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A SIMPLE ALGORITHM TO SIMULATE NANOPARTICLES 
MOTION IN A NANOFLUID 

Dan CHICEA1 

Nanofluids are suspensions of nano to micrometer sized particles in liquids. 
In a suspension the nanoparticles have a complex movement of both sedimentation 
and Brownian motion. A computer code to simulate the nanoparticles Brownian 
motion by individually handling each nanoparticle and an algorithm to assess the 
time step is described. A simple ansatz to calculate the time step for a specific 
nanoparticle diameter in an aqueous suspension is presented, as well. 
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1. Introduction 

The nanofluid notion was first mentioned by Choi in 1995 [1] as he 
noticed that a small amount of nanoparticles, added in a fluid, considerably 
enhanced the heat transfer properties [2]. 

The nanoparticles have a continuous, irregular motion in nanofluids, 
which is the effect of several forces such as gravity, Brownian, buoyant and 
friction between fluid and the particles. The irregular nanoparticle motion in the 
fluid is the cause of the heat transfer properties enhancement of  the nanofluids [3-
6]. 

Coated nanoparticles are already considered for commercial application in 
medicine. Some possible applications are: tumour destruction via heating 
(hyperthermia) [7], bio detection of pathogens [8], fluorescent biological labels 
[9], drug and gene delivery [10], detection of proteins [11], probing of DNA 
structure [12], tissue engineering [13], separation and purification of biological 
molecules and cells [14] and many others. Nanoparticle Brownian motion  
simulation might be useful in assessing the nanoparticle transport through 
different human body fluids. 

In this work a program to simulate the nanoparticles Brownian motion and 
an algorithm to assess the time step for modeling nanoparticles diffusion is 
presented. A simple ansatz to calculate the time step for a specific nanoparticle 
diameter can be found in the third section. 
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2. Sedimentation or Brownian motion? 

First we should ask whether sedimentation is significant or not when doing 
a computer simulation of a nanofluid located in a small dimension volume, like a 
cuvette. The sedimentation motion of the nanoparticles carries on with a constant 
velocity, which is the consequence of the null resultant of three forces: gravity, 
buoyant and the viscous force in laminar flow regime (Stokes). Considering the 
nanoparticle with a spherical shape, the velocity is given by equation (1): 
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where r is the radius of the sphere, ρ is the density of the nanoprticle, ρ0 is the 
density of the carrier fluid, η is the dynamic viscosity coefficient of the fluid. The 
fluid was considered to be water and the variation of the water density and 
dynamic viscosity with temperature was calculated using a four degree 
polynomial. The polynomial coefficients were found by performing a fit on the 
experimental data in [15].  

In order to find out which one of the two different type of motions, 
sedimentation or Brownian motion, has the biggest role in changing the 
concentration or in causing the fluctuations of the scattered light intensity, when 
the nanofluid is the target of a coherent light beam in a Photon Correlation 
Spectroscopy (PCS) experiment [16], [17] we notice that the mean square value of 
the velocity module, also called the thermal velocity, given by equation (2), is a 
measure of the Brownian motion intensity [17]: 
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In (2) k is Boltzman’s constant, T is the absolute temperature and m is the 

mass of the particle in thermal equilibrium with the environment. Figures 1 and 2 
present the variation of the Brownian and of the sedimentation motion velocities 
at 293.15 K for particles having a diameter from 4 to 37 nm, hence a radius in the 
range 2 to 18.5 nm. 

Examining Figures 1 and 2 we notice that the sedimentation motion 
velocity is roughly 109 times smaller than the thermal velocity. This proves that 
for nanoparticles the Brownian motion is the main cause of the major 
concentration changes or of the speckle fluctuations in [16], [17]. If we move to 
bigger particles, having diameters of the micron magnitude, the sedimentation 
motion velocity increases while the thermal velocity decreases to such an extend 
that they become comparable, which should be accounted in simulating the 
dynamics of such a suspension. 
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Fig. 1 – The thermal velocity versus particle 
radius in the range 0.2 – 18.5 nm at 293.15 K. 
 

Fig. 2 – The sedimentation motion velocity 
versus particle radius in the range 0.2 – 18.5 nm 

at 293.15 K. 

3. Brownian motion simulation 

In the code we developed and used to simulate the Brownian motion each 
nanoparticle was handled invidually, considering a Maxwell-Boltzman 
distribution for the nanoparticles velocity.  

A set of simple computer diffusion experiments was done using 5000 
nanoparticles, in order to have a good statistics. Their positions were (0,0,0) in 
cartezian coordinates at time t=0. A certain value was selected for the Brownian 
motion time step modeling, and the system was allowed to evolve for a total 
preselected time t. At each time step the particles velocities were generated having 
a Maxwell – Boltzman velocity distribution, and the new positions were 
calculated for each particle adding to the old positions the velocity times the time 
step. When the preset time elapsed, the positions were saved, 2r was computed 
for the statistical ensemble and finally Dcomp was calculated for that particular 
value of the time step from (3). 
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Different time step values were used for each experiment, a curve was 
drawn with Dcomp values versus the time step. The time step that produced a Dcomp 
value equal to the one calculated using Einstein equation [18], [19] was chosen as 
the realistic value for Δt. A detailed explanation of the procedure, containing the 
equations used in assessing the proper value of the time step for a specific 
nanoparticle size and density are presented in detail in [18] and [19]. 

The results for 10.5 nm diameter nanoparticles in water at 293.15 K are 
presented below as an example. The diffusion coefficient calculated with (9) is 
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4.2781·10-11 m2s-1 and the Brownian motion time step produces a Dcomp that 
matches this value is 6.0803·10-11 s. Figure 3 presents the variation of the 
computed diffusion coefficient with the Brownian motion time step. We notice 
that for the small time step range that was used for assessing the Brownian motion 
time step the variation appears to be linear. Other example of using the procedure 
in assessing the time step required for this Brownian motion simulation that treats 
each particle individually, for micron sized particles this time, is presented in 
detail in [19]. A further improvement and generalization, aiming to find a simple 
ansatz for a rapid assessment of the time step value for a certain particle diameter 
and solvent temperature is presented further on. 

The Δt assessment procedure was repeated for nine temperatures: 5, 20, 
37, 45, 55, 65, 75, 85 and 95 oC. At each temperature the diffusion computer 
experiment was carried on for nanoparticles with four diameters, which are: 5, 10, 
15, and 20 nm and for each nanoparticle diameter the value that produced the 
realistic diffusion coefficient was selected using the procedure briefly described 
above and in detail in [18], [19]. 

This direct procedure described above that has to be carried on before a 
Brownian motion simulation for each combination of nanoparticle, solvent and 
temperature is time consuming though. A simplified yet precise procedure for 
assessing the time step value is presented further on. 
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Fig. 3. The variation of the computed diffusion coefficient (crosses) with the Brownian motion 
time step for 10.5 nm diameter nanoparticles in water at 293.15 K. 

 
A polynomial fit on the Δt – nanoparticle diameter data set for each 

temperature, in aqueous solution, was done. The variation of the time step with 
the nanoparticle diameter for each of the nine temperatures used in the computer 
experiment are presented in Fig. 4.  
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Examining Fig. 4 we notice that the time step increases fast with the 
nanoparticle diameter and increases with the temperature, as well. We also notice 
that the second degree polynomial fits very well the time step calculated with the 
procedure described above and the coefficients are presented in equation (4): 
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In (13) d is the nanoparticle diameter, expressed in nanometers and Δt is 

the time step, in seconds. 
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Fig. 4. The time step variation with the nanoparticle diameter: calculated data - triangles, solid 
lines – interpolated data, for nine temperatures. From the lower set to the upper set: 5oC, 20oC, 

37oC, 45oC, 55oC, 65oC, 75oC, 85oC, 95oC. 
 

Table 1 presents the values of the coefficients for the nine temperatures the 
computer experiment was run for. Examining Table 1 we notice that the p1 
coefficient presents a monotone increase with the temperature, p2 a decreasing 
trend and p3 an increasing trend.  

The procedure described in this section, of running a computer experiment 
with different values of the time step and comparing the results with the actual 
diffusion coefficient leads to exact values for the time step to be used in a 
Brownian motion computer simulation for each diameter and temperature, typical 
for modeling nanoparticle diffusion, but is time consuming. 

A much faster recipe consists of using a simple equation to calculate first 
the p1, p2 and p3 coefficients for a certain temperature t. A simple approach would 
consist in “drawing” a line for each of the three coefficients variation with the 
temperature. The linear fit produced the variation of the coefficients with the 
temperature t (in oC) and is presented in equations (5) through (7): 
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Table 1 
Table 1- the values of the polynomial coefficients for nine temperatures 
t, oC p1, s/nm2 p2, s/nm p3, s 

5 3.538·10-13 1.856·10-13 -2.777·10-13 
20 5.031·10-13 8.249·10-13 -2.600·10-12 
37 8.766·10-13 -1.364·10-12 5.728·10-12 
45 1.019·10-12 -2.585·10-12 1.141·10-11 
55 1.100·10-12 -1.554·10-13 1.753·10-12 
65 1.334·10-12 -1.701·10-12 6.533·10-12 
75 1.533·10-12 -1.188·10-12 4.088·10-12 
85 1.864·10-12 -3.733·10-12 1.461·10-11 
95 2.016·10-12 -3.063·10-12 1.210·10-11 

 
( )  011.667t101.888 -13-14

1 ⋅+⋅⋅=tp                                (5) 
( )  016.943t10-3.947 -13-14

2 ⋅+⋅⋅=tp                              (6) 
( )  011.840-t101.450 -12-13

3 ⋅⋅⋅=tp                                 (7) 
Calculating the p1, p2 and p3 coefficients with the equations (5), (6) and (7) 

and then the time step values for each nanoparticle diameter with equation (4) 
produces very close values as compared with the time step calculated with the 
coefficients in Table 1. In order to estimate the accuracy of the time step 
estimation with this simplified procedure, the latter was calculated using the three 
recipes. Fig. 5 presents the variation of the time step with the nanoparticle 
diameter, calculated with the coefficients from Table 1, with the interpolated 
coefficients (5) – (7) and the time step calculated from the diffusion computer 
experiment, at 37 oC. We notice that the differences are very small.  

4. Results and conclusion 

This algorithm in its precise version, of running a computer diffusion 
experiment with different values for the time step and comparing the computed 
diffusion coefficient [18], [19] for assessing the time step value was used in 
calculating the time step and in simulating the Brownian motion in a program that 
simulates the coherent light scattering dynamics on nanoparticles in suspension 
[18]. The far interference field calculated with the program was compared with an 
experimental far field recorded during a light scattering experiment and was found 
to be realistic [18]. The computed time series of the intensity recorded in a far 
field location was compared with the time series recorded during an experiment 
and was found to be very realistic, as well [19].  
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Fig. 5 - The variation of the time step at 37 oC calculated from the diffusion computer experiment 
(triangles), with the coefficients in Table 1 (solid line) and with the p1, p2 and p3 coefficients 

calculated with equations (14), (15) and (16) (dot line) with the nanoparticle diameter. 
 
This suggests that the Brownian motion simulation procedure presented 

here and the simple and fast ansatz presented in this work to calculate the time 
step can be successfully used to simulate in a realistic manner the nanoparticle 
motion of each individual nanoparticle in suspension, for a total number 
nanoparticles of the magnitude of 104, using a dual core processor on a PC and for 
a realistically bigger number of nanoparticles, of the magnitude of 109, using a 
High Power Computing platform with hundreds of cores, in a computer 
experiment lasting foe a few hours. 

The simple algorithm described in this paper can be easily implemented in 
any programming language and can be used both in assessing the time step and 
than in modeling the nanoparticle diffusion in any aqueous solution, including 
biological fluids, provided that the dynamic viscosity coefficient is known, by 
individually handling each nanoparticle for the time span of the computer 
experiment. 
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