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A 3D SMITH CHART FOR ACTIVE AN PASSIVE
MICROWAVE CIRCUITS AND VISUAL COMPLEX
ANLAYSIS

Andrei A. MULLER' Alin MOLDOVEANU?, Victor ASAVEL, Dan
DASCALU*

Lucrarea explica in premierd elementele de analiza complexd vizuald ale
diagramei Smith 3D pentru circuite active §i pasive. Autorii isi dezvolta propriul
concept extrem de acutal cu elemente de analiza complexa aplicate in plan si in 3D
(pe sfera lui Riemann). Proprietdtile geometrice ale diferitelor transformari din
planul complex sunt exploatate si aplicate in microunde.

The paper explains for the first time the visual complex analyisis propeties of
the very recently proposed 3D Smith for active and passive circuits. The authors
develop their very actual concept with elements of complex analysis applied in the
complex plane and in 3D (Riemann sphere).The geometrical properties of the
different transfromations of the complex plane are exploited and applied in
microwave design.

Keywords: Smith chart, complex analysis
1. Introduction

In the era of Greek civilization, geometry was studied rigorously and put a
firm theoretical basis for intellectual satisfaction, for intrinsic beauty of many
geometrical results and the utility of the subject. Throughout the years the interest
in geometry languised, it was thought old fashioned by the majority. One of the
revival moments of geometry may be considered related with computer graphics
and the first papers related to the fractals. The connection between nonscaling
fractals, linked to one of the most difficult areas of classical mathematics [1] and
visual complex analysis made a subject like “ mathematical analysis” to get a new
perception.

The Smith chart is one of the most widely used charts in electrical and
electronic engineering [2]. Although invented in the late 30’s the diagram
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survived among the time and its use has grown steadily over the years as software
design tool and as a visualization instrument on the network analyzers. Its main
geometrical properties are related with the beauty of the Mdbius transformations
and are also linked to topics from arts —Esher’s art [3] and arhitecure. In the recent
years several tries were done in order to increase the the capability of the original
Smith chart into 3d in order to contain a wider range of impedances as in [4,5].
These papers try to extend the previously 2d generalized approaches as [6] but
lack in a pure mathematical formalism and fail to include all the loads.

In our paper we focus our attention on the most recent proposed 3D Smith
chart [7,8]. This 3D Smith chart is created using the mathematical concept of the
Riemann sphere. The Riemann sphere is the key tool of visualizing inversive
transformations in the extended complex plane. It is totally difficult to visualize
the infinity far apart (as it may occur in active devices) on the generalized planar
Smith chart since an outer edge of the complex plane is vague definition for that.
Fortunately, Riemann interpreted the numbers in the extended complex plane as
points on a sphere. Using Ptolemy’s theory on celestial spheres, Riemann applied
a stereographic projection to perform a one-to-one correspondence between the
extended complex plane and the unity radius sphere (i.e., the unit sphere). The 3D
Smith chart is created using Riemann’s theory on the complex plane and applying
it to the Mobius transformation represented by the Smith chart mapping.
Considering a single point at infinity all the circles arcs that never met on the
Smith chart will get together in the South pole.

2. Mobius transformations, 2 D generalized Smith chart and the
maximum modulus theorem

The main governing equation for the Smith chart is (1) and represents the
reflection coefficient of the travelling waves

z—1 )
pP=_17 z=r+jx=2/Z,. (1)

In the case of a real characteristic impedance Z0 then all the normalized
impedances (z) that represent passive circuits will have a positive real part (r>0).
In this situation all the normalized passive loads will generate a reflection
coefficient that has a magnitude lower than 1. An example is presented in Fig.1
where the reflection coefficient for an arbitrarily shape in the RHP (right half
plane) is computed. The magnitude of the reflection coefficient in this case is
always bounded by one (the white circle in Fig 1.).
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Z plane reflection coefficient plane

Fig. 1 Mapping of an impedance in the RHP into the reflection coefficient’s plane for the
travelling wave formulation

In (2) the general form of a Mdobius transformation is given; a, b, ¢, d
represent the coefficients of the Mdbius transformation (ad-bc#0). [M] stays for
the matrix form corresponding to the Mdbius transformation given by the

reflection coefficient while M; shows the normalized Mobius transformation
matrix in the Smith chart mapping case.

Z_Zc . .
=57 3Ze =R +jXc;p1 = p1x I * P1y (2)
(o4
Z _ X
R.” " R, Z X
p1=ZC ij;leR—;xczR—C (3)
_+1+_C c c
Ry R,
zi—(1+j*x
p1= il Clas? ), ,Zy =T+ x>0 (4)

zZy+1+j*x,

In (3) one may see the general form of the reflection coefficient for complex
characteristic impedances.
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71 plane reflection coefficient plane

Fig. 2 Possible mapping of an impedance in the RHP into the reflection coefficient’s plane for a
complex characteristic impedance

In (3) the reflection coefficient is rewritten so that z1 stays for an

impedance only in the RHP. However if one looks at (4) the reflection coefficient
in the case of a complex characteristic impedance is just Mobius transformation of
the RHP impedance plane with the coefficients: a=1,b=-1-j*xc, c=1,d=1+j*xc.
If one considers xc=0.3 in (6) this generates a mapping as in Fig 2. We may notice
in Fig 2 that an arbitrarily shape in the RHP may generate a reflection coefficient
that exceeds the unity. If we visualize this in a 3D manner we may get Fig 3. The
interesting thing in Fig 3 is that the maximum magnitude of the reflection
coefficient is obtained on the x1 axes. This value is 1.09 for xc=0.3.

However in order to give a general formula for the maximum magnitude
of the reflection coefficient of a passive load one may treat (4) as a complex
mapping generated by a Mobius transformation. Since z; is in this case just a
complex number wherever in the RHP and p1 is analytic in the RHP one may use
the maximum modulus theorem in order to establish the boundary for p1.
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Fig. 3 Magnitude of the reflection coefficient for different values of r; and x,and a value of x.=0.3
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The maximum modulus theorem [9] states that if a function is analytic in a
domain then its maximum is achieved on the frontier. Applying this theorem for
z1 belonging in the RHP we find out that the maximum is always on the x; axis of
the z1 plane. The maximum value for the magnitude of the reflection coefficient is

then obtained as:
1+ x2+ x| %1+ x2

lp1l =
14+ x2 — x| 1+ x2

The value stated in (5) is the maximum value that the reflection coefficient
may reach in a case of a complex impedance. One may see that considering xc =0
we get the well known pl =1 while in the case of xc=0.3 from Fig 3 we get the
value 1.09. The results obtained for p1 in [10], [11], are a consequence of (5). The
value is in perfect concordance with the results presented in [12] but the
maximum modulus theorem applied to form (4) extend the point of view
presented in [12] and prove that (5) is the global maximum for the magnitude of
the reflection coefficient for passive loads when normalized to a complex
impedance.

In Fig 4 is presented the mapping of an impedance from the RHP to the reflection
coefficient’s plane. The extended 2 D Smith chart is also drawn.

In Figs 4-5 one may see the effect that an active device may generate. (the
same for a complex normalization impedance). The reflection coefficient’s
magnitude may exceed the unity and this leads to a reflection coefficient outside
of the classical Smith chart (red-dashed).

(5)

impedance plane reflection coefMicient

Fig. 4 Mapping of an arbitrary shape from the impedance plane into the reflection
coefficients plane from the RHP using the extended Smith chart as a visual tool
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impedance plane reflection coefficient

Fig.5.Mapping of an arbitrary shape in the reflection coefficients plane from the RHP and LHP
using the extended Smith chart as a visual tool. The presence in the LHP makes the reflection
coefficient jump outside the Smith chart

3. A 3D Smith chart and its latitude-reflection coefficient correspondence

Since one needs different zoom scales in order to work with the
phenomena presented in Fig 5, the letter [7] proposed the Riemann sphere as the
new 3D Smith chart that may include any types of loads. However the concept is
just mathematically described.

We extend the ideas and present for the first time the connection between
latitude and the reflection coefficient’s plane and the steecographical map of the
world and the Smith reflection plane (Fig 6 and Fig 7)
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Fig. 6 A 3D Smith chart and the relationship between latitude and refelction coefficient
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Fig. 7 Stereographical map of the world and the Smith chart

Fig. 8 3D Smith chart [www.3dsmithchart.com]

4. Conclusions

The paper used elements of visual complex analysis like the maximum
modulus theorem or geometry of the Mdbius transformations in order to establish
a boundary for the reflection coefficient’s magnitude in the case of microwave
circuits with complex characteristic impedance. It presented a new vision on the
recently proposed 3D Smith chart and proposed a latitude —reflection coefficient
scale for the 3D Smith chart. The results can be a useful starting point for a
microwave engineer dealing with active circuits and complex characteristic
impedances. Nevertheless the paper showed the connection between Mobius
transformations and microwaves. Plotting the Mobius transformations that occur
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in microwave theory on the 3D Smith chart one may get a handy tool to solve any
matching problems.
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