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MODULE JOHNSON AMENABILITY OF CERTAIN BANACH

ALGEBRAS

Amir Sahami1, Seyedeh Fatemeh Shariati2, Abdolrasoul Pourabbas3

In this paper, we introduce the new notion module Johnson amenabil-ity for a
Banach algebra which is a Banach module over another Banach algebra with
compatible actions. We study the relations between this new notion and
other various notions of module amenability. We characterize the module John-

son amenability of `1(S) as an `1(E)-module, for an inverse semigroup S with 
subsemigroup E of idempotents. We investigate the module Johnson amenabil-

ity of `1(S), whenever S is a Brandt semigroup or bicyclic semigroup or N with 
maximum as its product. As application we show that for every non-empty set
Λ, MΛ(C) as an A-module is module Johnson amenable if and only if Λ is finite,

where A =

{
[ai,j ] ∈ MΛ(C) | ∀i 6= j, ai,j = 0

}
.
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1. Introduction and preliminaries

Amini introduced the concept of module amenability for a class of Banach
algebras [1]. He showed that for an inverse semigroup S, `1(S) is module amenable
if and only if S is amenable, where E is the set of idempotents [1, Theorem 3.1]. Some
new generalizations of module amenability like module pseudo amenability, module
pseudo-contractibility and module approximately amenability have been introduced,
see [5], [11]. Bodaghi et al. showed that for an inverse semigroup S, `1(S) as an
`1(E)-module is module pseudo-amenable if and only if S is amenable [5, Theorem
3.13(i)]. Also the same result holds for the module approximately amenability [11,
Theorem 3.9].

The notion of Johnson pseudo-contractibility for a Banach algebra was intro-
duced by the second and third authors, which is a weaker notion than amenability
and pseudo-contractibility but it is stronger than pseudo-amenability [14]. A Ba-
nach algebra A is called Johnson pseudo-contractible, if there exists a not necessarily
bounded net (mα) in (A⊗̂A)∗∗ such that a · mα = mα · a and π∗∗A (mα)a → a for
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every a ∈ A. They also showed that for a locally compact group G, M(G) is John-
son pseudo-contractible if and only if G is discrete and amenable [14, Proposition
3.3]. They characterized the Johnson pseudo-contractibility of `1(S), where S is
a uniformly locally finite inverse semigroup [13, Theorem 2.3]. They showed that
for a Brandt semigroup S = M0(G, I) over a non-empty set I, `1(S) is Johnson
pseudo-contractible if and only if G is amenable and I is finite [13, Theorem 2.4].
By considering these notions, we generalize the concept of Johnson pseudo con-
tractibility for a class of Banach algebras that are modules over another Banach
algebra with compatible actions.

In part two of this paper, we define the module Johnson amenability for a
Banach algebra A which is a Banach A-module. First we show that the mod-
ule Johnson amenability is a stronger notion than module pseudo-amenability and
module approximately amenability and it is a weaker notion than module pseudo-
contractibility. Next for an inverse semigroup S with subsemigroup E of idempo-
tents, we characterize the module Johnson amenability of `1(S) as an `1(E)-module
with amenability of S.

In part three, we provide some examples to distinguish our new notion with
the Johnson pseudo-contractibility. Finally, as an application, we show that for
every non-empty set Λ, the Banach algebra of Λ×Λ-matrices over C, MΛ(C) as an

A-module under this new notion is forced to have a finite index, where A =

{
[ai,j ] ∈

MΛ(C) | ∀i 6= j, ai,j = 0

}
.

2. Module Johnson amenability

Let A and A be Banach algebras such that A is a Banach A-bimodule with
the following compatible actions:

α · (ab) = (α · a)b, (ab) · α = a(b · α) (a, b ∈ A, α ∈ A).

Let X be a Banach A-bimodule and a Banach A-bimodule with the compatible
actions:

α · (a · x) = (α · a) · x, a · (α · x) = (a · α) · x, (a · x) · α = a · (x · α),

for every a ∈ A, α ∈ A and x ∈ X and similarly for the right or two side actions.
Then we say that X is a Banach A-A-module. If moreover α · x = x · α for every
a ∈ A, x ∈ X, then X is called a commutative Banach A-A-module. If X is a
commutative Banach A-A-module, then so is X∗, where the actions of A and A on
X∗ are defined as follows:

〈α · f, x〉 = 〈f, x · α〉, 〈a · f, x〉 = 〈f, x · a〉 (α ∈ A, a ∈ A, x ∈ X, f ∈ X∗),

and similarly for the right actions. Let A and A be as above and X be a Banach
A-A-module. A bounded map D : A→ X is called a module derivation if

D(a± b) = D(a)±D(b), D(ab) = D(a) · b+ a ·D(b) (a, b ∈ A),

and

D(α · a) = α ·D(a), D(a · α) = D(a) · α (a ∈ A, α ∈ A).
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When X is commutative, every x ∈ X defines a module derivation

Dx(a) = a · x− x · a (a ∈ A),

These are called inner module derivations. A is called module amenable as an A-
module, if for any commutative Banach A-A-module X, every module derivation
D : A→ X∗ is inner [1, Definition 2.1].

Let A be a Banach A-module and let A⊗̂AA be the projective module tensor

product of A and A, which is isomorphic to the quotient space
A⊗̂A
IA

, where IA is

the closed linear span of{
a · α⊗ b− a⊗ α · b | α ∈ A, a, b ∈ A

}
in A⊗̂A. Also consider the closed ideal JA of A generated by{

(a · α)b− a(α · b) | α ∈ A, a, b ∈ A

}
.

We denote IA and JA by I and J repectively, unless otherwise specified. So I is an A-
submodule and a A-submodule of A⊗̂A, J is an A-submodule and a A-submodule of

A, and both of the quotients A⊗̂AA and
A

J
are A-module and A-module. Consider

the product map ωA : A⊗̂A → A defined by a ⊗ b 7→ ab for every a, b ∈ A and let

ω̃A : A⊗̂AA →
A

J
be its induced product map defined by ω̃A(a ⊗ b + I) = ab + J.

It is clear that ω̃A and ω̃∗∗A :
(A⊗̂A)∗∗

I⊥⊥A
→ A∗∗

J⊥⊥
are both A-module morphisms and

A-module morphisms.
Now we introduce the new notion of this work:

Definition 2.1. Let A be a Banach A-module. Then A is called module Johnson
amenable, if there exists a not necessarily bounded net (m̃α) in (A⊗̂AA)∗∗ such that
for every a ∈ A

(i) a · m̃α = m̃α · a,
(ii) ω̃∗∗A (m̃α) · a+ J→ a+ J⊥⊥ in A∗∗

J⊥⊥
.

Lemma 2.1. Let A be a Banach A-module. If A is Johnson pseudo-contractible,
then A is module Johnson amenable.

Proof. Since A is Johnson pseudo-contractible, there exists a net (mα) in (A⊗̂A)∗∗

such that for every a ∈ A

mα · a = a ·mα and ω∗∗A (mα) · a→ a.

Let m̃α = mα + I⊥⊥ for every α. It is clear that a · m̃α = m̃α · a for every a ∈ A.
By Goldstein’s theorem one can see that ω̃∗∗A (m̃α) = ω∗∗A (mα) + J⊥⊥. So

ω̃∗∗A (m̃α) · (a+ J) = ω∗∗A (mα) · a+ J⊥⊥ → a+ J⊥⊥.

Thus the proof is complete. �

An element M̃ ∈ (A⊗̂AA)∗∗ is called a module virtual diagonal if ω̃∗∗A (M̃) ·a =

a+ J⊥⊥ and M̃ · a = a · M̃ for every a ∈ A [12].
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Lemma 2.2. Let A be a Banach A-module. If A has a module virtual diagonal,
then A is module Johnson amenable.

Proof. If A has a module virtual diagonal, then there exists an element M̃ in
(A⊗̂AA)∗∗ such that for every a ∈ A

ω̃∗∗A (M̃) · a = a+ J⊥⊥ and M̃ · a = a · M̃.

There exists an element M in (A⊗̂A)∗∗ such that M̃ = M + I⊥⊥. By Goldstein’s

theorem one can see that ω̃∗∗A (M̃) = ω̃∗∗A (M + I⊥⊥) = ω∗∗A (M) + J⊥⊥. By canonical
module action for every a ∈ A we have

ω̃∗∗A (M̃) · a+ J = (ω∗∗A (M) + J⊥⊥) · a+ J = ω∗∗A (M) · a+ J⊥⊥

= (ω∗∗A (M) + J⊥⊥) · a = ω̃∗∗A (M̃) · a = a+ J⊥⊥.

It follows that A is module Johnson amenable. �

Let A be a Banach A-module. A Banach algebra A is said to be module
pseudo-amenable (module pseudo-contractible), if there exists a net (ũj) in A⊗̂AA

such that ω̃A(ũj) · a+ J→ a+ J and ũj · a− a · ũj → 0 (ũj · a− a · ũj = 0) for every
a ∈ A [5, Definition 2.1], [5, Definition 2.2].

Proposition 2.1. Let A be a Banach A-module. If A is module Johnson amenable,
then A is module pseudo amenable.

Proof. Since A is module Johnson amenable, there exists a net (m̃α)α∈I in (A⊗̂AA)∗∗

such that a·m̃α = m̃α·a and ω̃∗∗A (m̃α)·a+J→ a+J⊥⊥ for every a ∈ A. By Goldstein’s
theorem for every α there exists a net (uαβ)β∈Ω in A⊗̂AA such that wk∗- lim

β
ûαβ = m̃α

in (A⊗̂AA)∗∗. So

wk∗- lim
α
wk∗- lim

β
a · ûαβ − ûαβ · a = 0 in (A⊗̂AA)∗∗, (1)

and since ω̃∗∗A is a wk∗-continuous map,

wk∗- lim
α
wk∗- lim

β
(ω̃∗∗A (ûαβ) · a+ J) = a+ J⊥⊥ in

A∗∗

J⊥⊥
. (2)

Let X = I × ΩI be a directed set with the product ordering defined by

(α, β) ≤X (α′, β′)⇔ α ≤I α′ and β ≤ΩI β′ (α, α′ ∈ I, β, β′ ∈ ΩI),

where ΩI is the set of all functions from I into Ω and β ≤ΩI β′ means that β(d) ≤Ω

β′(d) for every d ∈ I. Suppose that γ = (α, βα) and yγ = uαβ . Iterated limit theorem

[10, Page 69], (1) and (2) imply that for every a ∈ A

wk∗- lim
γ
a · ŷγ − ŷγ · a = 0 and wk∗- lim

γ
(ω̃∗∗A (ŷγ) · a+ J) = a+ J⊥⊥ = â+ J.

So

wk- lim
γ
a · yγ − yγ · a = 0 and wk- lim

γ
(ω̃A(yγ) · a+ J) = a+ J (a ∈ A).

By Mazur’s lemma one can see that for every a ∈ A

lim
γ
a · yγ − yγ · a = 0 and lim

γ
(ω̃A(yγ) · a+ J) = a+ J.

It follows that A is module pseudo-amenable. �
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Let A be a Banach algebra and an A-bimodule with compatible actions. Then
A is module approximately amenable (as an A-module) if for every commutative
Banach A-A-module X, every module derivation D : A → X∗ is approximately
inner [11, Definition2.1].

Corollary 2.1. Let A be a Banach A-module with bounded approximate identity. If
A is module Johnson amenable, then A is module approximately amenable.

Proof. If A is module Johnson amenable, then Proposition 2.1 and [5, Theorem 3.2]
imply that A is module approximately amenable. �

Proposition 2.2. Let A be a Banach A-module. If A is module pseudo-contractible,
then A is module Johnson amenable.

Proof. It is clear. �

Following [4, §2], let A be a Banach A-module with compatible action and let
ϕ ∈ ∆A∪{0}, where ∆A is a character space of A. Consider a linear map φ : A→ A
such that for every a ∈ A and α ∈ A

φ(ab) = φ(a)φ(b), φ(a · α) = φ(α · a) = ϕ(α)φ(a).

A bounded linear functional m : A∗ → C is called a module (φ, ϕ)-mean on A∗ if
m(f · a) = ϕ ◦ φ(a)m(f), m(f · α) = ϕ(α)m(f) and m(ϕ ◦ φ) = 1 for every f ∈ A∗,
a ∈ A and α ∈ A. We say that A is module (φ, ϕ)-amenable if there exists a module
(φ, ϕ)-mean on A∗.

Proposition 2.3. Let A be a Banach A-module such that a · α = ϕ(α)a for every
a ∈ A and α ∈ A, where ϕ, φ are as above. If A is module Johnson amenable and
α · m̃α = m̃α · α for every α ∈ A (m̃α as in Definition 2.1), then A is module
(φ, ϕ)-amenable.

Proof. Since A is module Johnson amenable, there exists a net (m̃α)α∈I in (A⊗̂AA)∗∗

such that a · m̃α = m̃α · a and ω̃∗∗A (m̃α) · a + J → a + J⊥⊥ for every a ∈ A. Define
T : A⊗̂A → A by T (a ⊗ b) = ϕ ◦ φ(b)a for every a, b ∈ A. It is easy to see that

T = 0 on I. So T drops to T̃ : A⊗̂AA→ A. Then for every a ∈ A and ũ ∈ A⊗̂AA

T̃ (a · ũ) = aT̃ (ũ), T̃ (ũ · a) = ϕ ◦ φ(a)T̃ (ũ), (3)

and also
T̃ (α · ũ) = α · T̃ (ũ), T̃ (ũ · α) = ϕ(α)T̃ (ũ) = T̃ (ũ) · α. (4)

Since φ|J = 0, φ drops to φ̃ : A
J
→ A. For every a, b ∈ A we have

〈T̃ (a⊗ b+ I), ϕ ◦ φ〉 = 〈T (a⊗ b), ϕ ◦ φ〉 = 〈ϕ ◦ φ(b)a, ϕ ◦ φ〉 = 〈ab, ϕ ◦ φ〉

= 〈ab+ J, ϕ ◦ φ̃〉 = 〈ω̃A(a⊗ b+ I), ϕ ◦ φ̃〉.
Then

〈T̃ (u), ϕ ◦ φ〉 = 〈ω̃A(u), ϕ ◦ φ̃〉 (u ∈ A⊗̂AA). (5)

Consider the map T̃ ∗∗ : (A⊗̂AA)∗∗ → A∗∗. Since T̃ ∗∗ is wk∗-continuous, Goldstein’s
theorem, (3), (4), and (5) imply that for every a ∈ A, α ∈ A and F ∈ (A⊗̂AA)∗∗

T̃ ∗∗(a · F ) = a · T̃ ∗∗(F ), T̃ ∗∗(F · a) = ϕ ◦ φ(a)T̃ ∗∗(F ), (6)

and
T̃ ∗∗(α · F ) = α · T̃ ∗∗(F ), T̃ ∗∗(F · α) = ϕ(α)T̃ ∗∗(F ) = T̃ ∗∗(F ) · α, (7)
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and also

〈ϕ ◦ φ, T̃ ∗∗(F )〉 = 〈ϕ ◦ φ̃, ω̃∗∗A (F )〉. (8)

By (6) for every a ∈ A and f ∈ A∗ we have

〈f ·a, T̃ ∗∗(m̃α)〉 = 〈f, a·T̃ ∗∗(m̃α)〉 = 〈f, T̃ ∗∗(a·m̃α)〉 = 〈f, T̃ ∗∗(m̃α·a)〉 = ϕ◦φ(a)〈f, T̃ ∗∗(m̃α)〉.
(7) imply that for every α ∈ A and f ∈ A∗

〈f ·α, T̃ ∗∗(m̃α)〉 = 〈f, α·T̃ ∗∗(m̃α)〉 = 〈f, T̃ ∗∗(α·m̃α)〉 = 〈f, T̃ ∗∗(m̃α·α)〉 = ϕ(α)〈f, T̃ ∗∗(m̃α)〉.
Since ω̃∗∗A (m̃α) · a+ J→ a+ J⊥⊥ for every a ∈ A,

lim
α
〈ϕ ◦ φ̃, ω̃∗∗A (m̃α)〉〈ϕ ◦ φ̃, a+ J⊥⊥〉 = lim

α
〈ϕ ◦ φ̃(a+ J)ϕ ◦ φ̃, ω̃∗∗A (m̃α)〉

= lim
α
〈a+ J · ϕ ◦ φ̃, ω̃∗∗A (m̃α)〉

= lim
α
〈ϕ ◦ φ̃, ω̃∗∗A (m̃α) · a+ J〉

= 〈ϕ ◦ φ̃, a+ J⊥⊥〉.

So 〈ϕ◦φ̃, ω̃∗∗A (m̃α)〉 → 1 in C. (8) leads to 〈ϕ◦φ, T̃ ∗∗(m̃α)〉 → 1. For sufficiently large

α, 〈ϕ ◦ φ, T̃ ∗∗(m̃α)〉 stays away from zero. Replacing T̃ ∗∗(m̃α) by
T̃ ∗∗(m̃α)

〈ϕ ◦ φ, T̃ ∗∗(m̃α)〉
,

we may assume that 〈f · a, T̃ ∗∗(m̃α)〉 = ϕ ◦ φ(a)〈f, T̃ ∗∗(m̃α)〉, 〈f · α, T̃ ∗∗(m̃α)〉 =

ϕ(α)〈f, T̃ ∗∗(m̃α)〉 and 〈ϕ ◦ φ, T̃ ∗∗(m̃α)〉 = 1. Hence the proof is complete. �

Remark 2.1. Let A be a Banach A-module. It is clear that A∗∗ is a Banach A-
module with dual action and also JA ⊆ JA∗∗. By Goldstein’s theorem and applying

[6, Theorem 2.6.15(ii)], one can see that JA∗∗ ⊆ J⊥⊥A . Consider
A∗∗

JA∗∗
and

A∗∗

J⊥⊥A
as

Banach A-module with natural actions. Since JAA
∗∗ ⊆ JA∗∗ (similarly to the left

action) and JAA
∗∗ ⊆ J⊥⊥A (similarly to the left action),

A∗∗

JA∗∗
and

A∗∗

J⊥⊥A
are Banach

A

JA
-modules with natural actions [6, Example 2.6.2 (iv)].

Remark 2.2. By the discussion before Definition 3.5 in [2], there is a continuous

linear map ΩA :
A∗∗⊗̂A∗∗

IA∗∗
−→ (A⊗̂A)∗∗

I⊥⊥A
such that for every a, b, x ∈ A and u ∈

A∗∗⊗̂A∗∗ the following equalities hold:

(i) ΩA(a⊗ b+ IA∗∗) = a⊗ b+ I⊥⊥A ;
(ii) ΩA(u+ IA∗∗) · x = ΩA(u · x+ IA∗∗);

(iii) x · ΩA(u+ IA∗∗) = ΩA(x · u+ IA∗∗);
(iv) ω̃∗∗A (ΩA(u+ IA∗∗)) = λ ◦ ω̃A∗∗(u+ IA∗∗),

where λ :
A∗∗

JA∗∗
→ A∗∗

J⊥⊥A
;F + JA∗∗ 7→ F + J⊥⊥A is a well defined continuous map. Note

that [2] contains alternative definitions of IA, JA, IA∗∗ and JA∗∗, but we can adopt
the map ΩA with our own definitions here.

Proposition 2.4. Let A be a Banach A-module. If A∗∗ is module Johnson amenable,
then A is module Johnson amenable.
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Proof. Since A∗∗ is module Johnson amenable, there exists a net (m̃α)α∈I in (A∗∗⊗̂AA
∗∗)∗∗

such that F · m̃α = m̃α · F and ω̃∗∗A∗∗(m̃α) · F + JA∗∗ → F + J⊥⊥A∗∗ for every F ∈ A∗∗.
Consider the canonical embedding map i : (A⊗̂AA)∗ ↪→ (A⊗̂AA)∗∗∗. Let ñα =
i∗ ◦ Ω∗∗A (m̃α), where ΩA is a continuous map as in Remark 2.2. Properties (ii) and
(iii) in Remark 2.2 imply that for every a ∈ A

a·ñα = a·(i∗◦Ω∗∗A (m̃α)) = i∗◦Ω∗∗A (a·m̃α) = i∗◦Ω∗∗A (m̃α·a) = (i∗◦Ω∗∗A (m̃α))·a = ñα·a.
By Goldstein’s theorem for every α, there exists (xαβ) in A∗∗⊗̂AA

∗∗ such that wk∗- lim
β
xαβ =

m̃α in (A∗∗⊗̂AA
∗∗)∗∗. By the property (iv) in Remark 2.2 we have

ω̃∗∗A (ñα) · (a+ JA) = ω̃∗∗A ◦ i∗ ◦ Ω∗∗A (m̃α) · (a+ JA)

= wk∗- lim
β

(ω̃∗∗A ◦ i∗ ◦ Ω∗∗A (xαβ) · (a+ JA))

= wk∗- lim
β

(ω̃∗∗A ◦ i∗(Ω̂A(xαβ)) · (a+ JA))

= wk∗- lim
β

(ω̃∗∗A ◦ ΩA(xαβ) · (a+ JA))

= wk∗- lim
β

(λ ◦ ω̃A∗∗(x
α
β) · (a+ JA)) (a ∈ A).

Remark (2.1) implies that λ is an
A

JA
-module morphism. So

̂ω̃∗∗A (ñα) · (a+ JA) = wk∗- lim
β

(λ∗∗ ◦ ω̃∗∗A∗∗(x̂αβ) · (a+ JA))

= λ∗∗ ◦ ω̃∗∗A∗∗(m̃α) · (a+ JA)

= λ∗∗(ω̃∗∗A∗∗(m̃α) · (a+ JA)).

(9)

There exists (Tα) in A∗∗∗∗ such that ω̃∗∗A∗∗(m̃α) = Tα + J⊥⊥A∗∗ . One can see that

ω̃∗∗A∗∗(m̃α) · (a+ JA) = Tα · a+ J⊥⊥A∗∗ → a+ J⊥⊥A∗∗ = ̂a+ JA∗∗ (a ∈ A).

By (9) we have

̂ω̃∗∗A (ñα) · (a+ JA)→ ̂a+ J⊥⊥A .

So ω̃∗∗A (ñα) · (a+ JA)→ a+ J⊥⊥A . Thus A is module Johnson amenable. �

Proposition 2.5. Let A and B be Banach A-modules. Suppose that Ψ : A → B

is a continuous epimorphism such that Ψ(α · x) = α · Ψ(x) and Ψ(x · α) = Ψ(x) · α
for every α ∈ A and x ∈ A. If A is module Johnson amenable, then B is module
Johnson amenable.

Proof. Since A is module Johnson amenable, there exists a net (m̃α)α∈I in (A⊗̂AA)∗∗

such that a · m̃α = m̃α · a and ω̃∗∗A (m̃α) · a+ JA → a+ J⊥⊥A for every a ∈ A. Define
Ψ ⊗Ψ : A⊗̂A→ B⊗̂B by Ψ ⊗Ψ(x⊗ y) = Ψ(x)⊗Ψ(y), for every x, y ∈ A. So Ψ ⊗Ψ
is a bounded linear map. It is easy to see that Ψ ⊗ Ψ(IA) ⊆ IB. Then we can define
Θ : A⊗̂AA→ B⊗̂AB by Θ(x⊗ y + IA) = Ψ ⊗ Ψ(x⊗ y) + IB for every x, y ∈ A. For
every ũ ∈ A⊗̂AA, a ∈ A and α ∈ A we have

Θ(a · ũ) = Ψ(a) ·Θ(ũ), Θ(ũ · a) = Θ(ũ) · Ψ(a). (10)

Also
Θ(α · ũ) = α ·Θ(ũ), Θ(ũ · α) = Θ(ũ) · α (11)
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Since Θ∗∗ is wk∗-continuous, Goldstein’s theorem and (10) imply that

Θ∗∗(a · F ) = Ψ(a) ·Θ∗∗(F ), Θ∗∗(F · a) = Θ∗∗(F ) · Ψ(a) (a ∈ A, F ∈ (A⊗̂AA)∗∗).

Let ñα = Θ∗∗(m̃α). So for every a ∈ A

Ψ(a) · ñα = Ψ(a) ·Θ∗∗(m̃α) = Θ∗∗(a ·m̃α) = Θ∗∗(m̃α ·a) = Θ∗∗(m̃α) ·Ψ(a) = ñα ·Ψ(a).

One can see that Ψ(JA) ⊆ JB. So we can define Ψ̃ : A
JA
→ B

JB
by Ψ̃(a+JA) = Ψ(a)+JB

for every a ∈ A. It is clear that Ψ̃ is an epimorphism map and also Ψ̃(x̃ ·α) = Ψ̃(x̃) ·α
and Ψ̃(α·x̃) = α·Ψ̃(x̃) for every α ∈ A and x̃ ∈ A

JA
. Since ω̃∗∗A (m̃α)·a+JA → a+JA

⊥⊥

and Ψ̃∗∗ is continuous, Ψ̃∗∗(ω̃∗∗A (m̃α) · a + JA) → Ψ̃∗∗(a + JA
⊥⊥). Since Ψ̃ is an

epimorphism map, by Goldstein’s theorem one can see that Ψ̃∗∗(ω̃∗∗A (m̃α) ·a+JA) =

Ψ̃∗∗(ω̃∗∗A (m̃α)) · Ψ̃(a+ JA). So for every a ∈ A

Ψ̃∗∗(ω̃∗∗A (m̃α)) · (Ψ(a) + JB)→ Ψ(a) + JB
⊥⊥, (12)

in B∗∗

JB
⊥⊥ . We claim that ω̃B ◦Θ = Ψ̃ ◦ ω̃A. To see this for every a, b ∈ A

〈a⊗b+IA, ω̃B◦Θ〉 = 〈Ψ(a)⊗Ψ(b)+IB, ω̃B〉 = Ψ(ab)+JB = Ψ̃(ab+JA) = 〈a⊗b+IA, Ψ̃◦ω̃A〉.

(12) implies that

ω̃∗∗B ◦Θ∗∗(m̃α) · (Ψ(a) + JB)→ Ψ(a) + JB
⊥⊥ (a ∈ A).

Hence ω̃∗∗B (ñα) · b+ JB → b+ JB
⊥⊥ for every b ∈ B. �

Corollary 2.2. Let A be a Banach A-module and let L be a closed ideal of A. If A
is module Johnson amenable, then A/L is module Johnson amenable.

Proof. Since the quotient map q : A → A/L satisfies conditions in Proposition 2.5,
A/L is module Johnson amenable. �

Let A be a Banach A-module and let B be a Banach B-module. One can see
that the Banach algebra A⊗̂B is a Banach A⊗̂B-module with following actions:

(α⊗ β)(a⊗ b) = α · a⊗ β · b (a, b ∈ A, α ∈ A, β ∈ B),

and similarly for the right action.

Proposition 2.6. Let A be a Banach A-module and let B be a Banach B-B-module.
Suppose that B has a non-zero idempotent. If A⊗̂B is module Johnson amenable
(as Banach A⊗̂B-module), then A is module Johnson amenable.

Proof. Since A⊗̂B is module Johnson amenable, there exists a net (m̃α) in
((A⊗̂B)⊗̂(A⊗̂B))∗∗

I⊥⊥
A⊗̂B

such that u · m̃α = m̃α ·u and ω̃∗∗
A⊗̂B(m̃α) ·u+JA⊗̂B → u+J⊥⊥

A⊗̂B for every u ∈ A⊗̂B.

Suppose that b0 is a non-zero idempotent of B. By similar argument as in [9, Propo-
sition 3.5], there exists a non-zero f ∈ B∗ such that f(b0) = 1 and f(bb0) = f(b0b)
for every b ∈ B. Define φ, θ : (A⊗̂B)⊗̂(A⊗̂B)→ A⊗̂A and ψ : A⊗̂B→ A by

φ(a1 ⊗ b1 ⊗ a2 ⊗ b2) = f(b1b2)a1 ⊗ a2,

θ(a1 ⊗ b1 ⊗ a2 ⊗ b2) = f(b0b1b2)a1 ⊗ a2,

ψ(a1 ⊗ b1) = f(b1)a1 (a1, a2 ∈ A, b1, b2 ∈ B).
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So for every d ∈ (A⊗̂B)⊗̂(A⊗̂B) and a ∈ A we have

a · θ(d) = φ((a⊗ b0) · d) and θ(d) · a = φ(d · (a⊗ b0)), (13)

and also

ψ(ωA⊗̂B(d)(a⊗ b0)) = (ωA ◦ θ(d))a. (14)

One can see that φ(IA⊗̂B) ⊆ IA, θ(IA⊗̂B) ⊆ IA and ψ(JA⊗̂B) ⊆ JA. So define

φ̃, θ̃ :
(A⊗̂B)⊗̂(A⊗̂B)

IA⊗̂B
→ A⊗̂A

IA
and ψ̃ :

A⊗̂B
JA⊗̂B

→ A

JA
by φ̃(d + IA⊗̂B) = φ(d) + IA,

θ̃(d+IA⊗̂B) = θ(d)+IA and ψ̃(u+JA⊗̂B) = ψ(u)+JA. For every d̃ ∈ (A⊗̂B)⊗̂(A⊗̂B)

IA⊗̂B
,

there exists an element d ∈ (A⊗̂B)⊗̂(A⊗̂B) such that d̃ = d + IA⊗̂B. (13) implies
that

a · θ̃(d̃) = a · θ̃(d+ IA⊗̂B) = a · (θ(d) + IA) = (a · θ(d)) + IA

= (φ(a⊗ b0) · d)) + IA = φ̃((a⊗ b0) · d+ IA⊗̂B)

= φ̃((a⊗ b0) · d̃) (a ∈ A),

and similarly for the right action, θ̃(d̃) · a = φ̃(d̃ · (a⊗ b0)). (14) implies that

ψ̃(ω̃A⊗̂B(d̃)(a⊗ b0) + JA⊗̂B)) = ψ̃((ωA⊗̂B(d) + JA⊗̂B)((a⊗ b0) + JA⊗̂B))

= ψ̃((ωA⊗̂B(d)(a⊗ b0) + JA⊗̂B)

= ψ(ωA⊗̂B(d)(a⊗ b0)) + JA

= (ωA ◦ θ(d))a+ JA

= ((ωA ◦ θ(d)) + JA)(a+ JA)

= ω̃A(θ(d) + IA)(a+ JA)

= ω̃A ◦ θ̃(d̃)(a+ JA).

Now let nα = θ̃∗∗(m̃α). By Goldstein’s theorem for every F̃ ∈ ((A⊗̂B)⊗̂(A⊗̂B))∗∗

I⊥⊥
A⊗̂B

we have

a · θ̃∗∗(F̃ ) = φ̃∗∗((a⊗ b0) · F̃ ), θ̃∗∗(F̃ ) · a = φ̃∗∗(F̃ · (a⊗ b0)) (a ∈ A) (15)

and also

ψ̃∗∗(ω̃∗∗
A⊗̂B(F̃ ) · (a⊗ b0) + JA⊗̂B) = ω̃∗∗A ◦ θ̃∗∗(F̃ ) · (a+ JA) (a ∈ A). (16)

(15) implies that for every a ∈ A

a · nα = a · θ̃∗∗(m̃α) = φ̃∗∗((a⊗ b0) · m̃α) = φ̃∗∗(m̃α · (a⊗ b0)) = θ̃∗∗(m̃α) · a = nα · a.

implies that

lim
α
ω̃∗∗A (nα) · a+ JA = lim

α
ψ̃∗∗(ω̃∗∗

A⊗̂B(m̃α) · (a⊗ b0) + JA⊗̂B) = ψ̃∗∗((a⊗ b0) + J⊥⊥
A⊗̂B)

= f(b0)a+ J⊥⊥A = a+ J⊥⊥A (a ∈ A).

Hence A is module Johnson amenable. �
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The semigroup S is called inverse semigroup, if for every s ∈ S there exists an
element s∗ ∈ S such that s = ss∗s and s∗ = s∗ss∗ [8]. Let S be an inverse semigroup
with the idempotent set E. Consider `1(S) as a Banach module over `1(E) with the
multiplication right action and the trivial left action, that is

δe · δs = δs, δs · δe = δse (s ∈ S, e ∈ E).

Theorem 2.1. With the above notation, `1(S) is module Johnson amenable if and
only if S is amenable.

Proof. if S is amenable, then `1(S) has a module virtual diagonal [12, theorem 2.9],
[1, Theorem 3.1]. Lemma 2.2 implies that `1(S) is module Johnson amenable.
Conversely if `1(S) is module Johnson amenable, then Proposition 2.1 implies that
`1(S) is module pseudo-amenable. Applying [5, Theorem 3.13 (i)], S is amenable.

�

3. Examples and applications

Example 3.1. Let S be the set of natural numbers N with the binary operation
(m,n) 7−→ max{m,n}, where m and n are in N. It is clear that S is an inverse
semigroup. Since S is an amenable group, Theorem 2.1 implies that `1(S) is module
Johnson amenable as an `1(E)-module, where E(S) = N. But it is not Johnson
pseudo-contractible [3, Example 2.5].

Example 3.2. Let S be the bicyclic semigroup. Then S is generated by p and q
subject to pq = e 6= qp for the unit element e, that is S = {pmqn : m,n ≥ 0}.
Following [7], S is an inverse amenable semigroup and (pmqn)∗ = pnqm. Theo-
rem 2.1 implies that `1(S) is module Johnson amenable as an `1(E)-module, where
E(S) = {pnqn : n ≥ 0}. But it is not Johnson pseudo-contractible [3, Example 2.2].

Example 3.3. Let G be an amenable group, I be an infinite set and let S = M0(G, I)
be a Brandt semigroup, that is the collection of all I × I matrices (g)i,j with g ∈ G
in the (i, j)-th position and zero elsewhere with the following multiplication

(g)i,j(h)k,l =

{
(gh)il if j = k,
0 if j 6= k,

where g, h ∈ G and i, j, k, l ∈ I. S is an inverse amenable semigroup [7]. Theo-
rem 2.1 implies that `1(S) is module Johnson amenable as an `1(E)-module, where
E(S) = {(e)ii : i ∈ I}∪{0}. But it is not Johnson pseudo-contractible [13, Theorem
2.4].

The Banach algebra of Λ×Λ-matrices over C, with finite `1-norm and matrix
multiplication is denoted by MΛ(C), where Λ is an arbitrary set. Suppose that

A =

{
[ai,j ] ∈ MΛ(C) | ∀i 6= j, ai,j = 0

}
as a closed subalgebra of MΛ(C). One can

see that A = MΛ(C) is Banach A-bimodule with respect to matrix multiplication.
Since a(α · b) = (a · α)b for every α ∈ A and a, b ∈ A, J = 0. So A

J
= A and

A∗∗

J⊥⊥
= A∗∗.

Theorem 3.1. With the above notation, let Λ be a non-empty set. Then MΛ(C) is
module Johnson amenable if and only if Λ is finite.
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Proof. Since A = MΛ(C) is module Johnson amenable, there exists a net (m̃α)α∈I
in (A⊗̂AA)∗∗ such that a · m̃α = m̃α · a and ω̃∗∗A (m̃α) · a→ a in A∗∗ for every a ∈ A.
Let a be a non-zero element of A. By Hahn-Banach theorem there exists a bounded
linear functional ψ in A∗ such that ψ(a) 6= 0. Since wk∗-lim

α
ω̃∗∗A (m̃α) · a = a, we

have

lim
α
〈a · ψ, ω̃∗∗A (m̃α)〉 = lim

α
〈ψ, ω̃∗∗A (m̃α) · a〉 = 〈ψ, a〉 6= 0.

So 〈a ·ψ, ω̃∗∗A (m̃α)〉 6= 0 for every α. By Goldstein’s theorem, there is a bounded net

(xβα) in A⊗̂AA such that wk∗- lim
β
xβα = m̃α in (A⊗̂AA)∗∗. It follows that

wk∗- lim
β
a · xβα − xβα · a = a · m̃α − m̃α · a = 0 (a ∈ A).

Since ω̃∗∗A is wk∗-continuous,

wk∗- lim
β
a · ω̃∗∗A (xβα)− ω̃∗∗A (xβα) · a = 0 and wk∗- lim

β
ω̃∗∗A (xβα) = ω̃∗∗A (m̃α).

Since (xβα) is a net in A⊗̂AA, wk- lim
β
a · ω̃A(xβα)− ω̃A(xβα) · a = 0. Let yβ = ω̃A(xβα).

So (yβ) is a bounded net in A such that for every a ∈ A

wk- lim
β
ayβ − yβa = 0 and wk∗- lim

β
ŷβ = ω̃∗∗A (m̃α).

By a similar argument as in [13, Lemma 2.1] we complete the proof. Suppose that

yβ = [yi,jβ ], where yi,jβ ∈ C for every i, j. Fixed i0 ∈ Λ, for every j ∈ Λ we have

εi0,jyβ − yβεi0,j =
∑
i∈Λ
i6=j

yj,iβ εi0,i + (yj,jβ − y
i0,i0
β )εi0,j −

∑
i∈Λ
i6=i0

yi,i0β εi,j ,

where εi,j is a matrix which belongs to MΛ(C) and whose (i, j)-th entry is 1 and
others are zero. Since the product of the weak topology on C coincides with the
weak topology on A [15, Theorem 4.3],

wk − lim
β
yj,jβ − y

i0,i0
β = 0 and wk − lim

β
yj,iβ = 0, (17)

whenever i 6= j in Λ. Since ‖yβ‖ ≤ ‖mα‖, (yi0,i0β ) is a bounded net in C. So it

has a convergent subnet (yi0,i0βk
) in C. We may assume that lim

βk
yi0,i0βk

= l. Since

(yj,jβ − y
i0,i0
β ) is a net in C, (17) implies that lim

β
yj,jβ − y

i0,i0
β = 0 with respect to | · |.

So lim
βk
yi0,i0βk

− yj,jβk = 0. It follows that lim
βk
yj,jβk = l for every j ∈ Λ. If l = 0, then

by (17) for every i, j ∈ Λ, lim
βk
yi,jβk = 0 in C. So wk-lim

βk
yi,jβk = 0, where i, j ∈ Λ.

Applying [15, Theorem 4.3], wk-lim
βk
yβk = 0 in A. It follows that lim

βk
〈yβk , a ·ψ〉 = 0.

On the other hand

lim
βk
〈yβk , a · ψ〉 = lim

βk
〈a · ψ, ŷβk〉 = lim

α
〈a · ψ, ω̃∗∗A (m̃α)〉 6= 0,
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which is a contradiction. So wk-lim
βk
yj,jβk = l 6= 0 for every j ∈ Λ. Using (17) we

have wk-lim
βk
yj,iβk = 0 whenever j 6= i in Λ. Applying [15, Theorem 4.3] again, wk-

lim
βk
yβk = y0, where y0 is a matrix with l in the diagonal position and 0 elsewhere.

Thus y0 ∈ Conv(yβk)
wk

= Conv(yβk)
‖·‖

. So y0 ∈ A. But

∞ =
∑
j∈Λ

|l| =
∑
j∈Λ

|yj,j0 | = ‖y0‖ <∞,

which is a contradiction. So Λ must be finite.
Conversely if Λ is finite, then MΛ(C) is Johnson pseudo-contractible [13, Lemma
2.1]. Lemma 2.1 implies that MΛ(C) is module Johnson amenable. �
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