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BOUNDARY VALUE PROBLEMS OF A CLASS OF NONLINEAR

DIFFERENCE EQUATIONS
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This article is concerned with the existence of solutions of boundary val-

ue problems for a class of nonlinear difference equations. We apply the Saddle Point
Theorem in the critical point theory and give new results for the existence of solutions.
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1. Introduction

Below N, Z and R denote the sets of all natural numbers, integers and real numbers,
respectively. For any a, b ∈ Z, define Z(a) = {a, a+ 1, · · · }, Z(a, b) = {a, a+ 1, · · · , b} when
a ≤ b. Besides, * denotes the transpose of a vector.

Consider the discrete boundary value problem (BVP, for short):

∆
(
pn(∆xn−1)δ

)
+ fn (xn) = 0, n ∈ Z(1, k), (1)

with the boundary value conditions

αx0 − β∆x0 = 0 = γxk+1 + σ∆xk, (2)

where ∆ is the forward difference operator, ∆xn = xn+1 − xn, δ > 0 is the ratio of odd
positive integers, i.e., for any two odd numbers µ ∈ Z, ν ∈ Z, µ > 0 and ν > 0, δ = µ

ν , pn is
real valued for each n ∈ Z, k is a given positive integer, α, β, γ and σ are constants, fn(y) ∈
C(R,R). The boundary value problem (1), (2) contains the following special Dirichlet
boundary value conditions, Mixed boundary value conditions and Neumann boundary value
conditions:

x0 = 0, xk+1 = 0;

x0 = 0, ∆xk = 0;

∆x0 = 0, xk+1 = 0;

∆x0 = 0, ∆xk = 0.

Eq. (1) can be considered as a discrete analogue of the following second-order differ-
ential equation

(q(t)ϕp(x
′))
′
+ f(t, x(t)) = 0, t ∈ R. (3)
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Eq. (3) includes the following equation

(q(t)ψ(x′))
′
+ f(t, x(t)) = 0, t ∈ R, (4)

which arises in fluid dynamics, combustion theory, gas diffusion through porous media,
thermal self-ignition of a chemically active mixture of gases in a vessel, catalysis theory,
chemically reacting systems, and adiabatic reactor [2]. Equations similar in structure to (4)
arise in the study of periodic solutions and homoclinic orbits [8, 9, 10, 11] of differential
equations.

Difference equations [1, 5, 6, 7, 12, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31], the discrete analogue of differential equations, occur widely in numerous
settings and forms, both in mathematics itself and in its applications to finance insurance,
biological populations, disease control, genetic study, physical field, and computer applica-
tion technology, etc. For the general background of difference equations, one can refer to
the monographs [1, 7, 21].

By using the Symmetric Mountain Pass Theorem, Chen and Wang [5] established
some existence criteria to guarantee that a class of nonlinear difference equation of the type

∆
(
pn(∆xn−1)δ

)
− qn∆xδn + fn (xn) = 0, n ∈ Z, (5)

has infinitely many homoclinic orbits. Here, fn(y) ∈ C(R,R).
Deng [6] established some sufficient conditions for the existence of the solution to

boundary value problem of the equation

∆2
(
pn−1∆2xn−2

)
−∆

(
qn (∆xn−1)

δ
)

+ rnx
δ
n = fn (xn) , (6)

and gave some new results by using the critical point theory. Here, fn(y) ∈ C(R,R).
Liu, Zhang and Shi [15], by making use of the saddle point theorem in combination

with variational technique, solved the existence of periodic solutions of a class of nonlinear
difference equation

∆
(
pn(∆xn−1)δ

)
+ fn (xn+1, xn, xn−1) = 0, n ∈ Z, (7)

where fn(y1, y2, y3) ∈ C(R3,R).
The existence of solutions to boundary value problem of difference equations has been

a very active area of research in the last twenty years, and for surveys of resent results, we
refer the reader to the references [1, 15, 17, 18, 21, 28]. However, it seems that results on
the existence of solutions of boundary value problems (1), (2) by critical point method are
very scarce in the literature [1, 15, 17, 18, 21, 28]. The main purpose of this paper is to
develop a new approach to the above problem by using critical point theory. We transfer
the existence of the BVP (1), (2) into the existence of the critical points of some functional.
The proof is based on the Saddle Point Theorem in combination with variational technique.
The motivation for the present work stems from the recent papers [3, 4, 28].

For basic knowledge of variational methods, the reader is referred to [19, 20].
Let

Fn(y) =

∫ y

0

fn(s)ds ≥ 0, n ∈ Z, (8)

and

pmin = min {pn : n ∈ Z(1, k + 1)} , pmax = max {pn : n ∈ Z(1, k + 1)} .

For convenience, we identify x ∈ Rk with x = (x1, x2, · · · , xk)
∗
.
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2. Preliminaries

Our main tool is the critical point theory. We shall establish suitable variational
structure to study the existence of the boundary value problem (1), (2). At first, we introduce
some basic notations which will be used in the proofs of our main results.

Let Rk be the real Euclidean space with dimension k. On one hand, we define the
inner product on Rk as follows:

〈x, y〉 =

k∑
j=1

xjyj , ∀x, y ∈ Rk, (9)

which induces the norm ‖ · ‖,

‖x‖ =

 k∑
j=1

x2
j

 1
2

, ∀x ∈ Rk. (10)

On the other hand, we define the norm ‖ · ‖s on Rk as follows:

‖x‖s =

 k∑
j=1

|xj |s
 1

s

,

for all x ∈ Rk and s > 1.
Since ‖x‖s and ‖x‖2 are equivalent, there exist constants c1, c2 such that k2 ≥ k1 > 0,

and

k1‖x‖2 ≤ ‖x‖s ≤ k2‖x‖2, ∀x ∈ Rk. (11)

For the boundary value problem (1), (2), consider the real-valued function J defined

on Rk as follows:

J(x) =
1

δ + 1

k+1∑
n=1

pn(∆xn−1)δ+1 −
k∑

n=1

Fn(xn) +
(γ
σ

)δ pk+1x
δ+1
k+1

δ + 1
+

(
α

β

)δ
p1x

δ+1
0

δ + 1
, (12)

where

x = {xn}kn=1 = (x1, x2, . . . , xk)∗, αx0 − β∆x0 = 0 = γxk+1 + σ∆xk.

It is easy to see that J ∈ C1(Rk,R) and for any x = {xn}kn=1 = (x1, x2, . . . , xk)∗, by
using αx0 − β∆x0 = 0 = γxk+1 + σ∆xk and the summation by parts

k+1∑
n=1

yn∆xn−1 = yk+1xk+1 − y1x0 −
k∑

n=1

∆ynxn,

we can compute the partial derivative as

∂J

∂xn
= −∆

(
pn(∆xn−1)δ

)
− fn (xn) , ∀n ∈ Z(1, k).

Thus, x is a critical point of J on Rk if and only if

∆
(
pn(∆xn−1)δ

)
+ fn (xn) = 0, ∀n ∈ Z(1, k).

We reduce the existence of the boundary value problem (1), (2) to the existence of critical

points of J on Rk. That is, the function J is just the variational framework of the boundary
value problem (1), (2).
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Let P be the (k + 1)× (k + 1) matrix given by

P =


1 −1 0 · · · 0 0
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 2 −1
0 0 0 · · · −1 1

 . (13)

It is easy to see that 0 is an eigenvalue of P . Let λ1, λ2, · · · , λk be the other eigenvalues of
P . Applying matrix theory, one can prove that λj > 0 for all j ∈ Z(1, k).

Denote by Z the real space of P , given by

Z =
{

(x1, x2, · · · , xk)
∗ ∈ Rk|xi = c, c ∈ R, i ∈ Z(1, k)

}
,

and let Y be the direct orthogonal complement of Z, i.e., Rk = Y ⊕ Z.

3. Main results

In this section, we shall state and prove our main results via the critical point method.

Theorem 3.1. Assume that the following assumptions are satisfied:
(B1) α ≥ 0, β > 0, γ ≥ 0, σ > 0 and δ > 0 is the ratio of odd positive integers;
(p) for any n ∈ Z(1, k + 1), pn > 0;
(F1) there exist constants c1 > 0, c2 > 0 and ϑ > δ + 1 such that for any n ∈ Z,

Fn(y) ≥ c1|y|ϑ − c2, ∀y ∈ R,

where Fn(y) is referred to (8). Then the boundary value problem (1), (2) possesses at least
one solution.

Proof. For any x = (x1, x2, · · · , xk)∗ ∈ Rk, and with J(x) given by (12), it comes from (F1)
that

J(x) ≤ pmax2δ+1

δ + 1

k+1∑
n=1

(
xδ+1
n + xδ+1

n−1

)
+
(γ
σ

)δ pmax ‖x‖δ+1
δ+1

δ + 1
+

(
α

β

)δ pmax ‖x‖δ+1
δ+1

δ + 1
−c1

k∑
n=1

|xn|ϑ+c2k

≤ 3pmax2δ+1kδ+1
2

δ + 1
‖x‖δ+1+

(γ
σ

)δ pmaxk
δ+1
2 ‖x‖δ+1

δ + 1
+

(
α

β

)δ
pmaxk

δ+1
2 ‖x‖δ+1

δ + 1
−c1

k∑
n=1

|xn|ϑ+c2k

≤ 1

δ + 1

[
3 · 2δ+1 +

(γ
σ

)δ
+

(
α

β

)δ]
kδ+1

2 ‖x‖δ+1 − c1kϑ1 ‖x‖ϑ + c2k → −∞

as ‖x‖ → +∞. By the continuity of J(x), we have from the above inequality that there
exist upper bounds for the function J . Classical calculus shows that J attains its maximum
value at some point which is just a critical point of J and the result follows. �

Theorem 3.2. Assume that (p), (F1) and the following assumptions are satisfied:
(B2) α = 0, β > 0, γ = 0, σ > 0;
(F2) there exist a constant K1 > 0 such that for any y ∈ R, |fn(y)| ≤ K1;
(F3) for any n ∈ Z, Fn(y)→ +∞ as |y| → +∞,
where Fn(y) is referred to (8). Then the boundary value problem (1), (2) possesses at least
one solution.

Remark 3.1. Assumption (F2) implies that there exists a constant K2 > 0 such that
(F ′2) for any n ∈ Z, |Fn(y)| ≤ K2 +K1|y|, ∀y ∈ R.
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Let V and W be Banach spaces, and U ⊂ V be an open subset of V . A function
f : U →W is called Fréchet-differentiable at x ∈ U if there exists a bounded linear operator
Ax : V →W such that

lim
h→0

‖f(x+ h)− f(x)−Ax(h)‖W
‖h‖V

= 0.

We write Df(x) = Ax and call it the Fréchet derivative of f at x. Let E be a real Banach
space, J ∈ C1(E,R), i.e., J is a continuously Fréchet-differentiable functional defined on
E. J is said to satisfy the Palais-Smale condition (P.S. condition for short) if any sequence{
x(l)
}
l∈N ⊂ E for which

{
J
(
x(l)
)}
l∈N is bounded and J ′

(
x(l)
)
→ 0 (l → ∞) possesses a

convergent subsequence in E.
Let Bρ denote the open ball in E about 0 of radius ρ, ∂Bρ denote its boundary and

B̄ρ denote its closure.
We first prove two basic lemmas useful to the proof of Theorem 3.2.

Lemma 3.1. (Saddle Point Theorem [19, 20]) Let E be a real Banach space, E = E1⊕E2,
where E1 6= {0} and is finite dimensional. Assume that J ∈ C1(E,R) satisfies the P.S.
condition and
(J1) there exist constants µ, ρ > 0 such that J |∂Bρ∩E1

≤ µ;
(J2) there exists e ∈ Bρ ∩ E1 and a constant ω ≥ µ such that J |e+E2 ≥ ω.
Then J possesses a critical value c ≥ ω, where

c = inf
h∈Γ

max
x∈Bρ∩E1

J(h(x)),

Γ = {h ∈ C(B̄ρ ∩ E1, E) | h|∂Bρ∩E1
= id}

and id denotes the identity operator.

Lemma 3.2. Assume that (p), (B2), (F1), (F2) and (F3) are satisfied. Then the function
J satisfies the P.S. condition.

Proof. By (B2), we have

J(x) =
1

δ + 1

k+1∑
n=1

pn(∆xn−1)δ+1 −
k∑

n=1

Fn(xn) := H(x)−
k∑

n=1

Fn(xn), (14)

where

H(x) =
1

δ + 1

k+1∑
n=1

pn(∆xn−1)δ+1.

Let
{
x(l)
}
l∈N ⊂ Rk be such that

{
J
(
x(l)
)}
l∈N is bounded and J ′

(
x(l)
)
→ 0 as

l→∞. Then there exists a positive constant D such that

−D ≤
∣∣∣J (x(l)

)∣∣∣ ≤ D, ∀l ∈ N.

Let

λmax = max {λj |j = 1, 2, · · · , k} , (15)

λmin = min {λj |j = 1, 2, · · · , k} , (16)

whre λ1, λ2, · · · , λk are the positive eigenvalues of matrix P defined as (13).
Let x(l) = y(l) + z(l) ∈ Y + Z. First, on one hand, due to J ′

(
x(l)
)
→ 0 as l→∞, for

large enough l, from

−‖x‖ ≤
〈
−J ′

(
x(l)
)
, x
〉

= −
〈
H ′
(
x(l)
)
, x
〉

+

k∑
n=1

fn

(
x(l)
n

)
xn,



96 Lianwu Yang, Shixiao Xiao, Huan Wei, Haiping Shi

with (F2) it follows that〈
H ′
(
x(l)
)
, y(l)

〉
≤

k∑
n=1

fn

(
x(l)
n

)
y(l)
n +

∥∥∥y(l)
∥∥∥ ≤ K1

k∑
n=1

∣∣∣y(l)
n

∣∣∣+∥∥∥y(l)
∥∥∥ ≤ (K1

√
k + 1

)∥∥∥y(l)
∥∥∥ .

On the other hand, it is easy to see that〈
H ′
(
x(l)
)
, y(l)

〉
=
〈
H ′
(
y(l)
)
, y(l)

〉
≥ pmink

δ+1
1

〈
Py(l), y(l)

〉δ+1

≥ pminλ
δ+1
2

min k
δ+1
1

∥∥∥y(l)
∥∥∥δ+1

.

Thus, we have

pminλ
δ+1
2

min k
δ+1
1

∥∥∥y(l)
∥∥∥δ+1

≤
(
K1

√
k + 1

)∥∥∥y(l)
∥∥∥ .

The above inequality implies that
{
y(l)
}
l∈N is bounded.

Next, we shall prove that
{
z(l)
}
l∈N is bounded. It comes from

D ≥ −J
(
x(l)
)

= −H
(
x(l)
)

+

k∑
n=1

[
Fn

(
x(l)
n

)
− Fn

(
z(l)
n

)]
+

k∑
n=1

Fn

(
z(l)
n

)
,

that
k∑

n=1

Fn

(
z(l)
n

)
≤ D +H

(
x(l)
)

+

k∑
n=1

[
Fn

(
x(l)
n

)
− Fn

(
z(l)
n

)]

≤ D +
pmax

δ + 1
kδ+1

2

〈
Py(l), y(l)

〉δ+1

+

k∑
n=1

∣∣∣fn (z(l)
n + αy(l)

n

)
y(l)
n

∣∣∣
≤ D +

pmax

δ + 1
kδ+1

2 λ
δ+1
2

max

∥∥∥y(l)
∥∥∥δ+1

+K1k
∥∥∥y(l)

∥∥∥ ,
where α ∈ (0, 1). It is not difficult to see that

k∑
n=1

Fn

(
z(l)
n

)
(17)

is bounded.
Assumption (F3) implies that

{
z(l)
}

is bounded. Assume by contradiction (17)

that
∥∥z(l)

∥∥ → +∞ as l → ∞. Since there exist c(l) ∈ R, l ∈ N, such that z(l) =(
c(l), c(l), · · · , c(l)

)∗ ∈ Rk, then

∥∥∥z(l)
∥∥∥ =

(
k∑

n=1

∣∣∣z(l)
k

∣∣∣2)
1
2

=

(
k∑

n=1

∣∣∣c(l)∣∣∣2)
1
2

=
√
k
∣∣∣c(l)∣∣∣→ +∞

as l→∞. Since

Fn

(
z(l)
n

)
= Fn

(
c(l)
)
, 1 ≤ n ≤ k,

then Fn

(
z

(l)
n

)
→ +∞ as l → ∞. This contradicts the fact that the sum (17) is bounded

and hence the proof of Lemma 3.2 is completed. �

Proof of Theorem 3.2. The proof of Theorem 3.2 is similar to that of [[18], Theorem 1.2],
but for the sake of completeness, we give the details.

First, it follows from Lemma 3.2 that J satisfies the P.S. condition. Next, we shall
prove the conditions (J1) and (J2). For any y ∈ Y , by (F ′2) we have

−J(y) = −H(y) +

k∑
n=1

Fn(yn)
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≤ − pmin

δ + 1
kδ+1

1 λ
δ+1
2

min ‖y‖
δ+1 + kK2 +K1

k∑
n=1

|yn|

≤ − pmin

δ + 1
kδ+1

1 λ
δ+1
2

min ‖y‖
δ+1 + kK2 +K1k‖y‖ → −∞

as ‖y‖ → +∞. Therefore, one can see that the condition (J1) is satisfied. For any z ∈ Z,
z = (z1, z2, · · · , zk)∗, there exists c ∈ R such that zn = c, for all n ∈ Z(1, k). From (F3), we
have that there exists a constant ρ > 0 such that Fn(c) > 0 for n ∈ Z(1, k) and |c| > ρ. Let
K3 = min

n∈Z(1,k), |c|≤ρ
Fn(c), K4 = min{0,K3}. Then

Fn(c) ≥ K4, ∀(n, c) ∈ Z(1, k)×R2.

Therefore, we have

−J(z) =

k∑
n=1

Fn(zn) =

k∑
n=1

Fn(c) ≥ TK4, ∀z ∈ Z.

So all the assumptions of the Saddle Point Theorem are satisfied and the proof of Theorem
3.2 is complete. �
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