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ISOTROPIC RIEMANNIAN MAPS AND HELICES ALONG

RIEMANNIAN MAPS
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This work has two main aims. The first aim is to study isotropic Riemannian

maps as a generalization of isotropic immersions. The notion of isotropic Riemannian
map is presented, an example is given and a characterization is obtained. The second

aim is to study the helices along Riemannian map. By using the notion of isotropic
Riemannian map and helices on the manifold, a characterization is obtained for the

transportation of helices on the total manifold to the target manifold along a Riemannian

map.
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1. Introduction

Since curves are basic structures of geometry, it is an important technique to arrive at
geometric conclusions by looking at their behavior under certain maps. This approach was
first used by Nomizu and Yano for circles and isometric immersions in [15]. They showed that
when a circle on the submanifolds is carried along the immersion to the ambient manifold,
such submanifolds are umbilical and their mean curvature vector field is parallel. Ikawa in
[11] obtained similar characterization for helices. Later this result has been extended to the
semi-Riemannian case [2] and [12], see also: [1], [3], [4], [5], [6], [13], [21]. These papers show
that the behavior of a given curve under transformation will give us important information
when comparing the geometry of two manifolds.

The basic properties of Riemannian submersions were firstly given by Gray [8] and
O’Neill [18]. Riemannian submersions and isometric immersions are special maps between
Riemannian manifolds. So, Fischer [10] defined Riemannian maps which is a generalization
of Riemannian submersions and isometric immersions in 1992 as follows. Assume that T :
(M1, gM1

)→ (M2, gM2
) is a C∞ map from the Riemannian manifold M1 with dimM1 = m

to the Riemannian manifold M2 with dimM2 = n, where 0 < rankT < min{m,n}. Thus, we
represent the kernel space of T∗ by kerT∗ and H = (kerT∗)

⊥ is orthogonal complementary
space to kerT∗. So, we have

TM1 = kerT∗ ⊕ (kerT∗)
⊥,

where TM1 is the tangent bundle of M1. rangeT∗ denotes the range of T∗ and (rangeT∗)
⊥

denotes the orthogonal complementary space to rangeT∗ in TM2. The tangent bundle TM2

of M2 is given by

TM2 = (rangeT∗)⊕ (rangeT∗)
⊥.
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Now, a smooth map T : (Mm
1 , gM1

) → (Mn
2 , gM2

) is called Riemannian map if T∗ satisfies

g
M2

(T∗X1,T∗X2) = g
M1

(X1, X2), for X1, X2 vector fields tangent to H [10].
Comparing Riemannian maps with immersions and Riemannian submersions, there

are few results for the characterization of such transformations with the help of curves.
Indeed, there are no other studies in the literature, except for the results regarding the
geodesics at reference [9] for Riemannian submersions and the results about circles at ref-
erence [19] for Riemannian maps. Since curves are the basic notion of differential geometry
and their useful role in immersion theory is taken into account, obtaining new results on the
characterization of Riemannian submersions and Riemannian maps by means of curves is a
subject that needs to be investigated.

Also, isotropic immersions were defined by O’Neill [17] and later it has been shown
that this notion is an important tool in geometric characterization [14]. The concept of
isotropic submersions has been introduced by Şahin and Erdogan in [7]. As far as we know,
the notion of isotropic Riemannian maps has not yet been introduced in the literature.

We first define the concept of an isotropic Riemannian map and obtain a condition
for isotropicity of a Riemannian map in terms of second fundamental form. Then by us-
ing characterization of an ordinary helix in a Riemannian manifold, we generalize Ikawa’s
theorem.

In the second section, the basic notions to be used in the paper are presented. First,
the concept of helix on the manifold is given. Then, Gauss and Weingarten formulas are
introduced for Riemannian maps with connections defined along a map and are presented in
some detail, especially considering that the readers who study the submanifold theory may
not be familiar with these notions. In the third section, the concept of isotropic Riemannian
map is presented and characterization of such maps is obtained. We give the following
result in the last section; if there is a helix on the base manifold of a Riemannian map, we
investigate what this property tells for the Riemannian map when a helix is transformed by
the Riemannian map on the target manifold.

2. Preliminaries

A regular curve α = α(s) parametrized by arc lengh s is called an ordinary helix if
there exist unit vector fields V2 and V3 along α such that

∇V1
V1 = κV2, ∇V1

V2 = −κV1 + τV3, ∇V1
V1 = −τV2,

where V1 denotes the tangent vector field of α, κ is the curvature and τ is the torsion of α.
An ordinary helix satisfies the following equation

∇3
V1
V1 +K2∇V1V1 = 0, (1)

where K2 is a constant. If τ = 0, helix reduces to the circle [11].
Assume that (M1, gM1

) and (M2, gM2
) are Riemannian manifolds, T : (M1, gM1

) →
(M2, gM2

) a smooth map between them and γ a curve on M1. γ is called a horizontal curve

if γ̇(t) ∈ (kerT∗)
⊥ for any t ∈ I. If γ is a helix with γ̇(t) ∈ (kerT∗)

⊥ for any t ∈ I, then it
is called as horizontal helix.

Let T be a Riemannian map between the manifolds (M1, gM1
) and (M2, gM2

), p
2

=

T(p1) for each p1 ∈M1. Suppose that∇M2 and∇M1 represent the connections on (M2, gM2
)

and (M1, gM1
), respectively. The second fundamental form of T can be given as follows

(∇T∗)(X1, X2) =
M2

∇T
X1T∗(X2)− T∗

M1

(∇X1X2) (2)

for X1, X2 ∈ Γ(TM1), where
M2

∇T is the pullback connection of ∇M2 . For ∀X1, X2 ∈
Γ((kerT∗p1)⊥), (∇T∗) is symmetric and has no components in rangeT∗. So, we can write
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the following

g
M2

((∇T∗)(X1, X2),T∗(X3)) = 0, (3)

∀X1, X2, X3 ∈ Γ((kerT∗p1)⊥) [20].
Now we give some basic formulas for Riemannian maps defined from the total man-

ifold (M1, gM1
) to the target manifold (M2, gM2

). For X1, X2 ∈ Γ((kerT∗p1)⊥) and U1 ∈
Γ((rangeT∗)

⊥), we have
M2

∇T
X1
U1 = −SU1

T∗X1 +∇T⊥

X1
U1, (4)

where SU1T∗X1 is the tangential component of
M2

∇T
X1U1 and∇T⊥

X1
is the orthogonal projection

M2

∇T
X1 on Γ((rangeT∗)

⊥), then we have

g
M2

(SU1T∗X1,T∗X2) = g
M2

(U1, (∇T∗)(X1, X2)). (5)

Since (∇T∗) is symmetric, SU1
is a symmetric linear transformation of rangeT∗. On the

other hand, we have the following covariant derivatives(
∇̃X1

(∇T∗)
)

(X2, X3) = ∇T⊥

X1
(∇T∗)(X2, X3)

− (∇T∗)(
M1

∇X1
X2, X3)− (∇T∗)(X2,

M1

∇X1
X3)

(6)

and (
∇̃X1S

)
U1

T∗(X2) = T∗(
M1

∇X1
∗T∗(SU1T∗(X2)))

− S
(∇T⊥

X1
)U1

T∗(X2)− SU1

M2

P∇T
X1

T∗(X2),
(7)

where P denotes the projection morphism on rangeT∗ and ∗T∗ is the adjoint map of T∗ [20].
In the following lemma we give a relation obtained from (6) and (7).

Lemma 2.1. Let (M1, gM1
), (M2, gM2

) be Riemannian manifolds and T a Riemannian map

between them. For ∀X1, X2 ∈ Γ((kerT∗p1)⊥) and U1 ∈ Γ((rangeT∗)
⊥), we have

g
M2

(
(
∇̃X1(∇T∗)

)
(X2, X3), U1) = g

M2
(
(
∇̃X1S

)
U1

T∗(X2),T∗(X3)). (8)

Proof. Taking inner product (6) with U1, we have

g
M2

(
(
∇̃X1

(∇T∗)
)

(X2, X3), U1) = g
M2

(∇T⊥

X1
(∇T∗)(X2, X3), U1)

−g
M2

((∇T∗)(
M1

∇X1
X2, X3), U1)− g

M2
((∇T∗)(X2,

M1

∇X1
X3), U1).

If we take inner product (7) with T∗(X3), we obtain

g
M2

(
(
∇̃X1S

)
U1

T∗(X2),T∗(X3)) = g
M2

(T∗(
M1

∇X1
∗T∗(SU1

T∗(X2))),T∗(X3))

−g
M2

(S
(∇T⊥

X1
)U1

T∗(X2),T∗(X3))− g
M2

(SU1

M2

P∇T
X1

T∗(X2),T∗(X3)).

Using (5), we can write the following equalites

g
M2

((∇T∗)(
M1

∇X1
X2, X3), U1) = g

M2
(SU1

M2

P∇T
X1

T∗(X2), X3) (9)

and

g
M2

(SU1T∗(X2),T∗(X3)) = g
M2

((∇T∗)(X2, X3), U1).
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If we take derivative of the last equation and use (3), we get

g
M2

(T∗(
M1

∇X1
∗T∗(SU1T∗(X2))),T∗(X3)) + g

M2
((∇T∗)(X2,

M1

∇X1X3), U1)

= g
M2

(∇T⊥

X1
(∇T∗)(X2, X3), U1) + g

M2
(S

(∇T⊥
X1

)U1

T∗(X2),T∗(X3)).
(10)

If we take into consideration (9) and (10), we have (8). �

We consider that T is a Riemannian map from a connected Riemannian manifold
(M1, gM1

), dimM1 ≥ 2 to a Riemannian manifold (M2, gM2
). We know that T is an umbilical

Riemannian map at p1 ∈M1, if the following is satisfied

SU1
T∗p1((X1)p1) = g

M2
(H2, U1)T∗p1((X1)p1)

for X1 ∈ Γ(rangeT∗), U1 ∈ Γ((rangeT∗)
⊥) and H2 ∈ (rangeT∗)

⊥. If T is umbilical for
∀p1 ∈M1, we know that T is umbilical [20].

3. Isotropic Riemannian maps

Now, we present the notion of isotropic Riemannian map and get a characterization
for such maps.

Definition 3.1. (h-isotropic Riemannian map). A Riemannian map T : M1 → M2

is said to be h-isotropic at p ∈M1 if

λ(X1) = ‖(∇T∗)(X1, X1)‖ / ‖T∗X1‖2

doesn’t depend upon the selection of X1 ∈ Γ((kerT∗)
⊥. If the map is h-isotropic at all points,

the map is called as h-isotropic. Also, if λ = λ(p) is constant along T, T is called a constant
(λh−)isotropic map.

Remark 3.1. It is easy to see that the above notion is generalization of isotropic immer-
sion, however there is no inclusion relation between isotropic Riemannian submersions and
h−isotropic Riemannian maps.

Proposition 3.1. Let ϕ : Mm
1 → Mn

2 be a Riemannian submersion and ψ : Mn
2 → Mk

3 a
h−isotropic immersion. Then the Riemannian map T = ψ ◦ ϕ is a h−isotropic map.

Proof. We consider that T = ψ ◦ ϕ is a Riemannian map, where ϕ : Mm
1 → Mn

2 is a
Riemannian submersion and ψ : Mn

2 → Mk
3 is a h−isotropic immersion. Then we have for

X1, X2 ∈ (kerT∗)
⊥

(∇(ψ ◦ ϕ)∗)(X1, X2) = ψ∗((∇ϕ∗)(X1, X2)) + (∇ψ∗)(ϕ∗(X1), ϕ∗(X2)). (11)

On the other hand, we get

gM1
((ψ ◦ ϕ)∗(X1), (ψ ◦ ϕ)∗(X2)) = gM2

(ψ∗(X1), ψ∗(X2)) = gM3
(X1, X2). (12)

From ( 11 ), we obtain

‖(∇(ψ ◦ ϕ)∗)(X1, X1)‖2 = ‖ψ∗((∇ϕ∗)(X1, X1))‖2
+2gM3

(ψ∗((∇ϕ∗)(X1, X1)), (∇ψ∗)(ϕ∗(X1), ϕ∗(X1))
+‖(∇ψ∗)(ϕ∗(X1), ϕ∗(X1)‖2.

(13)

Because ψ is a h−isotropic immersion and due to Riemannian submersion ϕ, (∇ϕ∗)(X1, X1) =
0 for X1 ∈ (kerT∗)

⊥, (13) and (12) show that T is h−isotropic map. �

The following example can be given as an application of Proposition 3.1.
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Example 3.1. Let T be a Riemannian map given by T : R4 → R3

(x1, x2, x3, x4)→ (
(x1 − x2)2

2
− x2

3,
√

2(x1 − x2)x3, 0).

Since ϕ : R4 → R2, (x1, x2, x3, x4) → (x1−x2√
2
, x3) is a Riemannian submersion and ψ :

R2 → R3, (x1, x2) → (x2
1 − x2

2, 2x1x2, 0), where (x2
1 + x2

2)2 = 1 (see, [16]), a h−isotropic
immersion, the Riemannian map T = ψ ◦ ϕ is a h−isotropic Riemannian map.

The following lemma gives a criteria for a h-isotropic Riemannian map.

Lemma 3.1. Let T : M1 → M2 be a Riemannian map. T is h-isotropic at p ∈ M1 iff the
second fundamental form ∇T∗ satisfies

g
M2

((∇T∗)(X1, X1), (∇T∗)(X1, X2)) = 0 (14)

for an arbitrary orthogonal couple X1, X2 ∈ Γ((kerT∗p1)⊥).

Proof. Let f : Γ((kerT∗p1)⊥) → R be a quadrilinear function such that for ∀x1, x2, u1,
u2 ∈ Γ((kerT∗p1)⊥)

f(x1, x2, u1, u2) = g
M2

((∇T∗)(x1, x2), (∇T∗)(u1, u2))

−λ2g
M2

(T∗(x1),T∗(x2))g
N

(T∗(u1),T∗(u2)).

If a Riemannian map T is h−isotropic, we have for ∀u3 ∈ Γ((kerT∗p1)⊥)

B(u3) = f(u3, u3, u3, u3),
= g

N
((∇T∗)(u3, u3), (∇T∗)(u3, u3))− λ2g

M
(u3, u3)g

M
(u3, u31),

= λ2 ‖u3‖4 − λ2 ‖u3‖4 = 0.

If we use B(x1 + x2) +B(x1 − x2) = 0, we get

f(x1, x1, x2, x2) + 2f(x1, x2, x1, x2) = 0.

Changing x2 into x1 + x2, we have

f(x1, x2, x2, x2) = 0.

In the last equation, if we change x1 into u2 and x2 into u1 where u1⊥u2, we obtain

f(u2, u1, u1, u1) = g
M2

((∇T∗)(u2, u1), (∇T∗)(u1, u1))
− λ2g

M1
(u2, u1)g

M1
(u1, u1) = 0.

So, we have

g
M2

((∇T∗)(u2, u1), (∇T∗)(u1, u1)) = 0.

Conversely, we suppose that (11) is satisfied along the Riemannian map T. For an arbitrary
orthogonal pair x1, x2 ∈ Γ((kerT∗p1)⊥), we have

f(x1, x1, x1, x2) = g
M2

((∇T∗)(x1, x1), (∇T∗)(x1, x2))

−λ2g
M2

(T∗(x1),T∗(x1))g
M2

(T∗(x1),T∗(x2)) = 0.

If we write x1 + x2 instead of x2, we have

f(x1, x1, x1, x1) = 0.

So we have

g
M2

((∇T∗)(x1, x1), (∇T∗)(x1, x1)) = λ2g
M2

(T∗(x1),T∗(x1))g
N

(T∗(x1),T∗(x1)),

that is, T is h−isotropic. �
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Let (M1, gM1
) and (M2, gM2

) be Riemannian manifolds and suppose that T : (M1, gM1
)→

(M2, gM2
) is a Riemannian map between them. Let α be a horizontal curve with curvature

κ in M1 and γ = T ◦α a curve with curvature κ̃ in M2 along T. Using (2) and (3), we obtain
for ∀t ∈ R

κ̃2 = g
M2

(
M2

∇T
α̇T∗(α̇),

M2

∇T
α̇T∗(α̇)),

= g
M2

(T∗(
M1

∇ α̇α̇) + (∇T∗)(α̇, α̇),T∗(
M1

∇ α̇α̇) + (∇T∗)(α̇, α̇)),

= g
M1

(
M1

∇ α̇α̇,
M1

∇ α̇α̇) + ‖(∇T∗)(α̇, α̇)‖2 ,
= κ2 + ‖(∇T∗)(α̇, α̇)‖2 ,

where
M2

∇T denotes the pullback connection of
M2

∇ . So, we can write

κ̃ = κ̃(t) =

√
κ(t)2 + ‖(∇T∗)(α̇(t), α̇(t))‖2. (15)

We suppose that T : M1 → M2 is a Riemannian map and α = α(s) is a horizontal circle
parametrized by arc length s with

M1

∇ α̇α̇ = κY,
M1

∇ α̇Y = −κα̇, (16)

where Y = Ys of unit vector along α and κ is the curvature of α on M1. For each point
p ∈ M1, each orthonormal couple u1, u2 ∈ Γ(kerT∗)

⊥ at p and each constant κ > 0, there
is locally a unique horizontal circle α = α(s) on M1 with initial condition that α(0) = p,

α̇(0) = u1 and
M1

∇ α̇α̇(0) = κu2 (see, [14, 19]).

Theorem 3.1. Let T : M1 →M2 be a smooth map between Riemannian manifolds (M1, gM1
)

and (M2, gM2
). The following are equivalent:

(i) T is h−isotropic Riemannian map,
(ii) There is κ > 0 satisfying that for each horizontal circle α with curvature κ on M1,

γ = T ◦ α on M2 has constant curvature κ̃ along γ.

Proof. Assume that T : M1 → M2 is h−isotropic Riemannin map. From (16) and (15),
curvature of γ

κ̃(t) =
√
κ2 + λ2 (17)

is a constant. Conversely, we suppose that there is κ > 0 satisfying that for each circle α
with curvature κ on M1, the curve γ = T ◦α on M2 has constant first curvature κ̃ along this
curve. Let u1, u2 ∈ Γ(kerT∗)

⊥ be arbitrary orthonormal pair of vectors at p ∈M1. Suppose
that α = α(s), s ∈ I be a circle with κ on M1 with initial conditions α(0) = p, α̇(0) = u1

and
M1

∇ α̇α̇(0) = κu2. From (2), we have

κ̃2 = κ2 + ‖(∇T∗)(α̇, α̇)‖2 .

Since κ̃ is a constant and α is a circle on M1, ‖(∇T∗)(α̇, α̇)‖ is a constant on I. Then, we
have

0 = ∇T
α̇

(
g
M2

((∇T∗)(α̇, α̇), (∇T∗)(α̇, α̇))
)

= 2g
M2

((∇T
α̇)⊥(∇T∗)(α̇, α̇), (∇T∗)(α̇, α̇)).

Using (16) and (6), we get

g
M2

(∇̃T
α̇(∇T∗)(α̇, α̇), (∇T∗)(α̇, α̇)) + 2κg

M2
((∇T∗)(α̇, Ys), (∇T∗)(α̇, α̇)) = 0. (18)

Evaluating equation (18) at s = 0, we get

g
M2

(∇̃T
u1

(∇T∗)(u1, u1), (∇T∗)(u1, u1)) + 2κg
M2

((∇T∗)(u1, u2), (∇T∗)(u1, u2)) = 0. (19)
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Also, for another horizontal circle β = β(s) of the same curvature κ on M1 with initial

conditions β(0) = p, β̇(0) = u1 and
1

∇β̇ β̇(0) = −κu2, we have

g
M2

(∇̃T
u1

(∇T∗)(u1, u1), (∇T∗)(u1, u1))− 2κg
M2

((∇T∗)(u1, u2), (∇T∗)(u1, u1)) = 0, (20)

which corresponds to (19). Then from (19) and (20), we obtain

κg
M2

((∇T∗)(u1, u2), (∇T∗)(u1, u1)) = 0.

Taking into consideration Lemma 3.1, we can see that T is h− isotropic Riemannian map. �

Corollary 3.1. A totally umbilical Riemannian map T is h-isotropic at the point p1. Con-
versely a h-isotropic Riemannian map T is a totally umbilical at p1 if it satisfies

(∇T∗)(X,Y ) = 0

for two orthonormal vector fields X and Y at p1 in Γ((kerT∗p1)⊥).

Proof. Assume that T is a totally umbilical Riemannian map at the point p1. Then for
X1, X2 ∈ Γ((kerT∗p1)⊥), we have

(∇T∗)(X,Y ) = g
M1

(X,Y )H2.

Especially, we obtain

(∇T∗)(X,Y ) = 0,

if X and Y are orthogonal. Then T is h-isotropic. Conversely we suppose that T is h-
isotropic Riemannian map at p1. Then ∇T∗ satisfies (14) for an arbitrary orthogonal couple
X,Y ∈ Γ((kerT∗p1)⊥). Since (∇T∗)(X,Y ) = 0 and ∇T∗ is linear, we have for the orthogonal
couple 1√

2
(X + Y ) and 1√

2
(X − Y )

(∇T∗)(X,X) = (∇T∗)(Y, Y ).

Let {X1, X2, ...Xn} denote an orthonormal frame in Γ((kerT∗p1)⊥), then we get

(∇T∗)(X1, X1) = (∇T∗)(X2, X2) = ... = (∇T∗)(Xn, Xn).

Thus we have

H2 = (∇T∗)(X1, X1),

where H2 is the mean curvature vector field of distribution rangeT∗. Moreover, choosing
X =

∑
i

aiXi and Y =
∑
j

bjXj , we obtain

0 = (∇T∗)(X,Y ) =
∑
i,j

aibj(∇T∗)(Xi, Xi) = gM1(X,Y )H2,

which shows that T is umbilical. �

4. A characterization of Riemannian maps in terms of helices

We prove the following theorem which shows the effect of transforming helices to the
base manifold along Riemannian maps in this section.

Theorem 4.1. Let T be a Riemannian map from a connected Riemannian manifold (M1, gM1
),

dimM1 ≥ 2 to a Riemannian manifold (M2, gM2
). Let α be a horizontal helix with curvature

κ and torsion τ on M1, then T is umbilical and the mean curvature vector field H2 satisfies
the following equation (

∇T⊥

ξs

)2

H2 = −τ2H2,

if and only if for every horizontal helix α on the base manifold M1, the corresponding curve
T ◦ α is a helix on M2.
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Proof. We consider that p ∈M1 and α(s) is a horizontal helix with curvature κ and torsion
τ on the base manifold M1, T ◦ α : I →M2 is the corresponding curve and we can define a
vector field T∗ξ along T ◦ α by

T∗ξ(s)) = T∗α(s)ξ(s),

for each vector field ξs along α, where ξs is the unit tangent vector field along α and s is
the arc length parameter. Now we assume that T ◦ α is a helix with the curvature κ̃ and
torsion τ̃ on M2. From (1), we have(

M2

∇T
ξs

)3

T∗(ξs) + K̃2
M2

∇T
ξs
T∗(ξs) = 0, (21)

where K̃2 = κ̃2 + τ̃2. Using (2), we get

M2

∇T
ξs
T∗(ξs) = T∗(

M1

∇
ξs
ξs) + (∇T∗)(ξs, ξs). (22)

From (2) and (22), we obtain

M2

∇T
ξs
T∗(

M1

∇
ξs
ξs) = T∗((

M1

∇
ξs

)2ξs) + (∇T∗)(ξs,
M1

∇
ξs
ξs).

Using (22) and (4) in the last equation, we find(
M2

∇T
ξs

)2

T∗(ξs) = −S
(∇T∗)(ξs,ξs)

T∗(ξs) +∇T⊥

ξs (∇T∗)(ξs, ξs) + T∗((
M1

∇
ξs

)2ξs)

+(∇T∗)(ξs,
M1

∇
ξs
ξs). (23)

Using (2) and (23), we arrive at(
M2

∇T
ξs

)3

T∗(ξs) = T∗(
M1

∇3
ξs
ξs) + (∇T∗)(ξs, ((

M1

∇
ξs

)2ξs))−
M2

∇T
ξs

(S
(∇T∗)(ξs,ξs)

T∗(ξs))

+
M2

∇T
ξs

(∇T⊥

ξs (∇T∗)(ξs, ξs)) +
M2

∇T
ξs

((∇T∗)(ξs,
M1

∇
ξs
ξs)).

So, we obtain from (2) and (4)(
M2

∇T
ξs

)3

T∗(ξs) = T∗(
M1

∇3
ξs
ξs) + (∇T∗)(ξs, (

M1

∇
ξs

)2ξs)− S∇T⊥
ξs

(∇T∗)(ξs,ξs)
T∗(ξs)

−(∇T∗)(ξs, S(∇T∗)(ξs,ξs)
T∗(ξs))− T∗(

M1

∇ ξs
∗T∗S(∇T∗)(ξs,ξs)

T∗(ξs))

+
(
∇T⊥

ξs

)2

(∇T∗)(ξs, ξs)− S
(∇T∗)(ξs,

M1
∇
ξs
ξs)

T∗(ξs) +∇T⊥

ξs
(∇T∗)(ξs,

M1

∇
ξs
ξs).

(24)

Substituting (24) and (22) into (21), we obtain

T∗(
M1

∇3
ξs
ξs) + (∇T∗)(ξs,

M1

∇2
ξs
ξs)− T∗(

M1

∇ ξs
∗T∗S(∇T∗)(ξs,ξs)

T∗(ξs))

−(∇T∗)(ξs, S(∇T∗)(ξs,ξs)
T∗(ξs))− S∇T⊥

ξs
(∇T∗)(ξs,ξs)

T∗(ξs)

+
(
∇T⊥

ξs

)2

(∇T∗)(ξs, ξs)− S
(∇T∗)(ξs,

M1
∇
ξs
ξs)

T∗(ξs)

+∇T⊥

ξs
(∇T∗)(ξs,

M1

∇
ξs
ξs) + K̃2T∗(

M1

∇
ξs
ξs) + K̃2(∇T∗)(ξs, ξs) = 0.

(25)
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By looking at rangeT∗ and (rangeT∗)
⊥ components of (25), we have

T∗(
M1

∇3
ξs
ξs) + K̃2T∗(

M1

∇
ξs
ξs)− T∗(

M1

∇ ξs
∗T∗S(∇T∗)(ξs,ξs)

T∗(ξs))

−S∇T⊥
ξs

(∇T∗)(ξs,ξs)
T∗(ξs)− S

(∇T∗)(ξs,
M1
∇
ξs
ξs)

T∗(ξs) = 0

and

(∇T∗)(ξs, (
M1

∇
ξs

)2ξs)− (∇T∗)(ξs, S(∇T∗)(ξs,ξs)
T∗(ξs)) +

(
∇T⊥

ξs

)2

(∇T∗)(ξs, ξs)

+∇ξT⊥s (∇T∗)(ξs,
M1

∇
ξs
ξs) + K̃2(∇T∗)(ξs, ξs) = 0.

Considering (7), we arrive at

T∗(
M1

∇ ξs
∗T∗S(∇T∗)(ξs,ξs)

T∗(ξs)) =
(
∇̃ξsS

)
(∇T∗)(ξs,ξs)

T∗(ξs)

+S
∇T⊥
ξs

(∇T∗)(ξs,ξs)
T∗(ξs) + S(∇T∗)(ξs,ξs)

M2

P∇T
ξsT∗(ξs). (26)

Using (26) and Frenet formulas in rangeT∗ components of (25) we get

(K̃2 − κ2 − τ2)κT∗(V2)− κS
(∇T∗)(ξs,V2)

T∗(ξs)−
(
∇̃ξsS

)
(∇T∗)(ξs,ξs)

T∗(ξs)

−2S
∇T⊥
ξs

(∇T∗)(ξs,ξs)
T∗(ξs)− S(∇T∗)(ξs,ξs)

M2

P∇T
ξs
T∗(ξs) = 0.

(27)

From (6), we have

2∇T⊥

ξs (∇T∗)(ξs, ξs) = 2
(
∇̃ξs(∇T∗)

)
(ξs, ξs) + 4(∇T∗)(ξs,

M1

∇
ξs
ξs). (28)

Substituting (28) into (27), we find

(K̃2 − κ2 − τ2)κT∗(V2)− 5κS(∇T∗)(ξs,V2)T∗(ξs)− S(∇T∗)(ξs,ξs)

M2

P∇T
ξsT∗(ξs) (29)

= 2S
(∇̃ξs (∇T∗))(ξs,ξs)

T∗(ξs) +
(
∇̃ξsS

)
(∇T∗)(ξs,ξs)

T∗(ξs).

Taking inner product with T∗(ξs), both of two sides of (29) we obtain

(K̃2 − κ2 − τ2)κg
M2

(T∗(V2),T∗(ξs))− 5κg
M2

(S
(∇T∗)(ξs,V2)

T∗(ξs),T∗(ξs))

−g
M2

(S(∇T∗)(ξs,ξs)

M2

P∇T
ξs
T∗(ξs),T∗(ξs)) = g

M2
(2S

(∇̃ξs (∇T∗))(ξs,ξs)
T∗(ξs),T∗(ξs))

+ g
M2

(
(
∇̃ξsS

)
(∇T∗)(ξs,ξs)

T∗(ξs),T∗(ξs)).

(30)

Since α is a horizontal curve, we have

g
M2

(T∗(ξs),T∗(
M1

∇
ξs
ξs)) = g

M1
(ξs,

M1

∇
ξs
ξs) = κg

M1
(ξs, V2) = 0. (31)

Taking into consideration (31) and (5), (30) reduces to

−5κg
M2

((∇T∗)(ξs, V2), (∇T∗)(ξs, ξs))− gM2
(S(∇T∗)(ξs,ξs)

M2

P∇T
ξs
T∗(ξs),T∗(ξs))

= 2g
M2

((∇̃ξs(∇T∗))(ξs, ξs), (∇T∗)(ξs, ξs))
+ g

M2
(
(
∇̃ξsS

)
(∇T∗)(ξs,ξs)

T∗(ξs),T∗(ξs)).

Using (5) and (8), we get

−5κg
M2

((∇T∗)(ξs, V2), (∇T∗)(ξs, ξs))− gM2
((∇T∗)(ξs,

M1

∇
ξs
ξs), (∇T∗)(ξs, ξs))

= 3g
M2

((∇̃ξs(∇T∗))(ξs, ξs), (∇T∗)(ξs, ξs)).
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By using (28), we obtain

−6κg
M2

((∇T∗)(ξs, V2), (∇T∗)(ξs, ξs)) = 3g
M2

(∇T⊥

ξs
(∇T∗)(ξs, ξs), (∇T∗)(ξs, ξs))

− 6κg
M2

((∇T∗)(ξs, V2), (∇T∗)(ξs, ξs)).

Hence, we yield

∇T
ξs

(
g
M2

((∇T∗)(ξs, ξs), (∇T∗)(ξs, ξs))
)

= 0.

So, we can see that

‖(∇T∗)(ξs, ξs)‖ = const..

On the other hand, from (4.9), we infer

(K̃2 − κ2 − τ2)κT∗(V2) = 5κS
(∇T∗)(ξs,V2)

T∗(ξs) + S(∇T∗)(ξs,ξs)

M2

P∇T
ξsT∗(ξs) (32)

so that

g
M2

((∇T∗)(ξs, ξs), (∇T∗)(ξs, V2)) = 0. (33)

Taking derivative of (28) and using (rangeT∗)
⊥ components of (25) and (7), we obtain

5κ(∇̃ξs(∇T∗))(ξs, V2) + 3κ2(∇T∗)(V2, V2) + 4κτ(∇T∗)(ξs, V3)
= (∇T∗)(ξs, S(∇T∗)(ξs,ξs)T∗(ξs)) + 4κ2(∇T∗)(ξs, ξs)

−∇̃2
ξs

(∇T∗))(ξs, ξs)− K̃2(∇T∗)(ξs, ξs).
(34)

Changing V3 into −V3 into (34) we arrive at

(∇T∗)(ξs, V3) = 0. (35)

From (4.13), (35) and Corollary 3.1, we have that T is umbilical map. If we change V2 with
−V2 into (34), we get

5(∇̃ξs(∇T∗))(ξs, V2) = 0. (36)

Taking inner product (32) with T∗(V2), we have

(K̃2 − κ2 − τ2)κ = 5κg
M2

((∇T∗)(ξs, V2), (∇T∗)(ξs, V2))

+κg
M2

((∇T∗)(ξs, ξs), (∇T∗)(V2, V2)),

that is

(K̃2 − κ2 − τ2) = ‖H2‖2 . (37)

Substituting (35) and (36) into (34), we get

3κ2(∇T∗)(V2, V2) = (∇T∗))(ξs, S(∇T∗)(ξs,ξs)T∗(ξs))

+4κ2(∇T∗)(ξs, ξs)− ∇̃2
ξs

(∇T∗))(ξs, ξs)− K̃2(∇T∗)(ξs, ξs).

From umbilicity and derivative of (28), we have

3κ2H2 = (∇T∗))(ξs, S(∇T∗)(ξs,ξs)T∗(ξs)) + 4κ2H2 − (∇T⊥

ξs
)2H2

+2κ2H2 − 2κ2H2 − K̃2H2.

From (5), we can see that

(K̃2 − κ2)H2 = g
M2

((∇T∗)(ξs, ξs), (∇T∗)(ξs, ξs))H2 − (∇T⊥

ξs )2H2.

So, we get

(K̃2 − κ2 − ‖H2‖2)H2 = −(∇T⊥

ξs )2H2.

Using (37), we have

(∇T⊥

ξs )2H2 = −τ2H2.
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Conversely, we assume that T is a umbilical map and mean curvature vector field satisfies(
∇T⊥

ξs

)2

H2 = −τ2H2. Then we calculate(
M2

∇T
ξs

)3

T∗(ξs) = T∗((
M1

∇ ξs)
3ξs)− T∗(

M1

∇ ξs
∗T∗(SH2

T∗(ξs))) (38)

−(K2 + ‖H2‖2)H2 − S
∇T⊥
ξs

H2

T∗(ξs) +
(
∇T⊥

ξs

)2

H2.

If we use (38), we have(
M2

∇T
ξs

)3

T∗(ξs) + (κ2 + τ2 + ‖H2‖2)
M2

∇T
ξs
T∗(ξs) = T∗((

M1

∇ ξs)
3ξs)

−T∗(
M1

∇ ξs
∗T∗(SH2

T∗(ξs)))− S
∇T⊥
ξs

H2

T∗(ξs) + (κ2 + τ2 + ‖H2‖2)T∗(
M1

∇
ξs
ξs).

Then we get

T∗(

(
M1

∇
ξs

)3

ξs) + (κ2 + τ2)T∗(
M1

∇
ξs
ξs) = 0.

Since α is a horizontal helix on M1, then we find γ = T ◦ α is a helix on M2. �
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