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BINARY CODES FROM THE GROUP PSU2(16) 

Ali ZAGHIYAN1, Ahmad MAJLESI2, Reza KAHKESHANI3,  
Hossein SHABANI4 

 We examine all of the binary codes constructed from the primitive  
permutation representations of the group PSU2(16) of degrees 68  and   136 .  It is 
shown that the groups PSU2(16):4 and S17 are  full automorphism groups of the 
constructed binary codes. 
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1. Introduction 

 In [1,2],  Key and Moori considered the primitive actions of the   Janko 
groups J1 and J2 and constructed designs ,  codes and graphs with J1   and J2 as a 
group of automorphisms .  Together with Rodrigues ,  they extended   the results of 
[1] by applying the same method to the groups PSpn(q) , A6 ≅ PSL2(9) and A9 in 
[3] .  Their aim was to construct   designs D from the action of a group G such that 
Aut(D) and Aut(G) have no containment relationship .  In [4] ,  the authors  
 considered the design D and binary code C   constructed from the action of the 
McLaughlin group on 275 points and proved   that Aut(C) = Aut(D) = McL:2 .  Also , 
 they examined some   designs and their binary codes constructed from the primitive 
permutation   representation of degree 2300 of the sporadic simple group Co2 [5] . 

 Motivated by the method used in [1,2] ,  M .  R .  Darafsheh et al .  considered 
all of the primitive actions of the groups PSL2(q) ,  q = 11 ,  13 ,  16 ,  17 ,  19 and 23 
and found the parameters of all the designs and   determined their automorphism 
groups [6] .  These results were extended   in [7] to the groups PSL2(q) ,  q = 8 ,  25 , 
 27 ,  29 ,  31 and 32 and in   [8] to the groups PSL2(q) , q = 37 ,  41 ,  43 ,  47 and 49 . 
 Therefore ,  the   authors completed the construction of 1-designs using the primitive 
actions of   the groups PSL2(q) , q a prime power less than 50 .  Moreover ,  a certain 
1−design  D from the group PSL2(q) ,  q a power of 2 ,  are found such that   
Aut(D) ≅ Sq+1 [9] .  In following ,  M .  R .  Darafsheh et al .  constructed the binary 
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codes for all of the designs obtained from the groups  PSL2(8) and PSL2(9) and 
found the parameters and determined their automorphism   groups [10] .  They 
extended these results to the groups PSL2(11) and  PSL2(13) in [11] and [12] , 
 respectively . 

 In this paper ,  we consider all the primitive representations of the group 
PSU2(16)   of degrees 68 ,  120 and 136 and construct the binary codes for all the 
obtained designs .  It is shown that the full automorphism groups of the constructed 
non−trivial codes are   PSU2(16):4 and S17 .  

2. Background and notation 

 Our notation will be standard and it is as in [13] , [14] and  ATLAS [15] . 
 For the structure of groups and their maximal   subgroups ,  we follow the ATLAS 
notation .  The groups G.H , G:H   and G·H denote a general extension ,  a split 
extension and a non-split   extension ,  respectively .  For a prime p , pn denotes the 
elementary abelian   group of order pn . 

 Let S = (P,B,I) be a finite   incidence structure which consists of two 
disjoint finite sets P   and B and a subset I of P × B .  The members of P and B are 
called points and blocks ,  respectively .  It is sometimes convenient to identify a 
block of S   with the set of points incidence with it ,  and we may write p ∈ B instead 
of  (p,B) ∈ I .  The dual of S is St = (B,P,It) ,  where (p,B) ∈ I if and   only if 
(B,p) ∈ It .  The incidence matrix of S is a   |B| × |P| matrix A whose rows are 
labeled by blocks   in B ,  whose columns are labeled by points in P and the   entry 
(B,p) is equal to 1 if p is incidence with B and zero otherwise .  Thus the incidence 
matrix of St is At ,  the transpose of A .  Two structures S = (P,B,I) and  S' = (P',B',I') 
are isomorphic and we write S ≅ S' if there is a one to one correspondence  
θ : P → P' such that (p,B) ∈ I if and only if (θ(p),θ(B)) ∈ I'   for any p ∈ P and 
B ∈ B .  The structure S   is called self−dual if S ≅ St .  An isomorphism of   S onto 
itself is called an automorphism of S and the   set of all the such automorphisms is 
the group Aut(S) .  The incidence structure D = (P,B,I)   is a t−(v,k,λ) design if 
|P| = v ,  |B| = k for each  B ∈ B ,  and every t points of P is incident with   precisely  λ 
blocks of B .  The design D is   symmetric if v = b ,  where |B| = b .  The number of 
blocks through any   set of s points is denoted by λs .  It is easy to deduce that  λs  is 
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b  .  If  D is a t−(v,k,λ) design then Dt is   a design with b points such that the 

size of every block is λ1 . The code C of the design D = (P,B)   over the finite field F 
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is the subspace of FP ,  the full vector   space of functions from P to F ,  spanned by 
the incidence   vectors of the blocks over F .  The orthogonal subspace of C under  
 the standard inner product is the dual code C⊥ and the hull of   C is C ∩ C⊥ .  If a 
linear  code over a field of order q is of the length n ,  the dimension k and  the 
minimum distance d ,  then we write [n,k,d]q to represent this  information .  The 
elements of C are called codewords .  The support   of a codeword c ∈ C is the set of 
non−zero coordinate positions of c   and the weight of c is the cardinality of this 
set .  The all−one vector which is   a vector all of whose coordinate entries are 1 will 
be denoted by j.  A binary code ,  that is   a code over F2 ,  with all weights divisible by 
2 or 4 is called even or   doubly even ,  respectively .  Two linear codes of the same 
length and   over the same field are equivalent if each can be obtained from the 
other by   permuting the coordinate positions and multiplying each coordinate 
position   by a non−zero field element .  They are isomorphic if they can be obtained  
 from one another by permuting the coordinate positions .  An automorphism of   C is 
any permutation of the coordinate positions that maps   codewords to codewords . 
 The set of all the automorphisms of C is   a group ,  denoted by Aut(C) . 

 Let Fq denote the Galois field with q = pn elements ,  where p   is a prime 
number and n a positive integer .  There is a unique (up to isomorphism) degenerate 
Hermitian   space on vector spaces V over 2qF  and analogously a   matrix group 

corresponding to all of isometries of degenerate Hermitian   space denoted by 
GU2(q) ,  is named the unitary group .  Then SU2(q) = {A ∈ GU2(q) | det(A) = 1} is 
called a special unitary group   and the quotient of SU2(q) by its center is the 
projective special unitary group ,  denoted by PSU2(q) . 

3. Preliminaries 

Our results for the designs are based on the following standard 
construction : 
Result 3.1. [1, Proposition 1] , [2, Proposition 1]  Let G be a finite primitive 
ermutation group acting on the set Ω  of size n .  Let α ∈ Ω and {α} ≠ Δ be an orbit 
of   the stabilizer Gα of α .  If  B := ΔG = {Δg | g ∈ G}  and  E :={α,δ}G={{{α,δ}g | g ∈ 
G}},   for a given δ ∈ Δ ,  then the incidence structure  D = (Ω,B) forms a symmetric 
1−(n,|Δ|,|Δ|) design.  Further, if Δ is a self−paired orbit of Gα then  Γ = (Ω,E) is a 
regular connected graph of valency |Δ| , D is self−dual and G acts as an 
automorphism group on each of these   structures ,  primitive on vertices of the 
graph and on points and blocks of the design .  
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    Remark 3.1. [1], If Δ be any union of orbits of the stabilizer of a point, 
 including the orbit consisting of the single point ,  then we still get a symmetric  
 1−design with the group operating .  
Theorem 3.2. [4, Theorems 1 and 2], If D is a design constructed from the 
primitive group G using Result 3.1,   and C is its linear code over a finite field Fq , 
 then G ≤ Aut(D) ≤ Aut(C) .   

Table 1 
 Designs and codes from the group PSU2(16) 

Max. n No. |Δ| |Aut(D)| C C⊥ Aut(C) 

D34 120 8 
17(1) 
17(2) 
17(4) 

16320 
8160 
4080 

[120,120,1] 
[120,120,1] 
[120,120,1] 

[120,0,∞] 
[120,0,∞] 
[120,0,∞] 

120! 
120! 
120! 

D30 136 9 

15(1) 
15(2) 
15(4) 
30(1)

16320 
8160 
4080 
17!

[136,120,3] 
[136,120,3] 
[136,120,3] 
[136,16,16]

[136,16,16] 
[136,16,16] 
[136,16,16] 
[136,120,3] 

17! 
17! 
17! 
17! 

A5 68 5 
12(1) 
15(1) 
20(2) 

16320 
16320 
8160 

[68,24,12] 
[68,52,5] 
[68,24,12] 

[68,44,5] 
[68,16,22] 
[68,44,5] 

16320 
16320 
16320 

 

4. Binary codes from PSU2(16) 

 Using Magma [16] and [17, Exercise 3.6.7] ,  we see that PSU2(16) has four 
distinct  primitive representations of degrees 136 ,  120 ,  68 and 17 respective to the 
maximal   subgroups D30 , D34 , A5 and a solvable group of order 240 ,  respectively . 
 For the last representation ,  the designs are trivial and so ,  we don't consider it .  Our 
computations are listed in Table 1; the columns are the maximal subgroups 'Max.' , 
 the degree 'n' ,  the number of orbits 'No.' ,  the size of non−trivial orbits    '|Δ|$' (m(k) 
shows k orbits of length m) ,  the cardinality of   automorphism groups of the designs  
'|Aut(D)|' ,  the parameters of the design's codes 'C' ,  their dual codes 'C' and the 
cardinality of automorphism group of   the codes '|Aut(C)|' ,  respectively (see 
program in Appendix) . 

 For any primitive representation of degree n ,  we denote the constructed 
designs by   Dn,1, … , Dn,r if r designs are obtained and by  Dn if we have only one 
design ,  up to isomorphism .  Moreover ,  this notation is used for the obtained codes. 
 4.1. The representation of degree 120. Using Result 3.1 ,  three designs D120,1, 
D120,2 and D120,3 from 7 orbits of length 17 are constructed and it is shown that 
Aut(D136,1) = PSU2(16):4, Aut(D136,2) = PSU2(16):2 and  Aut(D136,3) = PSU2(16) 
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[6].  Computations with Magma show that the binary codes obtained from these 

designs are the full space 120
2F . 

 4.2. The representation of degree 136 .  Using Result 3.1 ,  three designs D136,1, 
 D136,2 and  D136,3 from 7 orbits of length 15 and a design D136,4 from  one orbit of 
length 30 are constructed and it is shown that Aut(D136,1) = PSU2(16):4, 
Aut(D136,2) = PSU2(16):2, Aut(D136,3) = PSU2(16) and Aut(D136,4) = S17 [6]. 
 Computations with Magma show that the rows of the block−point incidence 
matrix of these   designs span two codes C136,1 and C136,2 from the  orbits of length 
15 and 30 ,  respectively . 
 Theorem 4.1.  (i) C136,1 and C136,2 are [136,120,3]2 and [136,16,16]2 codes, 
 respectively . 

 (ii) C⊥
136,1 = C136,2 .  

 (iii) C136,2 is an even code and j ∈ C136,1. 

 (iv) 136
2F = C136,1 ⊕ C136,2 . 

(v) Aut(C136,1) ≅ S17. 
Proof. (i), (ii) They are deduced by Magma . 

(iii) Since D136,4 is a design with the even block size, the code C136,2 
spanned by the rows of the incidence matrix of D136,4 is an even binary code .  Thus 
j ∈ C136,1  and 

 Al := |{ω : ω ∈ C136,1, wt(ω) = l}|  
     = |{ω + j : ω ∈ C136,1, wt(ω) = l}|  
     = |{ω : ω ∈ C136,1, wt(ω) = 136 – l}|  
     = A136 – l. 

 (iv) Magma shows that the dimension of hull(C136,1) is zero .  Therefore , 

C136,1 and C136,2 are  subspaces of 136
2F  such that dim(C136,1 + C136,2) = 120 + 16 – 

0 = 136.  This implies the assertion .   
(v) By Result 3.2, S17 ≤ Aut(C136,1) .  On the other hand,  Magma shows that   

|Aut(C136,1)| = 355687428096000 = 17!.   
Thus, Aut(C136,1) = Aut(C136,2) ≅ S17 . � 
4.3. The representation of degree 68.  Using Result 3.1,  three designs D68,1, D68,2 
and D68,3 from the orbits of length 12 ,  15 and 20 are constructed and  it is shown 
that Aut(D68,1) = Aut(D68,2) ≅ PSU2(16):4 and Aut(D68,3) ≅ PSU2(16):2 [6] .  By 
Magma ,  the rows of the  block−point incidence matrix of these designs span two 
codes C68,1 and C68,2 from the orbits of length 12 and 15 ,  respectively . 
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Theorem 4.2.  (i) C68,1 and C68,2 are binary codes with the  parameters [68,24,12]2 
and [68,52,5]2 ,  respectively . 

(ii) C68,1 is an even code and j ∈ C68,2. 
(iii) Aut(C68,1) = Aut(C68,2) ≅ PSU2(16):4. 

Proof. (i) It is deduced by Magma . 
(ii) Since the design D68,1 has the even block size ,  the code C68,1 is even 

and j ∈ C⊥
68,1.  Computations with Magma show that the binary code C⊥

68,2  is even 
with the parameters [68,16,22] and hence , j ∈ C68,2 .  It is noticeable that C68,1 has 
12 codewords of minimum weight that are exactly the incidence vectors of the 
blocks of D68,1.  

(iii) Let Aut(C68,1) = G  . By Magma, | G | = 16320 and there exist the 
permutations α1, α2 and α3 with the cycle type 25618 and γ with the cycle type 430 
such that γααα ,,, 321=G .  Let 321 ,, ααα=N .  Computations with Magma 

show that  GNPSU ≅)16(2 PSU2(16) and 1=∩ γN  .  This implies that G  is a 

split extension of N by γ   and hence ,  4:)16(2PSUG ≅  .  Now the assertion is 

followed ,  since   the operator 'eq' in Magma shows that the codes C68,1   and C68,2 

have the same automorphism group (see the generators in   Appendix) . � 

5. Conclusions 

 We constructed and studied the binary codes obtained from all the 
primitive   representations of the group PSU2(16) of degrees 68  and 136 and proved  
 that the full automorphism groups of the non-trivial codes are   PSU2(16):4 and S17 . 
 Our construction method is based on the result of Key and Moori [1,2] .  Generally , 
 using this method and a computer program ,  we can construct and examine   designs 
and codes from any finite primitive permutation groups . 
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Appendix 

 Magma version 2.10 of May 2003 was used . 
/ /The program ,  where g = PSU(2,16) and  m is one of the maximal subgroups  
 a1,a2,a3:=CosetAction(g,m);  
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 st:=Stabilizer(a2,1);  
 orbs:=Orbits(st);  
" no of orbits=",#orbs;  
 v:=Index(a2,st);  
" degree",v;  
 lo:=[#orbs[j]:j in [1..#orbs]];  
" seq of orbit length=",lo;  
 for j:=2 to #lo do  
" orbs no",j,"of length",#orbs[j];  
 blox:=Setseq(orbs[j]^a2);  
 des:=Design<1,v|blox>;  
 autdes:=AutomorphismGroup(des);  
" aut des of order",Order(autdes);  
 lc:=LinearCode(des,GF(2));  
 du:=Dual(lc);  
 dim:=Dimension(lc);  
 dimd:=Dimension(du);  
" Code:",Length(lc),dim,MinimumDistance(lc);  
" Dual:",Length(du),dimd,MinimumDistance(du);  
" dim hull=",Dimension(lc meet du);  
 if not({dim,dimd} subset {0,1,v,v‐1}) then  
 autcod:=PermutationGroup(lc);  
" aut cod of order",Order(autcod);  
 end if;  
 end for;  
/ /omiting the trivial designs and  the natural representations  
 
 Generators 
α1 = 
 (3,91)(4,23)(5,57)(6,100)(8,119)(9,62)(10,102)(11,38)(13 , 84)(14,79)(15,103)(16,24)(17,6
7)(18,73)(19,68)(20,104)  (21,45)(22,25)(26,106)(27,72)(28,113)(29,55)(30,37)(31 , 105)(32
,34)(33,35)(36,107)(40,53)(41,80)(42,54)(43,46)  (44,75)(47,117)(48,64)(49,93)(50,90)(51,
66)(52,78)(56 , 82)(58,61)(59,88)(60,110)(63,115)(65,109)(69,92)(70,94)  (71,98)(76,118)(7
7,120)(81,96)(83,101)(86,87)(89,97)(95 , 116)(99,112)(111,114) , 
α2 =  
 (2,18)(3,19)(4,97)(5,56)(6,37)(7,65)(8,109)(9,96)(10,75)  (11,74)(12,106)(13,81)(14,31)(15,
69)(16,104)(17,52)(20 , 119)(21,114)(22,116)(23,115)(24,91)(25,26)(27,48)(28 , 118)(30,62)
(32,99)(33,55)(34,67)(35,82)(36,94)(38,44)  (39,66)(40,70)(41,42)(43,101)(45,110)(46,111
)(47,79)  (49,63)(50,78)(51,53)(57,107)(58,120)(59,80)(60,64)(61 , 93)(68,76)(71,73)(72,87)
(85,86)(88,103)(89,98)(92,102)  (95,112)(100,105)(108,117) ,  
 α3 =  
 (1,2)(3,75)(4,23)(5,73)(6,65)(7,39)(8,77)(9,36)(10,66)  (11,63)(12,108)(13,59)(14,24)(15,68
)(16,79)(17,41)(18 , 57)(19,103)(20,99)(21,95)(22,37)(25,30)(26,42)(27,31)  (28,113)(29,58)
(32,76)(33,87)(34,118)(35,86)(38,115)  (40,64)(43,46)(44,91)(45,116)(47,117)(48,53)(49,8
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1)  (51,102)(52,70)(54,106)(55,61)(62,107)(67,80)(69,101)  (71,114)(72,105)(74,85)(78,94)(
83,92)(84,88)(93,96)  (98,111)(100,109)(104,112)(119,120) ,  
 γ =   
 (1,15,45,91)(2,97,92,26)(3,101,93,63)(4,83,53,10)(5,39 , 71,65)(6,99,22,60)(7,59,51,96)(8,
76,90,103)(9,74,14,107)  (11,16,102,27)(12,35,42,25)(13,18,110,87)(17,58,23,88)  (19,69,2
1,54)(20,106,75,28)(24,108,117,46)(29,68,56,85)  (30,94,47,41)(31,118,38,82)(32,37,115,
57)(33,120,113,40)  (34,114,105,95)(36,43,66,109)(44,50,78,70)(48,104,81 , 84)(49,86,55,8
0)(52,61,112,62)(64,111,79,77)(67,100,116 , 89)(72,73,98,119) . 
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