
the BFS are further inspected. The connected background pixels that were not 
visited form background islands. A background island is considered to be 
connected with a slice island if it has at least one pixel that is a direct neighbor of 
a pixel from that slice island. If a background island is connected with only one 
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slice island then its pixels are re-labeled as foreground pixels. This condition 
ensures that pixels belonging to other tissues besides bone do not connect 
different volume islands representing bones. The pixels marked with red in Fig. 
5(e) form islands that are connected to a single volume island, either the green or 
the yellow one. They are re-labeled as being part of the foreground. The pixels 
marked with black are connected to both the green and the yellow island. They 
remain labeled as part of the background.  

The extraction of a background island and its inspection requires a BFS, 
starting from the first encountered pixel that belongs to the island.   

5. Results 

The bone reconstruction algorithm was tested on six noisy CT datasets 
representing body scans at the level of the hip. Each dataset contained slices 
where pixels belonging to different bones (the femur and the pelvis) were close to 
each other. Also, four datasets had a series of images where an object (part of the 
femur) was located inside another object (part of the pelvic bone), as in Fig. 5. 
Fig. 6 shows a slice from each CT dataset.  

 

 
 

Fig. 6. Slices from the tested datasets 
 
Due to the noise in the last two datasets Data5 and Data6, some user 

interaction was required. After the segmentation phase, a percentage of slices 
(approximately 8%) still contained pixels wrongly connecting different objects. 
These slices were manually modified, by removing the wrongly labeled 
foreground pixels. Table 1 shows the time required for the user interaction 
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process. Table 1 also presents the computing times for the volume islands 
extraction and the hole filling step. The processing in the bone reconstruction 
stage is quite fast. The hole filling takes longer than the volume islands extraction 
because it performs several breadth first searches for each slice. 
 

Table 1 
User interaction time for altering the output of the segmentation phase and computing times 

for the bone reconstruction process 
Dataset 

Size 
Data1 

258x5122 
Data2 

88x5122 
Data3 

10x5122 
Data4 

10x5122 
Data5 

86x5122 
Data6 

86x5122 
User interaction 

(sec) - - - - 300 360 

Volume islands 
extraction (sec) 1.61 0.57 0.08 0.08 0.58 0.57 

Hole filling (sec) 82.99 28.93 3.08 3.02 27.94 28.16 

 
For the last two datasets that were very noisy, the most time consuming 

operation was the user interaction of adjusting the output generated in the bone 
segmentation phase. However, it must be mentioned that for the first four datasets 
there was no user interaction needed. The chosen segmentation method was the 
best as compared to the original active contours without edges algorithm and two 
segmentation algorithms based on graph cuts, regarding the time consumed in the 
user interaction process. A detailed comparison between the proposed 
segmentation technique and the other mentioned algorithms is given in [5]. If 
there is previous knowledge regarding the number of bones scanned in a CT 
dataset and the method identifies the same number of bones, there is no user 
interaction required. On the contrary, if the number of bones automatically 
identified by the segmentation and reconstruction method is smaller than the 
actual number of bones, it means that the software segmentation wrongly 
connected different bones. In this case, the user has to correct the segmentation 
error. 

After obtaining masks for all the volume islands (each volume island 
represents a different bone), the isosurface describing the 3D model of the bones 
can be reconstructed using the marching cubes algorithm [8]. Fig. 7 presents the 
output of surface reconstruction from three of the datasets. After identifying 
different masks for the two bones, the user can decide which bone will be 
rendered. All three datasets contain parts of the femoral bone and the pelvic bone. 
In the left-side images, both masks are used, resulting in the rendering of both the 
femur and the pelvis. In the right-side images, only the mask of the femur is used. 
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Fig. 8 presents the output of surface reconstruction performed on one of 
the datasets. In the left image, both masks are used. In the right image, only the 
mask of the pelvic bone is used. 

 

 
Fig. 7. Surface reconstruction with marching cubes from CT datasets, after applying the 

bone reconstruction algorithm: in the left images both the femur and the pelvis are rendered; in the 
right images only the femur is rendered 

 
 

 
Fig. 8. Surface reconstruction with marching cubes from a CT dataset, after applying the 

bone reconstruction algorithm: in the left image both the femur and the pelvis are rendered; in the 
right image only the pelvic bone is rendered 
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6. Conclusions 

This paper describes a new method that can be used in the process of 
automatically or semi-automatically generating personalized implants in hip 
arthroplasty. The first stage of the method is the segmentation of the bones from 
CT datasets. For this task we chose the segmentation technique described in [5]. 
The segmentation method was slightly altered in order to provide better output for 
the next stage of our method, the bone reconstruction. The bone extraction process 
solved the problems of the hole filling step from the segmentation stage, by taking 
into account the relation between adjacent slices. The next step in the generation 
of personalized prostheses could be the extraction of the interior of the femur (the 
volume occupied by bone marrow). After that, the skeletonization of the volume 
occupied by the femoral bone marrow could be performed. The skeletonization 
would help in computing a series of parameters [2,3]. For example, after obtaining 
the skeleton of the femoral bone, the position of the femoral body axis, the 
femoral neck axis and the diameter of the femoral body can be determined. These 
measurements can be useful in the generation of customized artificial implants. 
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