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A 3 D SMITH CHART FOR ACTIVE AN PASSIVE 
MICROWAVE CIRCUITS AND VISUAL COMPLEX 

ANLAYSIS  

Andrei A. MULLER1 Alin MOLDOVEANU2, Victor ASAVEI3, Dan 
DASCALU4 

Lucrarea explică în premieră elementele de analiză complexă vizuală ale 
diagramei Smith 3D pentru circuite active şi pasive. Autorii îşi dezvoltă propriul 
concept extrem de acutal cu elemente de analiză complexă aplicate în plan şi în 3D 
(pe sfera lui Riemann). Proprietăţile geometrice ale diferitelor transformări din 
planul complex sunt exploatate şi aplicate în microunde. 

The paper explains for the first time the visual complex analyisis propeties of 
the very recently proposed 3D Smith for active and passive circuits. The authors 
develop their very actual concept with elements of complex analysis applied in the 
complex plane and in 3D (Riemann sphere).The geometrical properties of the 
different transfromations of the complex plane are exploited and applied in 
microwave design.  
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1. Introduction 

 In the era of Greek civilization, geometry was studied rigorously and put a 
firm theoretical basis for intellectual satisfaction, for intrinsic beauty of many 
geometrical results and the utility of the subject. Throughout the years the interest 
in geometry languised, it was thought old fashioned by the majority. One of the 
revival moments of geometry may be considered related with computer graphics 
and the first papers related to the fractals. The connection between nonscaling 
fractals, linked to one of the most difficult areas of classical mathematics [1] and 
visual complex analysis made a subject like “ mathematical analysis” to get a new 
perception.  

The Smith chart is one of the most widely used charts in electrical and 
electronic engineering [2]. Although invented in the late 30’s the diagram 
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survived among the time and its use has grown steadily over the years as software 
design tool and as a visualization instrument on the network analyzers. Its main 
geometrical properties are related with the beauty of the Möbius transformations 
and are also linked to topics from arts –Esher’s art [3] and arhitecure. In the recent 
years several tries were done in order to increase the the capability of the original 
Smith chart into 3d in order to contain a wider range of impedances as in [4,5].  
 These papers try to extend the previously 2d generalized approaches as [6] but 
lack in a pure mathematical formalism and fail to include all the loads.  

In our paper we focus our attention on the most recent proposed 3D Smith 
chart [7,8]. This 3D Smith chart is created using the mathematical concept of the 
Riemann sphere. The Riemann sphere is the key tool of visualizing inversive 
transformations in the extended complex plane. It is totally difficult to visualize 
the infinity far apart (as it may occur in active devices) on the generalized planar 
Smith chart since an outer edge of the complex plane is vague definition for that. 
Fortunately, Riemann interpreted the numbers in the extended complex plane as 
points on a sphere. Using Ptolemy’s theory on celestial spheres, Riemann applied 
a stereographic projection to perform a one-to-one correspondence between the 
extended complex plane and the unity radius sphere (i.e., the unit sphere). The 3D 
Smith chart is created using Riemann’s theory on the complex plane and applying 
it to the Möbius transformation represented by the Smith chart mapping. 
Considering a single point at infinity all the circles arcs that never met on the 
Smith chart will get together in the South pole. 
 

2. Möbius transformations, 2 D generalized Smith chart and the 
maximum modulus theorem 

 
The main governing equation for the Smith chart is (1) and represents the 

reflection coefficient of the travelling waves 
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In the case of a real characteristic impedance Z0 then all the normalized 

impedances (z) that represent passive circuits will have a positive real part (r>0). 
In this situation all the normalized passive loads will generate a reflection 
coefficient that has a magnitude lower than 1. An example is presented in Fig.1 
where the reflection coefficient for an arbitrarily shape in the RHP (right half 
plane) is computed. The magnitude of the reflection coefficient in this case is 
always bounded by one (the white circle in Fig 1.). 
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Fig. 1 Mapping of an impedance in the RHP into the reflection coefficient’s plane for the 

travelling wave formulation 
 
In (2) the general form of a Möbius transformation is given; a, b, c, d 

represent the coefficients of the Möbius transformation (ad-bc≠0). [M] stays for 
the matrix form corresponding to the Möbius transformation given by the 
reflection coefficient while M1 shows the normalized Möbius transformation  
matrix in the Smith chart mapping case. 
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In (3) one may see the general form of the reflection coefficient for complex 

characteristic impedances. 
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Fig. 2 Possible mapping of an impedance in the RHP into the reflection coefficient’s plane for a 

complex characteristic impedance 
 

In (3) the reflection coefficient is rewritten so that z1 stays for an 
impedance only in the RHP. However if one looks at (4) the reflection coefficient 
in the case of a complex characteristic impedance is just Möbius transformation of 
the RHP impedance plane with the coefficients: a=1,b=-1-j*xc, c=1,d=1+j*xc.  
If one considers xc=0.3 in (6) this generates a mapping as in Fig 2. We may notice 
in Fig 2 that an arbitrarily shape in the RHP may generate a reflection coefficient 
that exceeds the unity. If we visualize this in a 3D manner we may get Fig 3. The 
interesting thing in Fig 3 is that the maximum magnitude of the reflection 
coefficient is obtained on the x1 axes. This value is 1.09 for xc=0.3.  

However in order to give a general formula for the maximum magnitude 
of the reflection coefficient of a passive load one may treat (4) as a complex 
mapping generated by a Möbius transformation. Since z1 is in this case just a 
complex number wherever in the RHP and ρ1 is analytic in the RHP one may use 
the maximum modulus theorem in order to establish the boundary for ρ1. 

 

 
 

Fig. 3 Magnitude of the reflection coefficient for different values of r1 and x1and a value of xc=0.3 
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The maximum modulus theorem [9] states that if a function is analytic in a 
domain then its maximum is achieved on the frontier. Applying this theorem for 
z1 belonging in the RHP we find out that the maximum is always on the x1 axis of 
the z1 plane. The maximum value for the magnitude of the reflection coefficient is 
then obtained as:  
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The value stated in (5) is the maximum value that the reflection coefficient 

may reach in a case of a complex impedance. One may see that considering xc =0 
we get the well known 1= 1ߩ while in the case of xc=0.3 from Fig 3 we get the 
value 1.09. The results obtained for ρ1 in [10], [11], are a consequence of (5). The 
value is in perfect concordance with the results presented in [12] but the 
maximum modulus theorem applied to form (4) extend the point of view 
presented in [12] and prove that (5) is the global maximum for the magnitude of 
the reflection coefficient for passive loads when normalized to a complex 
impedance.  
In Fig 4 is presented the mapping of an impedance from the RHP to the reflection 
coefficient’s plane. The extended 2 D Smith chart is also drawn.  

In Figs 4-5 one may see the effect that an active device may generate. (the 
same for a complex normalization impedance). The reflection coefficient’s 
magnitude may exceed the unity and this leads to a reflection coefficient outside 
of the classical Smith chart (red-dashed). 

 

 
Fig. 4 Mapping of an arbitrary shape from the impedance plane into the reflection 

coefficients plane from the RHP using the extended Smith chart as a visual tool 
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Fig.5.Mapping of an arbitrary shape in the reflection coefficients plane from the RHP and LHP 
using the extended Smith chart as a visual tool. The presence in the LHP makes the reflection 

coefficient jump outside the Smith chart 
 

3. A 3D Smith chart and its latitude-reflection coefficient correspondence  
 

Since one needs different zoom scales in order to work with the 
phenomena presented in Fig 5, the letter [7] proposed the Riemann sphere as the 
new 3D Smith chart that may include any types of loads. However the concept is 
just mathematically described.  

We extend the ideas and present for the first time the connection between 
latitude and the reflection coefficient’s plane and the steeographical map of the 
world and the Smith reflection plane (Fig 6 and Fig 7) 

 
Fig. 6 A 3D Smith chart and the relationship between latitude and refelction coefficient 
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Fig. 7 Stereographical map of the world and the Smith chart 

 

Fig. 8 3D Smith chart [www.3dsmithchart.com] 
 
4. Conclusions  
The paper used elements of visual complex analysis like the maximum 

modulus theorem or geometry of the Möbius transformations in order to establish 
a boundary for the reflection coefficient’s magnitude in the case of microwave 
circuits with complex characteristic impedance. It presented a new vision on the 
recently proposed 3D Smith chart and proposed a latitude –reflection coefficient 
scale for the 3D Smith chart. The results can be a useful starting point for a 
microwave engineer dealing with active circuits and complex characteristic 
impedances. Nevertheless the paper showed the connection between Möbius 
transformations and microwaves. Plotting the Möbius transformations that occur 
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in microwave theory on the 3D Smith chart one may get a handy tool to solve any 
matching problems. 
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