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A SIMPLE ALGORITHM TO SIMULATE NANOPARTICLES
MOTION IN A NANOFLUID

Dan CHICEA!

Nanofluids are suspensions of nano to micrometer sized particles in liquids.
In a suspension the nanoparticles have a complex movement of both sedimentation
and Brownian motion. A computer code to simulate the nanoparticles Brownian
motion by individually handling each nanoparticle and an algorithm to assess the
time step is described. A simple ansatz to calculate the time step for a specific
nanoparticle diameter in an aqueous suspension is presented, as well.
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1. Introduction

The nanofluid notion was first mentioned by Choi in 1995 [1] as he
noticed that a small amount of nanoparticles, added in a fluid, considerably
enhanced the heat transfer properties [2].

The nanoparticles have a continuous, irregular motion in nanofluids,
which is the effect of several forces such as gravity, Brownian, buoyant and
friction between fluid and the particles. The irregular nanoparticle motion in the
fluid is the cause of the heat transfer properties enhancement of the nanofluids [3-
6].

Coated nanoparticles are already considered for commercial application in
medicine. Some possible applications are: tumour destruction via heating
(hyperthermia) [7], bio detection of pathogens [8], fluorescent biological labels
[9], drug and gene delivery [10], detection of proteins [11], probing of DNA
structure [12], tissue engineering [13], separation and purification of biological
molecules and cells [14] and many others. Nanoparticle Brownian motion
simulation might be useful in assessing the nanoparticle transport through
different human body fluids.

In this work a program to simulate the nanoparticles Brownian motion and
an algorithm to assess the time step for modeling nanoparticles diffusion is
presented. A simple ansatz to calculate the time step for a specific nanoparticle
diameter can be found in the third section.
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2. Sedimentation or Brownian motion?

First we should ask whether sedimentation is significant or not when doing
a computer simulation of a nanofluid located in a small dimension volume, like a
cuvette. The sedimentation motion of the nanoparticles carries on with a constant
velocity, which is the consequence of the null resultant of three forces: gravity,
buoyant and the viscous force in laminar flow regime (Stokes). Considering the
nanoparticle with a spherical shape, the velocity is given by equation (1):
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where 7 is the radius of the sphere, p is the density of the nanoprticle, py is the
density of the carrier fluid, # is the dynamic viscosity coefficient of the fluid. The
fluid was considered to be water and the variation of the water density and
dynamic viscosity with temperature was calculated using a four degree
polynomial. The polynomial coefficients were found by performing a fit on the
experimental data in [15].

In order to find out which one of the two different type of motions,
sedimentation or Brownian motion, has the biggest role in changing the
concentration or in causing the fluctuations of the scattered light intensity, when
the nanofluid is the target of a coherent light beam in a Photon Correlation
Spectroscopy (PCS) experiment [16], [17] we notice that the mean square value of
the velocity module, also called the thermal velocity, given by equation (2), is a
measure of the Brownian motion intensity [17]:

v, =, %—T 2)
m

In (2) k is Boltzman’s constant, T is the absolute temperature and m is the
mass of the particle in thermal equilibrium with the environment. Figures 1 and 2
present the variation of the Brownian and of the sedimentation motion velocities
at 293.15 K for particles having a diameter from 4 to 37 nm, hence a radius in the
range 2 to 18.5 nm.

Examining Figures 1 and 2 we notice that the sedimentation motion
velocity is roughly 10° times smaller than the thermal velocity. This proves that
for nanoparticles the Brownian motion is the main cause of the major
concentration changes or of the speckle fluctuations in [16], [17]. If we move to
bigger particles, having diameters of the micron magnitude, the sedimentation
motion velocity increases while the thermal velocity decreases to such an extend
that they become comparable, which should be accounted in simulating the
dynamics of such a suspension.
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Fig. 1 — The thermal velocity versus particle Fig. 2 — The sedimentation motion velocity
radius in the range 0.2 — 18.5 nm at 293.15 K. versus particle radius in the range 0.2 — 18.5 nm

at 293.15 K.

3. Brownian motion simulation

In the code we developed and used to simulate the Brownian motion each
nanoparticle was handled invidually, considering a Maxwell-Boltzman
distribution for the nanoparticles velocity.

A set of simple computer diffusion experiments was done using 5000
nanoparticles, in order to have a good statistics. Their positions were (0,0,0) in
cartezian coordinates at time ¢=0. A certain value was selected for the Brownian
motion time step modeling, and the system was allowed to evolve for a total
preselected time . At each time step the particles velocities were generated having
a Maxwell — Boltzman velocity distribution, and the new positions were
calculated for each particle adding to the old positions the velocity times the time

step. When the preset time elapsed, the positions were saved, <r2>was computed

for the statistical ensemble and finally D, was calculated for that particular
value of the time step from (3).
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Different time step values were used for each experiment, a curve was
drawn with D, values versus the time step. The time step that produced a Doy
value equal to the one calculated using Einstein equation [18], [19] was chosen as
the realistic value for 4z. A detailed explanation of the procedure, containing the
equations used in assessing the proper value of the time step for a specific

nanoparticle size and density are presented in detail in [18] and [19].

The results for 10.5 nm diameter nanoparticles in water at 293.15 K are
presented below as an example. The diffusion coefficient calculated with (9) is
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42781-10"" m’s' and the Brownian motion time step produces a De,np that
matches this value is 6.0803-107"" s. Figure 3 presents the variation of the
computed diffusion coefficient with the Brownian motion time step. We notice
that for the small time step range that was used for assessing the Brownian motion
time step the variation appears to be linear. Other example of using the procedure
in assessing the time step required for this Brownian motion simulation that treats
each particle individually, for micron sized particles this time, is presented in
detail in [19]. A further improvement and generalization, aiming to find a simple
ansatz for a rapid assessment of the time step value for a certain particle diameter
and solvent temperature is presented further on.

The At assessment procedure was repeated for nine temperatures: 5, 20,
37, 45, 55, 65, 75, 85 and 95 °C. At each temperature the diffusion computer
experiment was carried on for nanoparticles with four diameters, which are: 5, 10,
15, and 20 nm and for each nanoparticle diameter the value that produced the
realistic diffusion coefficient was selected using the procedure briefly described
above and in detail in [18], [19].

This direct procedure described above that has to be carried on before a
Brownian motion simulation for each combination of nanoparticle, solvent and
temperature is time consuming though. A simplified yet precise procedure for
assessing the time step value is presented further on.
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Fig. 3. The variation of the computed diffusion coefficient (crosses) with the Brownian motion
time step for 10.5 nm diameter nanoparticles in water at 293.15 K.

A polynomial fit on the A¢ — nanoparticle diameter data set for each
temperature, in aqueous solution, was done. The variation of the time step with
the nanoparticle diameter for each of the nine temperatures used in the computer
experiment are presented in Fig. 4.
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Examining Fig. 4 we notice that the time step increases fast with the
nanoparticle diameter and increases with the temperature, as well. We also notice
that the second degree polynomial fits very well the time step calculated with the
procedure described above and the coefficients are presented in equation (4):

At=p,-d*+p,-d+ p, 4

In (13) d is the nanoparticle diameter, expressed in nanometers and At is
the time step, in seconds.
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Fig. 4. The time step variation with the nanoparticle diameter: calculated data - triangles, solid
lines — interpolated data, for nine temperatures. From the lower set to the upper set: 5°C, 20°C,
37°C, 45°C, 55°C, 65°C, 75°C, 85°C, 95°C.

Table 1 presents the values of the coefficients for the nine temperatures the
computer experiment was run for. Examining Table 1 we notice that the p,
coefficient presents a monotone increase with the temperature, p, a decreasing
trend and p; an increasing trend.

The procedure described in this section, of running a computer experiment
with different values of the time step and comparing the results with the actual
diffusion coefficient leads to exact values for the time step to be used in a
Brownian motion computer simulation for each diameter and temperature, typical
for modeling nanoparticle diffusion, but is time consuming.

A much faster recipe consists of using a simple equation to calculate first
the p1, p2 and ps coefficients for a certain temperature t. A simple approach would
consist in “drawing” a line for each of the three coefficients variation with the
temperature. The linear fit produced the variation of the coefficients with the
temperature 7 (in °C) and is presented in equations (5) through (7):
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Table 1
Table 1- the values of the polynomial coefficients for nine temperatures
t, °C p1.s/mm’ p2.s/nm P3» S

5 3.538-107"° 1.856:107" 2.777-107°

20 5.031-10°° 8.249-107 -2.600-107"

37 8.766-107° -1.364-107" 5.728-1072

45 1.019-10" -2.585-107"2 1.141-10™"

55 1.100-107" -1.554-10°" 1.753-107"2

65 1.334-10" -1.701-10" 6.533-107"2

75 1.533-107" -1.188:107"2 4.088:10"

85 1.864:107" -3.733:107"2 1.461-10™"

95 2.016°107" -3.063-107"2 1.210-10™"
p,(¢)=1.888-10" -t +1.667-10™" (5)
p,(1)=-3.947-10" -t +6.943-10" (6)
p5(t)=1.450-10" -t-1.840-10" (7)

Calculating the pi, p2 and ps coefficients with the equations (5), (6) and (7)
and then the time step values for each nanoparticle diameter with equation (4)
produces very close values as compared with the time step calculated with the
coefficients in Table 1. In order to estimate the accuracy of the time step
estimation with this simplified procedure, the latter was calculated using the three
recipes. Fig. 5 presents the variation of the time step with the nanoparticle
diameter, calculated with the coefficients from Table 1, with the interpolated
coefficients (5) — (7) and the time step calculated from the diffusion computer
experiment, at 37 °C. We notice that the differences are very small.

4. Results and conclusion

This algorithm in its precise version, of running a computer diffusion
experiment with different values for the time step and comparing the computed
diffusion coefficient [18], [19] for assessing the time step value was used in
calculating the time step and in simulating the Brownian motion in a program that
simulates the coherent light scattering dynamics on nanoparticles in suspension
[18]. The far interference field calculated with the program was compared with an
experimental far field recorded during a light scattering experiment and was found
to be realistic [18]. The computed time series of the intensity recorded in a far
field location was compared with the time series recorded during an experiment
and was found to be very realistic, as well [19].
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Fig. 5 - The variation of the time step at 37 °C calculated from the diffusion computer experiment
(triangles), with the coefficients in Table 1 (solid line) and with the p;, p, and p; coefficients
calculated with equations (14), (15) and (16) (dot line) with the nanoparticle diameter.

This suggests that the Brownian motion simulation procedure presented
here and the simple and fast ansatz presented in this work to calculate the time
step can be successfully used to simulate in a realistic manner the nanoparticle
motion of each individual nanoparticle in suspension, for a total number
nanoparticles of the magnitude of 10*, using a dual core processor on a PC and for
a realistically bigger number of nanoparticles, of the magnitude of 10°, using a
High Power Computing platform with hundreds of cores, in a computer
experiment lasting foe a few hours.

The simple algorithm described in this paper can be easily implemented in
any programming language and can be used both in assessing the time step and
than in modeling the nanoparticle diffusion in any aqueous solution, including
biological fluids, provided that the dynamic viscosity coefficient is known, by
individually handling each nanoparticle for the time span of the computer
experiment.
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