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ANALYTICAL STUDY OF SOLITONS TO 
BENJAMIN-BONA-MAHONY-PEREGRINE EQUATION 

WITH POWER LAW NONLINEARITY BY USING THREE 
METHODS 
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In this paper, the unified, improved Riccati sub-equation and modified Kudryashov 

methods are used to construct travelling wave solutions of the 
Benjamin-Bona-Mahony-Peregrine equation with power law nonlinearity (BBMP 
equation with power law nonlinearity). Several solutions are determined including 
soliton wave solutions, solitary wave solutions, elliptic wave solutions and periodic 
wave solutions. Itis shown that these methodologies are very powerful mathematical 
tools for obtaining exact travelling wave solutions of nonlinear evolution equations. 
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 1. Introduction 

The investigation of travelling wave solutions of nonlinear evolution equations 
(NLEEs) are growing rapidly because mathematical modeling of many physical 
systems leads to NLEEs. They are encountered in a variety of engineering and 
scientific aplications such as the fluid dynamics, plasma physics, optical fibers, 
chemical physics, biomathematics, oceans engineering, geochemistry and many 
other scientific fields. There are several analytic techniques for solving NLEEs and 
for constructing travelling wave solutions. In between these methods are the 
extended /G G′ − expansion method [1], the extended trial equation method [2,3], 
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the Riccati-Bernoulli’s sub-ODE method [4], the first integral method [5,6], the 
truncated expansion method [7], the sub-equation method [8,9], the modified 
simple equation method [10], the extended Jacobi’s elliptic function method [11], 
the functional variable method [12, 13], the sine-Gordon expansion method [14], 
the new extended direct algebraic method [15], and many others [16,17]. 

In this article, we use the unified, improved Riccati sub-equation and modified 
Kudryashov approaches to find traveling wave solutions of the BBMP equation 
with power law nonlinearity of the form [18]: 

3

2 =0,nu u u ua bu c
t x x x t

∂ ∂ ∂ ∂
+ + +

∂ ∂ ∂ ∂ ∂
  (1) 

where , ,a b c  and n  are nonzero constants. The exponent n  represents the power 
law nonlinearity parameter and it is necessary to have 0n ≠ , as these values will 
place Eq. (1) beyond the linear regime. Here in Eq. (1) the first term indicates the 
evolution term, while the last term indicates the dispersion term. The third term is 
the nonlinear term. Khalique in [18] obtained exact wave solutions of Eq.(1) using 
Lie symmetry method and simplest equation approach and Aminikhah et al. [19] 
proposed the functional variable method to solve this equation. The special case 
where = 2n , the BBMP equation with power law nonlinearity is called the 
modified Benjamin-Bona-Mahony equation [20].  

The rest of the paper is organized as follows. Details of the unified method, 
improved Riccati sub-equation and modified Kudryashov methods have been 
presented in the next Section. The obtained solutions of BBMP equations with 
power law nonlinearity using these methods are presented in Section 3. 
Conclusionsare presented in Section 4. 

 2. Methods 

In this Section we express the first step of the unified, improved Riccati 
sub-equation and modified Kudryashov methods for finding traveling wave 
solutions of NLEEs.  
Consider the nonlinear evolution equation (NLEE)  

1 2

, , , , 0,u u uF u
t x x

 ∂ ∂ ∂
… = ∂ ∂ ∂ 

   (2) 

where F  is a polynomial in u and its partial derivatives.  
Using the wave transformation  

( ) ( ) 1 2, , ,qu x t U x x x tξ ξ λ= = + +…+ −    (3) 
where λ  is a constant, Eq. (2) is arranged as the following nonlinear ordinary 
differential equation 

( , , ,...) = 0.G U U U′ ′′    (4) 
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2.1. The description of unified method  
 

Herein, we find the traveling wave solutions (in polynomial function or rational 
function forms) for the NLEE given by Eq. (4) via the unified method 
[21,22,23,24,25]. The outline of this method is presented as follow. 
(I) Polynomial solutions 
To obtain the solutions of Eq. (4) in polynomial function forms, we assume that  

=0

=0 =1

= ( ) = ( ),

( ( )) = ( ), = , = 1,2,

n
i

i
i

p m q
p i

j k
j k

U U a

b t x p

ξ ξ

ξ ξ ξ λ

Γ

′Γ Γ − +

∑

∑ ∑
 

   (5) 

where ( ) ( )( )Γ Γ , , ,1k
d t x k q

d
ξ ξ

ξ
= ≤ ≤′ are the arguments of u in Eq. (2), ia and jb are 

constants. The unified method provides the balance principle technique to evaluate 
the relation between the two parameters n  and m  and satisfies the consistency 
condition between the arbitrary functions in the solutions given by Eq. (5) (for 
details see [24, 25, 26, 27, 28]). 

It worth mentioning that, the unified method solves Eq. (4) to elementary 
solutions or elliptic solutions when = 1p or = 2p  respectively. 
(II) Rational solutions 
To get these solutions, we suppose that  

=0 =0

=0 =1

= ( ) = ( ) / ( ), ,

( ( )) = ( ), = , = 1,2,

n k
i i

i i
i i

p m q
p i

j s
j s

U U a r n k

b t x p

ξ ξ ξ

ξ ξ ξ λ

Γ Γ ≥

′Γ Γ − +

∑ ∑

∑ ∑
 

   (6) 

where ( ) ( )( )Γ Γ , , ,1s
d t x s q

d
ξ ξ

ξ
= ≤ ≤′ are the arguments of u  in Eq. (2), ,i ia r , and jb are 

constants. Similarly, The unified method provides the balance principle technique 
to evaluate the relation between the parameters ,n k  and m  and satisfies the 
consistency condition between the arbitrary functions in the solutions given by Eq. 
(6) (for details see [24,25,26,27,28]). Furthermore, the values of 𝑝𝑝 give different 
types for these solutions by the same criteria described in (I). 
 
2.2. The description of improved Riccati sub-equation method 
 

In this subsection we express the improved Riccati sub-equation which is 
proposed in [29,30] for finding exact solutions of NLEEs, that the essential steps of 
this method are described below.  
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Step 1. We suppose that Eq. (4) has the following solution  

=0
( ) = ( ( )) ,

n
i

i
i

U aξ ω ψ ξ+∑    (7) 

where ω  and ia  are arbitrary, and ( )ψ ξ  is a solution of the fractional Riccati 
equation that satisfies  

2( ) = ( ),ψ ξ σ ψ ξ′ +    (8) 
Step 2. The positive integer n  in Eq. (7) is determined with the balancing of the 
highest order derivatives and nonlinear terms in Eq. (4). 
Step 3. Substituting (7) along with Eq. (8) into Eq. (4) and collecting the 
coefficients of ( )ψ ξ  and setting the coefficients of [ ( )] ( = 0,1,2, , )i i nψ ξ   to be zero, 
we get a set of overdetermined nonlinear algebraic equations for ( = 0,1,2, , )ia i n , 
ω  and σ .  
Step 4. Finally, assuming that ,ω σ  and ( = 0,1,2, , )ia i n  can be obtained by solving 
the algebraic equations in step 3 and substituting these constants and the solutions 
of Eq. (8) into Eq. (7), we can finally obtain exact solutions of Eq. (4).  
Step 5. The Riccati equation (8) admits the following exact solutions [31,32]  
Type I. When < 0,σ  

1( ) = tanh( ),ψ ξ σ σξ− − −  
2 ( ) = coth( ),ψ ξ σ σξ− − −  
( )3 = tanh(2 ) (2 ),sechiψ ξ σ σξ σ σξ− − − ± − −  
( )4 = coth(2 ) (2 ),cschψ ξ σ σξ σ σξ− − − ± − −  

( )5
1= tanh( ) coth( ) ,
2 2 2

σ σψ ξ σ ξ σ ξ
 − −

− − + −  
 

 

Type II. When > 0,σ  
6 ( ) = tan( ),ψ ξ σ σξ  
7 ( ) = cot( ),ψ ξ σ σξ−  
( )8 = tan(2 ) sec(2 ),ψ ξ σ σξ σ σξ− ±  
( )9 = cot(2 ) csc(2 ),ψ ξ σ σξ σ σξ− ±  

( )10
1= tan( ) cot( ) ,
2 2 2

σ σψ ξ σ ξ σ ξ
 

−  
 

 

Type III. When = 0,σ  

11
1( ) = , = .d const

d
ψ ξ

ξ
−

+
 

2.3. The description of the modified Kudryashov method 
 

A summary of the modified Kudryashov method [33,34] is given to extract new 
closed-form solutions to a nonlinear system of partial differential equations. The 
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essential steps of modified Kudryashov method are described below.  
Step 1. Lets assume that the solution ( )U ξ  of the nonlinear Eq. (4) can be 
considered as  

0
=1

( ) = ( ),
N

i
i

i
U a a Qξ ξ+∑   (9) 

where unknowns ( = 0,1, )ia i N  are identified later,so that 0Na ≠ , N  is a positive 
integer and ( )Q ξ  satisfies the following new auxiliary equation  

( )2( ) = ( ) ( ) ln( ), 0,1,Q Q Q A Aξ ξ ξ′ − ≠    (10) 
where the solution of the Eq. (10) is  

1( ) =
1

Q
dA ξξ

+
   (11) 

Step 2. By inserting Eq. (9) along with Eq. (10) in Eq. (4) and equating the 
coefficient of each power of ( )Q ξ  to zero, we get a system of algebraic equations 
in different parameters. The received system is then solved for finding some free 
parameters values. Finally, new closed-form solutions for the nonlinear Eq. (2) are 
produced. 
 
 3. The BBMP equation with power law nonlinearity 
 

In this Section, we obtain several solutions of BBMP equations with power law 
nonlinearity using methods that we have presented in before Section. 
Let  

( ) = ( , ), = ,U u x t x tξ ξ λ−    (12) 
from relation (12) and its derivatives we have  

= 0.nU aU bU U cUξ ξ ξ ξξξλ λ− + + −    (13) 
or  

1( ) = 0, .
1

nba U U cU a
n ξξλ λ λ+− + − ≠
+

  (14) 

By using the transformation  
1

= ,nU V    (15) 
Eq. (14) can be written as  

2 2 2 2 2 3( 1) ( 1) (1 )( ) = 0, 0, 1.c n n V V c n V n n a V b n V n nξξ ξλ λ λ− + + − + + − + ≠ ≠ ±  (16) 
 

 3.1. The unified method 
 

By considering the homogeneous balance between V V ξξ  and 3V  in Eq. (16), 
we get = 2( 1), = 1,2,3,....n k k−  Here, we confine ourselves to find these solutions 
when = 2k  and = 1p  or = 2.p  
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3.1.1. The solitary wave solution 
 

The unified method admits the solitary wave solution of Eq. (1) as  
1

2 2 2

1 2 2

1(2 3 ) sech ( )
2( , ) = ,

2 ( )

n
ac n n R R

u x t
b n c R

ξ + + 
− 

+ 
 

   (17) 

where 
2

2 2=
)

anx t
n c R

ξ −
+

 and 2
1 0 2= 4R b b b− .  

 
3.1.2. The soliton wave solution 
 

From Eq. (5) in Eq. (16), we get the soliton wave solution of Eq. (1) as  
1

1
22 2 2

1 2
2 2

1
2 2 22

2 1 2

4 (2 3 )( , ) = , > 0,

1 2 ( 4 )

n

b

b

b

b

ab b c n n eu x t b

b b e b c b n

ξ

ξ

 
 
 

+ + 
    − +      

    (18) 

where 
2

2
2 2

1 2

4=
4

ab nx t
b c b n

ξ −
+

.  

 
3.1.3. The elliptic wave solution 
 

Herewith we write the elliptic wave solution of (1) by using the unified method 
(something is missing here). This solution is given by (for details see the subsection 
2.1)  

( )
( )

1
2 2

2 4
3

2

6 2 ( )
( , ) ,

2 3
ac b H b

u x t
b b c c H

ξ + + Γ
 = −
 − + + 

   (19) 

where 
2

2=
2 3

ax t
b c c H

ξ +
− + +

 and 2
2 0 4= 4H b b b− .  

The auxiliary function ( )ξΓ  in Eq. (19) is given by  
4 2

4 2 0( ) = ( ) ,b b bξ ξ′Γ Γ + Γ +  
which is classified into different types of elliptic functions according to the 
classification in [35]. 

Finally, we find the rational function solutions of Eq. (1) by a similar technique 
in subsection 3.1.4 that we did by using the unified method. These rational 
solutions (periodic type or soliton type) are introduced in the following subsection.  
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3.1.4. The rational solutions 
Here, the rational solutions of Eq. (1) will be obtained in two different forms as 

follows.  
 

Case 1:periodic type 
1

2 2
2 2

4 2
2 2

3 (1 sin( ))( , ) = ,
(2 )(1 sin( ))

ab c bu x t
b b c b

ξ
ξ

 −
 + + 

 (20) 

 where 
2
23=

2
bbx tξ − .  

Case 2:soliton type 

( )
( )

2
2

5 2
2

2

3
( , ) = , > 0,

2

b

b

ab c e R
u x t b

b b c e R

ξ

ξ

 + 
 

− − 
 

 (21) 

where 
2

2=
2

ax t
b c

ξ −
−

 and 2
1 0 2= 4R b b b− . 

 
3.2. The improved Riccati sub-equation method 

 
We assume that Eq. (16) has a solution in the form given below  

=0
( ) = ( ) ,

n
i

i
i

V aξ ω ψ+∑
 

(22) 

where ω  and ( = 0,1,2, , )ia i n  are constants and ( )ψ ξ  satisfies the Riccati Eq. (8).  
Balancing between V V ξξ  and 3V  in Eq. (16) we can gain = 2n . So, we have  

2
0 1 2( ) = ( ) ( ) .V a a aξ ω ψ ω ψ+ + + +   (23) 

By substituting Eq. (23) and its derivatives into Eq. (16) and collecting all terms 
with the same power of ψ  together, the left-hand side of Eq. (16) is converted into 
another polynomial in ψ . Equating each coefficient of this polynomial to zero, 
yields a set of simultaneous algebraic equations for the unknowns 0 1, ,a a ω  and λ .  

On using Maple software package, we finally get a set of algebraic equations. 
Then solving the set of algebraic equations yields  

( )( )
( )

( )
( )

( )
( )

2 22

02 2

2 2

1 22 2

2 3
= , = ,

4 4

2 3 2 3
= 4 , = 2 .

4 4

ca n nn a a
n c b n c

ca n n ca n n
a a

b n c b n c

σ ω
λ

σ σ

ω

σ σ

+ + +
− −
− + − +

+ + + +
−

− + − +

 (24) 

Using Eqs. (24), (23), (12), (15) and the solutions of (8), we can find the following 
travelling wave solutions of Eq. (1) as follows  
 



274  M.S. Osman, Hadi Rezazadeh, , Mostafa Eslami, Ahmad Neirameh, Mohammad Mirzazadeh 

Type I. When < 0,σ  

( )( )
1

2 2
6 ( , ) = ( ) 4 ( tanh( )) 2( tanh( )) ,nu x y L σ ω ω ω σ σξ ω σ σξ+ + − − − − − − −  

( )( )
1

2 2
7 ( , ) = ( ) 4 ( coth( )) 2( coth( )) ,nu x y L σ ω ω ω σ σξ ω σ σξ+ + − − − − − − −

 
((

))

2
8

1
2

( , ) ( ) 4 ( ( tanh(2 ) sech(2 ))

2( ( tanh(2 ) sech(2 ))) ,n

u x y L i

i

σ ω ω ω σ σξ σ σξ

ω σ σξ σ σξ

= + + − − − − −

− − − − − −



  

((
))

2
9

1
2

( , ) ( ) 4 ( ( coth(2 ) csch(2 ))

2( ( coth(2 ) csch(2 ))) ,n

u x y L σ ω ω ω σ σξ σ σξ

ω σ σξ σ σξ

= + + − − − − −

− − − − − −



  

( )( )
1

2 2
7 ( , ) = ( ) 4 ( coth( )) 2( coth( )) ,nu x y L σ ω ω ω σ σξ ω σ σξ+ + − − − − − − −  

2
10

1( , ) = ( (( ) 4 ( ( tanh( ) coth( )))
2 2 2

u x y L σ σσ ω ω ω σ ξ σ ξ− −
+ + − − + −  

where 
2

2=
4

n ax t
n c

ξ
σ

+
− +

 and ( )
( )

2

2

2 3
= .

4

ca n n
L

b n cσ

+ +

− +
 

Type II. When > 0,σ  

( )( )
1

2 2
11( , ) = ( ) 4 ( tan( )) 2( tan( )) ,nu x y L σ ω ω ω σ σξ ω σ σξ+ + + − +  

( )( )
1

2 2
12 ( , ) = ( ) 4 ( cot( )) 2( cot( )) ,nu x y L σ ω ω ω σ σξ ω σ σξ+ + − − −

 
((

))

2
13

1
2

( , ) ( ) 4 ( ( tan(2 ) sec(2 ))

2( ( tan(2 ) sec(2 ))) ,n

u x y L σ ω ω ω σ σξ σ σξ

ω σ σξ σ σξ

= + + −

− −



  

((
))

2
14

1
2

( , ) ( ) 4 ( ( cot(2 ) csc(2 ))

2( ( cot(2 ) csc(2 ))) ,n

u x y L σ ω ω ω σ σξ σ σξ

ω σ σξ σ σξ

= + + −

− −





 

2
15

1( , ) = ( (( ) 4 ( ( tan( ) cot( )))
2 2 2

u x y L σ σσ ω ω ω σ ξ σ ξ+ + + −  

Type III. When = 0,σ  
1

2 2
16

1 1( , ) = ( (( ) 4 ( ) 2( ) )) , = .nu x y L d const
d d

σ ω ω ω ω
ξ ξ

+ + − − −
+ +

 

where 
2

2=
4

n ax t
c n

ξ
σ

+
−

 and ( )
( )

2

2

2 3
= .

4

ca n n
L

b c nσ

+ +

−
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 3.3. The modified Kudryashov method 
 

Assume the formal solution of the Eq. (12) through the Eq. (9)  
2

0 1 2( ) = ( ) ( ).V a aQ a Qξ ξ ξ+ +   (25) 
We substitute Eq. (25) along with its first and second derivatives into Eq. (16) and 
collect all terms with the same order of ( )Q ξ , we get a system of nonlinear 
algebraic equation. Solving this system, we acquire the following solution sets:  
 

( )
( )

( )( )

( )

22

0 12 2 2 2

2

2 2 2

2 ( 1)( 2)
= , = 0, = ,

2 ( 1)( 2)ln= .
ln

c a n n Ln An a a a
n c Ln A b n c Ln A

c a n n Aa
b n c A

λ
− + +

+ +

+ +
+

 (26) 

Using Eqs. (26), (25), (12), (15) and auxiliary equation (11), we can find the 
following travelling wave solutions of Eq. (1) as follows  

( )

( )( ) ( ) ( )

( )

( )( ) ( )

2

17
2 2

2 2
2 2 2 2

2

2
2 2

2 2

2 ( 1)( 2)
( , ) =

1 cosh sinh

2 ( 1)( 2)

1 cosh

c a n n Ln A
u x t

n a n ab n c Ln A d x LnA x LnA
n c Ln A n c Ln A

c a n n Ln A

n ab n c Ln A d x LnA
n c Ln A



 + +− +                  + + − + −         + +         

+ +

  
 + + −
  +  ( )

1

2
2

2 2

.

sinh

n

n ax LnA
n c Ln A







     
     + − 
     +       

 
 4. Conclusions 
 

In this paper, the unified, improved Riccati sub-equation and modified 
Kudryashov methods were used to obtain the solutions to the BBMP equations with 
power law nonlinearity. These solutions include soliton wave solutions, solitary 
wave solutions, elliptic wave solutions, and periodic wave rational solutions, which 
may be helpful to better realize the mechanisms of the complex physical 
phenomena in different branches of engineering sciences, mathematical physics 
and other technical areas. Moreover, these methods can be applied to solve other 
NLEEs. 
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