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BINARY CODES FROM THE GROUP PSU,(16)

Ali ZAGHIYAN', Ahmad MAJLESI?, Reza KAHKESHANE,
Hossein SHABANI*

We examine all of the binary codes constructed from the primitive
permutation representations of the group PSU,(16) of degrees 68 and 136. It is
shown that the groups PSU)(16):4 and Si; are full automorphism groups of the
constructed binary codes.
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1. Introduction

In [1,2], Key and Moori considered the primitive actions of the Janko
groups J; and J, and constructed designs, codes and graphs with J; and J, as a
group of automorphisms. Together with Rodrigues, they extended the results of
[1] by applying the same method to the groups PSp.(q), A = PSL2(9) and Ay in
[3]. Their aim was to construct designs D from the action of a group G such that
Aut(D) and Aut(G) have no containment relationship. In [4], the authors
considered the design D and binary code C constructed from the action of the
McLaughlin group on 275 points and proved that Aut(C) = Aut(D) = M°L:2. Also,
they examined some designs and their binary codes constructed from the primitive
permutation representation of degree 2300 of the sporadic simple group Co; [5].

Motivated by the method used in [1,2], M. R. Darafsheh et al. considered
all of the primitive actions of the groups PSLy(g), ¢ = 11, 13, 16, 17, 19 and 23
and found the parameters of all the designs and determined their automorphism
groups [6]. These results were extended in [7] to the groups PSL»(q), g = 8, 25,
27, 29, 31 and 32 and in [8] to the groups PSLy(q), g = 37, 41, 43, 47 and 49.
Therefore, the authors completed the construction of 1-designs using the primitive
actions of the groups PSLy(g), ¢ a prime power less than 50. Moreover, a certain
1-design D from the group PSLx(q), ¢ a power of 2, are found such that
Aut(D) = Sy+1 [9]. In following, M. R. Darafsheh et al. constructed the binary
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codes for all of the designs obtained from the groups PSL»(8) and PSL»(9) and
found the parameters and determined their automorphism groups [10]. They
extended these results to the groups PSL,(11) and PSL»(13) in [11] and [12],
respectively.

In this paper, we consider all the primitive representations of the group
PSU,(16) of degrees 68, 120 and 136 and construct the binary codes for all the
obtained designs. It is shown that the full automorphism groups of the constructed
non—trivial codes are PSU,(16):4 and S)-.

2. Background and notation

Our notation will be standard and it is as in [13], [14] and ATLAS [15].
For the structure of groups and their maximal subgroups, we follow the ATLAS
notation. The groups G.H, G:H and G-H denote a general extension, a split
extension and a non-split extension, respectively. For a prime p, p" denotes the
elementary abelian group of order p”.

Let S = (P,B,I) be a finite incidence structure which consists of two

disjoint finite sets P and B and a subset I of P x B. The members of P and B are
called points and blocks, respectively. It is sometimes convenient to identify a
block of § with the set of points incidence with it, and we may write p € B instead
of (p,B) € I. The dual of § is §' = (B,P,I'), where (p,B) € I if and only if
(B,p) € I'. The incidence matrix of S is a |B| x |P| matrix A whose rows are
labeled by blocks in B, whose columns are labeled by points in P and the entry
(B,p) is equal to 1 if p is incidence with B and zero otherwise. Thus the incidence
matrix of §" is 4’ the transpose of A. Two structures S = (P,B.I) and S’ = (P'.B"I")
are isomorphic and we write § = §' if there is a one to one correspondence
0 : P — P’ such that (p,B) € I if and only if (8(p),0(B)) € I' for any p € P and
B € B. The structure S is called self-dual if § = S". An isomorphism of S onto
itself is called an automorphism of .§ and the set of all the such automorphisms is
the group Au#(S). The incidence structure D = (P,B.I) is a t—(v,k,A) design if
|P| =v, |B| = k for each B € B, and every ¢ points of P is incident with precisely A
blocks of B. The design D is symmetric if v = b, where |B| = b. The number of
blocks through any set of s points is denoted by A,. It is easy to deduce that A is

— k—
independent of the set, A, = (: s] / (t Sj and D is also a s—(v,k,As) design if
-5 —-s

s <t. D is called trivial if every subset of P with cardinality & is a block of B, i.e.

v
b= (k] If D is a t—(v,k,\) design then D' is a design with b points such that the

size of every block is A;.The code C of the design D = (P,B) over the finite field F
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is the subspace of F*, the full vector space of functions from P to F, spanned by
the incidence vectors of the blocks over F. The orthogonal subspace of C under
the standard inner product is the dual code C* and the hull of Cis C n C*. If a
linear code over a field of order ¢ is of the length n, the dimension £ andthe
minimum distance d, then we write [n,k,d], to represent this information. The
elements of C are called codewords. The support of a codeword ¢ € C is the set of
non—zero coordinate positions of ¢ and the weight of ¢ is the cardinality of this
set. The all-one vector which is a vector all of whose coordinate entries are 1 will
be denoted by j. A binary code, that is a code over F», with all weights divisible by
2 or 4 is called even or doubly even, respectively. Two linear codes of the same
length and over the same field are equivalent if each can be obtained from the
other by permuting the coordinate positions and multiplying each coordinate
position by a non—zero field element. They are isomorphic if they can be obtained
from one another by permuting the coordinate positions. An automorphism of C is
any permutation of the coordinate positions that maps codewords to codewords.
The set of all the automorphisms of C is a group, denoted by Aut(C).

Let F, denote the Galois field with ¢ = p" elements, where p is a prime
number and # a positive integer. There is a unique (up to isomorphism) degenerate
Hermitian space on vector spaces V over qu and analogously a matrix group

corresponding to all of isometries of degenerate Hermitian space denoted by
GUx(g), 1s named the unitary group. Then SU»(q) = {4 € GUx(q) | det(A) = 1} is
called a special unitary group and the quotient of SUx(g) by its center is the
projective special unitary group, denoted by PSU(g).

3. Preliminaries

Our results for the designs are based on the following standard
construction:
Result 3.1. [1, Proposition 1], [2, Proposition 1] Let G be a finite primitive
ermutation group acting on the set Q of size n. Let ¢ € Q and {a} # A be an orbit
of the stabilizer G, of . If B := A% = {A*| g € G} and E :={a,8} ={{{a,6}% | g €
G}}, for a given J € A, then the incidence structure D = (Q,B) forms a symmetric
1—(n,|A|,|A|) design. Further, if A is a self—paired orbit of G, then I' = (Q,E) is a
regular connected graph of valency |A|, D is self-dual and G acts as an
automorphism group on each of these structures, primitive on vertices of the
graph and on points and blocks of the design.
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Remark 3.1. [1], If A be any union of orbits of the stabilizer of a point,
including the orbit consisting of the single point, then we still get a symmetric
1—design with the group operating.

Theorem 3.2. [4, Theorems 1 and 2], If D is a design constructed from the
primitive group G using Result 3.1, and C is its linear code over a finite field F,

then G < Aut(D) < Aut(C).

Table 1
Designs and codes from the group PSU,(16)

Max. n No. Al |Aut(D)| C (o8 Aut(C)
17(1) 16320 [120,120,1] [120,0,00] 120!
Dy 120 8 17(2) 8160 [120,120,1] [120,0,00] 120!
17(4) 4080 [120,120,1] [120,0,0] 120!
15(1) 16320 [136,120,3] [136,16,16] 17!
D 136 9 15(2) 8160 [136,120,3] [136,16,16] 17!
30 15(4) 4080 [136,120,3] [136,16,16] 17!
30(1) 17! [136,16,16] [136,120,3] 17!

12(1) 16320 [68,24,12] [68,44,5] 16320

As 68 5 15(1) 16320 [68,52,5] [68,16,22] 16320

20(2) 8160 [68,24,12] [68,44,5] 16320

4. Binary codes from PSU,(16)

Using Magma [16] and [17, Exercise 3.6.7], we see that PSU,(16) has four
distinct primitive representations of degrees 136, 120, 68 and 17 respective to the
maximal subgroups D3, D34, As and a solvable group of order 240, respectively.
For the last representation, the designs are trivial and so, we don't consider it. Our
computations are listed in Table 1; the columns are the maximal subgroups 'Max.',
the degree 'n', the number of orbits 'No.', the size of non—trivial orbits '|A|$' (m(k)
shows k orbits of length m), the cardinality of automorphism groups of the designs
'|Aut(D)|', the parameters of the design's codes 'C', their dual codes 'C' and the
cardinality of automorphism group of the codes '|Auf(C)|, respectively (see
program in Appendix).

For any primitive representation of degree n, we denote the constructed
designs by D, 1, ... , D,, if r designs are obtained and by D, if we have only one
design, up to isomorphism. Moreover, this notation is used for the obtained codes.
4.1. The representation of degree 120. Using Result 3.1, three designs D 1,
Dy, and D3 from 7 orbits of length 17 are constructed and it is shown that
Aut(D136,1) = PSU2(16)34, Aul(D136,z) = PSU2(16)12 and Aut(D136,3) = PSU2(16)
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[6]. Computations with Magma show that the binary codes obtained from these

designs are the full space F2120.

4.2. The representation of degree 136. Using Result 3.1, three designs D3¢ 1,
D36, and Dy363 from 7 orbits of length 15 and a design Dj3¢4 from one orbit of
length 30 are constructed and it is shown that Aut(Di3s;) = PSU,(16):4,
Aut(Dy1362) = PSUy(16):2, Aut(D1363) = PSU»(16) and Aut(Di364) = Si17 [6].
Computations with Magma show that the rows of the block—point incidence
matrix of these designs span two codes Ci36; and Ci36> from the orbits of length
15 and 30, respectively.

Theorem 4.1. (i) Ciz61 and Ciser are [136,120,3], and [136,16,16], codes,
respectively.

(ii) C136,1 = Ci36-

(iii) Ci362 1s an even code and j € Ci36 1.

(iv) F2136: Ci361 @ Ci36,.

(V) Aul(C136’1) = S17.

Proof. (i), (ii) They are deduced by Magma.

(iii) Since Djs64 is a design with the even block size, the code Cis62
spanned by the rows of the incidence matrix of D364 is an even binary code. Thus
j (S C136,1 and

A= {o: o € Cize1, wH®) = [}]
={o+j: o e Cz61, wH{w) =1}
={o: o € Ciz6,1, WwH®) =136 — [}|
=A136-1-
(iv) Magma shows that the dimension of hull(Ci36,) is zero. Therefore,

Ci36,1 and C)36 are subspaces of F2136 such that dim(Cise1 + Cize2) = 120 + 16 —
0= 136. This implies the assertion.

(v) By Result 3.2, S17 < Aut(Ci36,1). On the other hand, Magma shows that

|[Aut(Ci36,1)| = 355687428096000 = 17!.

Thus, Aut(Ci36,1) = Aut(C362) = S17. [
4.3. The representation of degree 68. Using Result 3.1, three designs Des,1, Des2
and Degg 3 from the orbits of length 12, 15 and 20 are constructed and it is shown
that Aut(Des, 1)) = Aut(Deg2) = PSU>(16):4 and Aut(Deg3) = PSU>(16):2 [6]. By
Magma, the rows of the block—point incidence matrix of these designs span two
codes Cgs,1 and Cgs > from the orbits of length 12 and 15, respectively.
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Theorem 4.2. (i) Ces1 and Cgs are binary codes with the parameters [68,24,12],
and [68,52,5],, respectively.

(ii) Ces,1 1s an even code and j € Cgs .

(iii) Aut(Ces.1) = Aut(Ces2) = PSU»(16):4.

Proof. (i) It is deduced by Magma.

(if) Since the design Dgg has the even block size, the code Cgs; is even
andj € C'4s.1. Computations with Magma show that the binary code C'gs., is even
with the parameters [68,16,22] and hence, j € Cesy. It is noticeable that Cgs ) has
12 codewords of minimum weight that are exactly the incidence vectors of the
blocks of Des ;.

(iii) Let Aut(Ces,) = G. By Magma, |5| = 16320 and there exist the
permutations ai, o and o with the cycle type 2°°1°* and y with the cycle type 4°°

such thatG = <a1,a2,a3, }/> . Let N= <a1,a2,a3>. Computations with Magma
show that PSU,(16)= N < G PSU(16) and N N <}/> =1. This implies that G is a
split extension of N by y and hence, EEPSU2(16):4. Now the assertion is

followed, since the operator 'eq' in Magma shows that the codes Ces; and Ces

have the same automorphism group (see the generators in Appendix). [

5. Conclusions

We constructed and studied the binary codes obtained from all the
primitive representations of the group PSU,(16) of degrees 68 and 136 and proved
that the full automorphism groups of the non-trivial codes are PSU»(16):4 and ;7.
Our construction method is based on the result of Key and Moori [1,2]. Generally,
using this method and a computer program, we can construct and examine designs
and codes from any finite primitive permutation groups.
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Appendix

Magma version 2.10 of May 2003 was used.
//The program, where g = PSU(2,16) and m is one of the maximal subgroups
al,a2,a3:=CosetAction(g,m);
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st:=Stabilizer(a2,1);

orbs:=0rbits(st);

"no of orbits=",#orbs;

v:=Index(a2,st);

"degree",v;

lo:=[#orbs[j]:j in [1..#orbs]];

"seq of orbit length=",lo;

for j:=2 to #lo do

"orbs no",j,"of length" #orbs[j];
blox:=Setseq(orbs[j]*a2);
des:=Design<1,v|blox>;
autdes:=AutomorphismGroup(des);

"aut des of order",Order(autdes);
Ic:=LinearCode(des,GF(2));

du:=Dual(lc);

dim:=Dimension(lc);

dimd:=Dimension(du);
"Code:",Length(lc),dim,MinimumDistance(Ic);
"Dual:",Length(du),dimd,MinimumDistance(du);
"dim hull=",Dimension(lc meet du);

if not({dim,dimd} subset {0,1,v,v-1}) then
autcod:=PermutationGroup(Ic);

"aut cod of order",Order(autcod);

end if;

end for;

//omiting the trivial designs and the natural representations

Generators

oy =
(3,91)(4,23)(5,57)(6,100)(8,119)(9,62)(10,102)(11,38)(13,84)(14,79)(15,103)(16,24)(17,6
7)(18,73)(19,68)(20,104)(21,45)(22,25)(26,106)(27,72)(28,113)(29,55)(30,37)(31,105)(32
,34)(33,35)(36,107)(40,53)(41,80)(42,54)(43,46)(44,75)(47,117)(48,64)(49,93)(50,90)(51,
66)(52,78)(56,82)(58,61)(59,88)(60,110)(63,115)(65,109)(69,92)(70,94)(71,98)(76,118)(7
7,120)(81,96)(83,101)(86,87)(89,97)(95,116)(99,112)(111,114),

oy =
(2,18)(3,19)(4,97)(5,56)(6,37)(7,65)(8,109)(9,96)(10,75)(11,74)(12,106)(13,81)(14,31)(15,
69)(16,104)(17,52)(20,119)(21,114)(22,116)(23,115)(24,91)(25,26)(27,48)(28,118)(30,62)
(32,99)(33,55)(34,67)(35,82)(36,94)(38,44)(39,66)(40,70)(41,42)(43,101)(45,110)(46,111
)(47,79)(49,63)(50,78)(51,53)(57,107)(58,120)(59,80)(60,64)(61,93)(68,76)(71,73)(72,87)
(85,86)(88,103)(89,98)(92,102)(95,112)(100,105)(108,117),

o3 =
(1,2)(3,75)(4,23)(5,73)(6,65)(7,39)(8,77)(9,36)(10,66)(11,63)(12,108)(13,59)(14,24)(15,68
)(16,79)(17,41)(18,57)(19,103)(20,99)(21,95)(22,37)(25,30)(26,42)(27,31)(28,113)(29,58)
(32,76)(33,87)(34,118)(35,86)(38,115)(40,64)(43,46)(44,91)(45,116)(47,117)(48,53)(49,8
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1)(51,102)(52,70)(54,106)(55,61)(62,107)(67,80)(69,101)(71,114)(72,105)(74,85)(78,94)(
83,92)(84,88)(93,96)(98,111)(100,109)(104,112)(119,120),

’Y =
(1,15,45,91)(2,97,92,26)(3,101,93,63)(4,83,53,10)(5,39,71,65)(6,99,22,60)(7,59,51,96)(8,
76,90,103)(9,74,14,107)(11,16,102,27)(12,35,42,25)(13,18,110,87)(17,58,23,88)(19,69,2
1,54)(20,106,75,28)(24,108,117,46)(29,68,56,85)(30,94,47,41)(31,118,38,82)(32,37,115,
57)(33,120,113,40)(34,114,105,95)(36,43,66,109)(44,50,78,70)(48,104,81,84)(49,86,55,8
0)(52,61,112,62)(64,111,79,77)(67,100,116,89)(72,73,98,119).
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