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PNGNET: A CAMOUFLAGE DETECTION NETWORK 

BASED ON PYRAMID POOLING MODULE 

Xincheng GUO1* 

In recent years, recent researchers like Fan et al. have developed methods 

based on deep learning such as PraNet and SINet, which contributed a lot to the 

field of camouflage object detection. However, there is a contradiction between the 

receptive field of feature extraction and the resolution of the feature map. To deal 

with the problem, we adopt the method of integrating the features of different 

receptive fields with the features of sub-regions. And this paper proposes a new deep 

neural network for camouflaged detection — PNGNet. By using the Pyramid 

Pooling Module, the semantic task of the image segmentation of the camouflage 

object is more accurate and the feature representation ability is enhanced. After 

times of experiments, the PNGNet outperforms most of the models from the 

perspective of three representative camouflage detection datasets with higher 

performance and robustness. The proposed network model takes into account both 

the receptive field of feature extraction and the resolution of the feature map and 

provides a new idea for camouflage detection. In future work, the results can also be 

applied in the medical field of segmenting pneumonia and polyps, image search, 

field rescue, and other fields.  

Keywords: Concealed Object Detection, Pyramid Pooling Module, Deep 

Learning 

1. Introduction 

In nature, animals camouflage themselves by imitating the color, pattern, 

and brightness of their environment so as to reduce the risk of being detected by 

predators. The traditional object detection methods are mainly salient object 

detection (SOD) and general object detection (GOD). In contrast, camouflaged 

object detection (COD) based on background matching is more difficult in object 

recognition and segmentation. There are two main reasons for this: first, the 

camouflage can almost completely blend with the background, so it is hard to be 

distinguished from its surroundings; it lacks the strong contrast required by the 

segmentation method. Secondly, the shape, color, and size of all kinds of 

camouflage are different, so the training is difficult. 

The early stage of camouflage object detection greatly relied on artificial 

feature extraction. However, when dealing with strong intra-class differences and 

the weak inter-class difference between camouflage objects and background 

regions, the representation ability of artificial feature extraction is quite limited. In 
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recent years, Fan et al. have developed PFANet, PraNet[1], SINet, and other 

methods based on depth learning to simulate the receptive field of the human 

visual system in the semantic task of image segmentation so as to enhance the 

ability of discriminative feature representations extraction[2]. However, as 

mentioned above, there is a contradiction between the receptive field of feature 

extraction and the resolution of the feature map. There are usually two methods to 

obtain a large receptive field. One is to adopt a large convolution kernel. 

However, this method will cost more computational resources. The second is 

using a large stride in the pooling, but this way will lose the resolution and greatly 

affect the experimental results. 

This paper proposed a new deep learning network, called PPM 

Camouflage Detection Network. The network consists of three main components: 

Pyramid Pooling Module (PPM), Neighbor Connection Decoder (NCD), and 

Group Reverse Attention (GRA). Therefore, it is called PNGNet. With respect to 

dealing with the contradiction between the receptive field of feature extraction 

and ensuring the resolution of the feature map, the method of fusing the features 

of different receptive fields and the features of sub-regions was adopted. The 

feature map was extracted from the camouflage image and divided into two 

branches; one branch was divided into several sub-regions and the channel size 

was adjusted by 1*1 convolution. Then, the channel size is restored to the original 

size by bilinear interpolation (CONV), and finally, the other branch is fused with 

several sub-regions to obtain the segmentation result of the image.  

In short, the paper makes contributions in two aspects. 

(1) A new deep learning network for camouflage object detection is raised. 

By using the PPM (Pyramid Pooling Module), the semantic task of the image 

segmentation of the camouflage object is more accurate. 

(2) After repeated experiments, the proposed PNGNet outperformed most 

models on three representative camouflage detection datasets and has higher 

performance and robustness. 

2. Related work 

According to related research, object detection can be divided into three 

categories: salient object detection (SOD), general object detection (GOD), and 

camouflage object detection (COD)[3]. 

2.1 Salient object detection (SOD) 

Salient object detection extracts salient regions in an image by simulating 

human visual characteristics. The main idea is to detect and encode the features in 

parallel during visual processing, and then integrate the detected features through 

centralized attention. The salient object can take the image containing the salient 

object as the negative sample to help the camouflage object detection[4]. 
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2.2 General object detection (GOD) 

GOD has a wider range than SOD (both salient objects and camouflage 

objects can be detected). It identifies objects in pictures through intelligent 

algorithms and big data training. The basic idea of GOD lays the foundation for 

camouflage object detection. However, since camouflage objects can almost be 

completely fused with the background, the boundary dividing camouflage objects 

and the environment is difficult to distinguish, and the strong contrast required by 

segmentation methods is hard to get, it becomes the difficulty of GOD[5]. 

2.3 Camouflage object detection (COD) 

Definition of camouflage object. Input an image to be tested, assign 

confidence [0,1]ip   to each pixel i in the image, and ip  represents the 

confidence that pixel i belongs to the camouflaged object. The higher the ip  

value, the greater the probability that the pixel belongs to the camouflaged object 

within a certain error range[6]. 

Application value. Besides academic value, COD is of great significance 

in searching rare species in the natural field, segmenting pneumonia and polyps in 

the medical field, monitoring locusts in the agricultural field, and searching for 

camouflage enemies in the military field. 

3. Method 

3.1 Overall structure 

SINet, a currently widely used model for camouflage detection, simulates 

the receptive field of the human visual system to develop the feature 

representations extraction ability of the network. As a rule, the deeper the 

network, the larger the receptive field. Nevertheless, there is a certain gap 

between the theoretical receptive field and the actual receptive field in the 

network. More elaborately, the actual receptive field is smaller than the theoretical 

receptive field, which makes the network unable to effectively integrate global 

feature information[7]. Based on this, PNGNet is proposed to solve the above-

mentioned problem. The extracted feature values are divided into two branches. 

One branch is divided into several sub-regions and will be integrated with the 

other branch so that the features of different receptive fields and the features of 

sub-regions are fused, and the feature representation ability is enhanced. 

Figure. 1 shows the overall framework of the PNG model for camouflage 

detection. Firstly, the feature map (channel=N) extracted from the input image is 

pooled to obtain a feature pyramid, which covers from high-resolution low-

semantic to low-resolution high-semantic. Specifically, in PNGNet we first input 

an image of an artifact of size H × W. Features of five levels are extracted from 

this image, and the resolution of features is 
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   / 2 / 2 , 1,2,3,4,5k kH W k  respectively. These five levels of features are 

divided into low-level features { kf , k = 1, 2} and high-level features { kf , k = 3, 

4, 5}.  Previous studies have shown that low-level features cost more to calculate. 

And it may cause the network to focus more on low-level features and less on 

high-level features. This means that aggregating low-level features may weaken 

the experiment effect. Therefore, the PPM module in PNGNet only aggregates 

high-level features.  

 
Fig. 1. Flow chart of the PNGNet framework. 

 

Then, the feature map is divided into two branches. One branch is 

continuously divided into several sub-regions and the channel size is adjusted by 

1*1 convolution. Next, the size is restored to the size before being pooled by 

bilinear interpolation (CONV), and finally, the other branch is fused with several 

sub-regions to obtain the semantic segmentation prediction result. After the 

prediction result is obtained, it is passed into a neighbor connection decoder 

(NCD) to generate a rough positioning map coarse map. In order to refine the 

structure and texture of the COARSE MAP, the sigmoid function and the reverse 

operation are used to obtain the reverse guidance of the output, so as to erase the 

predicted target region in the side output feature and achieve the purpose of 

extracting complementary regions and details. Finally, in the GRA module, 

candidate features are fused through group guidance operation, and then the 



PNGNet: a camouflage detection network based on Pyramid Pooling Module           119 

residual phase is used to generate purified features to obtain a single channel 

guidance map. Finally, only the optimized guidance map is output as a prediction 

map for camouflage detection[8]. The key components and loss functions in the 

PNG model of this article are described in detail below. 

PNGNet can be divided into three main parts: pyramid pooling module 

(PPM), neighbor connection decoder (NCD), and group reverse attention (GRA). 

PPM is responsible for fusing the features of different receptive fields. NCD is 

used to locate candidate areas with the assistance of PPM. The GRA module 

gradually mines more accurate hidden areas by erasing foreground objects. 

3.2 PPM vs. NCD 

At present, most semantic segmentation frameworks are based on FCN, 

but FCN is difficult to deal with the relationship and global information between 

scenes effectively. However, image recognition frameworks mostly rely on pre-

trained convolution neural network CNN to aggregate multi-level features. 

Compared with high-level features, low-level features have less impact on the 

performance of the deep aggregation method, but due to the high resolution of 

low-level features, integrating low-level features with high-level features will 

increase the computational complexity. Inspired by this, in the design of the PNG 

model, PPM (Pyramid Pooling Module) is used to aggregate the context of 

different regions to obtain the global context, and a new parallel partial decoder 

component NCD is proposed to achieve fast and accurate camouflage object 

detection and obtain more efficient learning ability. 

The process is: The feature map (channel =N) is extracted from the input 

image and pooled to obtain the feature pyramid. 1×1, 2× 2, 4 × 4, 6 ×6 feature 

maps with channel = 1/N are obtained respectively through 1×1 deep convolution 

descending channel. Bilinear interpolation was done on the Feature map to fill the 

unpooled size. To obtain the Feature map with the number of channels doubled, 

the channel splicing was done. Then, a 1×1 convolution kernel was used for deep 

convolution of the above Feature map to drop the channel.  The prediction result 

of semantic segmentation is consistent with the number of Feature channels in the 

input Feature map. After the prediction result is obtained, transmit it to the NCD 

module of the neighbor connection decoder. Due to the high resolution of low-

level features, integrating low-level features with high-level features will increase 

the computational complexity. Based on the practical application of Fan et al., this 

paper selectively fuses the features of the highest three layers (i.e.: 

kf  /2     /2      
k kW H C R , k 3,4,5= ) to achieve higher learning efficiency. In order to 

keep the semantic consistency within the layer and bridge the context content 

between, we use the neighbor connection decoder (NCD). The NCD module 

provides the location information and aggregates the high-level features in a 
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parallel-joining way[2]. Finally, it produces a rough prediction map, which serves 

as the global guidance information in the GRA module. 

3.3 GRA module 

As described in 3.2 of this paper, Coarse Map in this paper comes from the 

deepest convolution neural network layer and can only predict the relatively rough 

location of the camouflage without structural details (as shown in Fig.. 1). To 

solve this problem, we gradually detect the details of hidden areas by erasing the 

foreground objects in the global prediction map. In particular, we can adaptively 

learn the reverse attention mechanism in three parallel high-level features, and 

sequentially explore the complementary regions and details by erasing existing 

estimated camouflage regions from the high-level side output features[9]. Finally, 

with the help of this mechanism, several GRA modules are combined to refine the 

inaccurate and rough prediction regions into accurate and complete prediction 

maps. 

The process is as follows: multiplying the feature { kf , k=3, 4, 5} output 

by the high-level side by the reverse attention weight to obtain the output reverse 

attention feature kR . The candidate features { k

ip  /2 /2k kH W CR   , k=3, 4, 5} are then 

segmented into im =C / ig group in the feature dimension, where i=1, 2, 3, 

ig represent the group size of the processed features. The attention feature kR  is 

then periodically inserted into the segmented feature, ,

k

i jp 
/2     /2    k k

iH W g 
R , where i 

∈ {1, 2, 3}, j ∈ {1, . . . , im }, k ∈ {3, 4, 5}. Finally, the ,

k

i jp  and kR  are fused to 

generate purified features 1

k

ip + , and a single-channel prediction map is obtained. 

Then parametric learning of single-channel graph is carried out by weight v

GRAW . 

By combining multiple GRA modules, the optimal result is finally obtained. 

3.4 Loss function 

The loss function is defined as W W

IoU BCEL L L= + , where W

IoUL and W

BCEL
 

represents weighted IoU loss and binary cross entropy (BCE) loss based on global 

and local pixel level constraints, respectively[10]. 

Standard IOU losses are commonly used in image segmentation tasks, but 

in PNGNet we use weighted IOU losses instead of standard IOU losses, which 

can refine the camouflage object region more accurately by increasing the weight 

of difficult pixels. In the same way, the standard binary cross-entropy loss is not 

used. Instead, the more difficult pixels are emphasized. The validity of these loss 

function definitions has been demonstrated in the field of significant target 

detection. Here, the three outputs and the Coarse Map are under deep supervision, 
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and each prediction map is up sampled to the same size as the truth value figure 

sG .  

4. Details of experiment 

4.1 Learning & training strategy 

The loss function W W

IoU BCEL L L= + mentioned in Section 3.4 is used to 

calculate global and local (pixel-level) constraints. In the field of image 

segmentation, the standard IOU loss has been widely used. In order to highlight 

the importance of difficult pixels, the weighted cross-Union ratio loss is 

introduced. Similarly, in this paper, more attention is paid to the more difficult 

pixels than to the standard binary cross-entropy loss, rather than giving each pixel 

the same weight. In addition, depth supervision (i.e., C3, C4, and C5) is used for 

the three by-pass outputs and the global feature COARSE MAP. Each prediction 

map is upsampled to the same size as the truth value map G. Therefore, the 

complete loss function of the PNGNet model is defined as:  

totalL = Lseg ( sG ,
up

gS )+ edgeL + ( )
5

3

L ,
i

up

seg s g

i

G S
=

=

  (1) 

4.2 Dataset 

This paper uses the largest camouflage object detection dataset COD10K 

(a challenging, high-quality, densely labeled dataset) to train and test data. The 

CAMO and COD10K datasets, which are also widely used in the field of 

counterfeit detection, are also adopted for testing. The CAMO dataset includes 

250 pictures covering 8 categories. The CHAMELEON dataset has 76 Truth 

Value Maps (GTS) with manually labeled target levels, collected by Google’s 

search engine using "hidden animals" as a search keyword. The COD10K dataset 

consists of 6066 pictures divided into 10 parent groups: flying animals, aquatic 

animals, terrestrial animals, amphibians, other groups, skies, vegetation, indoor, 

marine, and sand. The 10 groups can be further divided into 78 subgroups: 69 

hidden groups and 9 non-hidden groups.   

Most of the hidden images are from Flickr and are limited to academic 

research purposes, while the rest are from other websites, namely: Visual Hunt, 

Pixabay, Unsplash, Free Images, and other sites for publishing archived images in 

the public domain without copyright or ownership issues. With COD10K labeled 

by Fan et al., the largest COD dataset with the richest tags was constructed so far. 

This article draws on the work of Fan et al. in the selection of COD datasets. In 

order to provide a large number of training data for the deep learning model, the 

COD10K dataset is randomly divided into a training dataset of 4040 images and a 

test dataset of 2026 images. The CAMO and CHAMELEON datasets were used 

as test datasets to verify the generalization ability of PNGNet. 
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4.3 Implementation Details 

Our parameter setting followed the work of Fan et.al. During the training 

stage, the batch size is set to 36, and the learning rate starts at 1e-4. Our PNGNet 

is implemented in PyTorch and trained with the Adam optimizer. The running 

time is measured on two GeForce RTX 2070. The input images are all adjusted to 

the size of 352×352, which is also consistent with the setting of Fan et al. 

4.4 Evaluation index 

With regard to the mean absolute error (MAE) proposed by Perazzi et al. 

in the field of SOD, this paper uses the mean absolute error M index (MAE(M)) to 

evaluate the pixel-level accuracy between the predicted image C and the true 

image G[11]. MAE is widely used for COD tasks, but it can not determine where 

errors occur. This paper refers to an enhancement-matching evaluation index (E-

measure, E ) based on the mechanism of human visual perception proposed by 

Fan et al. as the evaluation standard, which takes into account both the matching 

of pixel-level information and the statistics of image-level information. Since the 

shape, color, and size of all kinds of camouflage are different, it is difficult to test. 

This paper also adopts the S evaluation measure (S-measure, S ) and weighted F 

evaluation measure (F-measure, 
wF ) as evaluation indexes, which are specifically 

expressed as follows. 

Structural index ( S ): This index measures the results from the 

perspective of the human visual system. It is used to measure the structural 

similarity between the prediction map and the truth map: 

S =(1-α) * oS ( pS ,G) + α * rS ( pS ,G) (2) 

In this formula, α is a balance coefficient for controlling the object-level 

similarity oS  and the region-level similarity rS [12]. 

E  Mean: This is a recently proposed indicator that measures both the 

local and global similarity between two binary maps simultaneously. The formula 

is listed below: 

E  mean=
1

   w h
 

w h

x y

 (   pS ( x , y ), G ( x , y )) (3) 

In this formula, w and h represent the width and height of the truth-value 

map G, and (x, y) represents the coordinates of each pixel in G. The symbol ϕ is 

an enhanced alignment matrix. The prediction graph pS  is threshed with a 

threshold of 0 to 255 to obtain a set of binary graphs so that a set of E  scores can 

be obtained.  In this experiment, the mean of E  at all thresholds is reported. 
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Mean absolute error (MAE): This index measures the pixel-level error 

between pS and G, and is defined as the following formula: 

MAE =
1

   w h
( ) ( )x, y G x, y

w h

p

x y

S −  (4) 

F-measure(
wF ):  F-measure indicates the effectiveness of a test method. The 

higher the F-measure, the more reliable the test method. The formula is as 

follows: 

wF =
2

2
(1 )

 

Pr Re

Pr Re

w w

w w

ecision call

ecision call



+

 +


  (5) 

As stated by R. Margolin et al., this formula can better measure the overall 

results[13]. 
wF  

adds weighted precision, which can deal with the problem of 

equally important defects. This weighted F-measure is more effective than the 

traditional F . 

5. Results of the experiment 

5.1 Qualitative results 

Compared with SINet, PNGNet has a further improvement in visual 

performance under different lighting conditions, appearance changes, and blurred 

boundaries.  

 
Fig. 2 Performance comparison between PNGNet and other models. 

Although SINet can position hidden targets, the prediction results are still 

not accurate enough. In this paper, the PNGNet structure enhances the ability of 

feature extraction by fusing the features of different receptive fields and sub-
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regions in the image segmentation stage. For challenging cases (as shown in Fig. 

2), PNGNet can predict the correct hidden target and its details more accurately 

than SINet, showing the robustness of the network structure. 

5.2 Quantitative results 

To quantitatively compare the performance of the two models for 

camouflage detection, we present the quantitative results in Table 1. As can be 

seen from Table 1,  
Table 1  

Quantitative results on three datasets 

Models 

CAMO_TestingDataset CHAMELEON_TestingDataset COD10K_TestingDataset 

Sα↑ E 
 

wF  
      

M↓ Sα↑ E 
 

wF         M↓ Sα↑ E 
 

wF        M↓ 

PNGNet 

(OUR) 
0.807 0.864 0.725 0.077 0.825 0.882 0.745 0.066 0.813 0.884 0.685 0.041 

SINet 0.790 0.847 0.708 0.080 0.814 0.871 0.735 0.068 0.812 0.883 0.684 0.041 

SINet 

(FAN) 
0.869 0.891 0.740 0.044 0.751 0.771 0.606 0.100 0.771 0.806 0.551 0.051 

FPN 0.794 0.783 0.590 0.075 0.684 0.677 0.483 0.131 0.697 0.691 0.411 0.075 

PFANet 0.679 0.648 0.378 0.144 0.659 0.622 0.391 0.172 0.636 0.618 0.286 0.128 

HTC 0.517 0.489 0.204 0.129 0.476 0.442 0.174 0.172 0.548 0.520  0.221 0.088 

PraNet 0.860  0.907 0.763 0.044 0.769 0.824 0.663 0.094 0.789 0.861 0.629 0.045 

PSPNet 0.773 0.758 0.555 0.085 0.663 0.659 0.455 0.139 0.678 0.680  0.377 0.080  

UNet++ 0.695 0.762 0.501 0.094 0.599 0.653 0.392 0.149 0.623 0.672 0.350  0.086 

PiCANet 0.769 0.749 0.536 0.085 0.609 0.584 0.356 0.156 0.649 0.643 0.322 0.090 

PNGNet in this paper is better than SINet in terms of S , E  mean, F-

measure, and MAE indicators. The main reason for the significant performance 

improvement of segmentation results is that in PNGNet, we aggregate the 

contexts of different regions through PPM to obtain the global context, which 

provides the expression of robustness. We also introduce a semi-supervised 

learning strategy into PNGNet to further improve the performance of the Dice 

index. As a camouflage detection tool, the model shows good quantitative 

evaluation results on each data set. On the CHAMELEON dataset, as can be seen 

from Table 1, PNGNet exceeds the performance of the SINet model on all 

indicators. We also tested performance on the CAMO dataset, which contains a 

variety of hidden targets and is more challenging than the CHAMELEON dataset. 

PNGNet still outperforms the SINet model across the board, showing the 

robustness of the model. On COD10K, the largest camouflage object detection 

data set to date, we observe that PNGNet is still superior to SINet, which shows 

that PNGNet has a stronger ability to deal with feature aggregation than the SINet 

model and can learn richer and more diverse features from rough to fine, which 

makes an important contribution to accurately identifying the boundary between 

camouflage objects and environment. Overall, based on the various metrics 
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mentioned in Section 4.3 of this article, PNGNet outperforms SINet in 

camouflage recognition across the board. 

The best score is identified in bold. ↑ represents the higher the score (the 

better). E  represents the average of the E index. Note: The data in the third to 

last lines refer to Fan's test results [2], and the SINet test results are different from 

the results we actually ran. 

5.3 Generalization 

This model uses part of COD10K images as the training set. The CAMO, 

CHAMELEON datasets, and the rest of COD10K images were used as test 

datasets. As shown in Table 1, our model still performs better than SINet in these 

two datasets. Additional datasets were introduced to demonstrate the strong 

generalization ability of PNGNet. Although our model performed well on other 

datasets CAMO and CHAMELEON, we did not re-train. 

5.4 Ablation Studies  

PNGNet aggregates three high-level feature maps distributed at Stage3, 

Stage4, and Stage5. Low-level feature maps contribute little to the performance of 

the deep integration model and have a relatively large spatial resolution. If low-

level feature maps are aggregated together, the calculation consumption will 

increase. Therefore, we conducted experiments to explore the effectiveness of 

aggregation of three high-level feature maps.  
 

Table 2 
Comparison of feature aggregation strategies 

Models 

CAMO _Testing Dataset CHAMELEON _Testing Dataset COD10K_Testing Dataset 

Sα↑ E 
 

wF         M↓ Sα↑ E 
 

wF         M↓ Sα↑ E 
 

wF        M↓ 

Stage3 0.742 0.833 0.707 0.092 0.781 0.823 0.715 0.078 0.779 0.849 0.643 0.060 

Stage3+Stage4 0.788 0.848 0.720 0.081 0.817 0.877 0.738 0.069 0.808 0.877 0.667 0.044 

Stage3+Stage4+Stage5 0.807 0.864 0.725 0.077 0.825 0.882 0.745 0.066 0.813 0.884 0.685 0.041 

As shown in Table 2, 'Stage3' means that only f3 is associated with the 

PPM module. "Stage3+Stage4" means that only f3 and f4 feature maps are 

aggregated. 'Stage3+Stage4+Stage5' represents the aggregation of all high-level 

feature maps, which is the method adopted by PNGNet. Stage 3 and 

Stage3+Stage4 have significant differences in these four indicators (Sα , Eφ , M, 
wF ) compared with Stage3+Stage4 and Stage3+Stage4+Stage5. This suggests 

that higher-level feature maps truly contribute to better results, while little 

improvement of Stage3+Stage4+Stage5 illustrates that the current higher-level 

feature maps have gone up to the limit and is the best result for the experiment. 

6. Conclusion 

This paper proposes a new deep neural network PNGNet for concealed 

object detection tasks, which surpasses SINet proposed by Fan et al. on 
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CHAMELEON, CAMO, and COD10K datasets. In the stage of feature extraction, 

PNGNet deals with the contradiction between the receptive field of feature 

extraction and the resolution of the feature map. Specifically, the feature image 

was extracted from the camouflage image and divided into two branches. One 

branch was divided into several sub-regions and the channel size of the sub-region 

was adjusted. Then, the channel size was restored to the original size and the other 

branch was fused with it. Therefore, the features of different receptive fields and 

sub-regions are fused, and the feature representation ability is enhanced. This 

provides a new idea for concealed object detection. In the stage of feature 

extraction, the pyramid pooling module can effectively integrate global feature 

information, which makes the semantic task of image segmentation of 

camouflaging objects more accurate. In the stage of identification, PNGNet adopts 

the progressive strategy on the basis of SINet to effectively maintain the 

generalizability of the model. In general, PNGNet, with competitiveness, can 

achieve ideal results visually and can predict the correct hidden target and its 

details more accurately than SINet, showing the robustness of the PNGNet 

structure. In addition to the value in the field of camouflage detection, the results 

are of great significance in searching rare species in the natural field, segmenting 

pneumonia and polyps in the medical field, monitoring locusts in the agricultural 

field, and searching camouflage enemies in the military field. 
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