

ϕ -INJECTIVITY AND CHARACTER INJECTIVITY OF BANACH MODULES

M. Essmaili¹, M. Fozouni², J. Laali³

In this paper, some homological notions of Banach A -modules such as ϕ -injectivity, 0-injectivity and character injectivity are discussed, where ϕ is a non-zero multiplicative linear functional on Banach algebra A . We characterize 0-injectivity of Banach A -modules in terms of ϕ -injectivity over the unitization of the Banach algebra A . With some examples, we show difference between these notions. As a consequence, we show that for $LUC(G)$, the space of all left uniformly continuous functions on locally compact group G , as a $L^1(G)$ -module these notions are equivalent. This leads to a generalization of some known results.

Keywords: ϕ -injectivity, character injectivity, semigroup algebras, group algebras.

MSC2010: 46M10, 43A20, 46H25.

1. introduction

Projectivity and flatness of Banach modules were originally introduced and studied by A. Ya. Helemskii. It is a well known theorem due to Helemskii that if A is an amenable (contractible) Banach algebra, then every Banach A -module E is flat (projective) [5, Theorem VII.2.29]. However, the converse is a long standing open problem yet. Recently, Nasr-Isfahani and Soltani Renani in [11] introduced and studied the notions of ϕ -injectivity and ϕ -flatness for Banach modules which is a somewhat restrictive category of Banach modules and their morphisms, where $\phi : A \rightarrow \mathbb{C}$ is a non-zero homomorphism. They obtained an important connection between the notions ϕ -flatness and ϕ -amenability introduced by Kaniuth, Lau and Pym in [6]; see also [7] and [9]. Indeed, it is shown in [11, Proposition 3.1] that the Banach algebra A is left ϕ -amenable if and only if every Banach left A -module E is ϕ -flat. This result gives a positive answer to the above open problem raised by Helemskii in this homology setting based on character ϕ .

Afterwards, the authors in [3] studied some hereditary properties of ϕ -injectivity for Banach A -modules related to the closed ideals of Banach algebra A . It is shown that if J is a left invariant complemented ideal in A , then ϕ -injectivity of J and A/J is equivalent to the ϕ -injectivity of A as Banach left A -module. As a main result, it is shown in [3, Theorem

¹Department of Mathematics, Faculty of Mathematical and Computer Science, Kharazmi University, 50 Taleghani Avenue, 15618 Tehran, Iran, e-mail: m.essmaili@khu.ac.ir, corresponding author

²Department of Mathematics, Faculty of Science and Engineering, Gombad Kavous University, Gonbad Kavous, Golestan, Iran, e-mail: fozouni@hotmail.com

³Department of Mathematics, Faculty of Mathematical and Computer Science, Kharazmi University, 50 Taleghani Avenue, 15618 Tehran, Iran, e-mail: laali@khu.ac.ir

3.2] that the semigroup algebra $\ell^1(\mathbb{N}_\wedge)$ as a Banach left $\ell^1(\mathbb{N}_\wedge)$ -module is ϕ -injective for each character ϕ , although is not injective. The present paper is as a continuation of this latter work and organized as follows:

In section 2, after recalling some background definitions and notations we introduce the notions of 0-injectivity and character injectivity of Banach modules. From this follows the relation between 0-injectivity and ϕ -injectivity of Banach modules over the unitization of Banach algebra A . Using this fact, we can construct many examples of Banach modules which are not ϕ -injective. In section 3, we list some examples on harmonic analysis and show that the notions 0-injectivity, character injectivity and injectivity are different. Moreover, we concentrate on character injectivity of some classes of Banach modules over the group algebra $L^1(G)$. Indeed, we prove that the notions of injectivity and character injectivity are equivalent for some classes of Banach modules. This result generalizes a known result due to Nasr-Isfahani and Soltani Renani.

2. ϕ -injectivity and 0-injectivity

Suppose that E and F are Banach spaces. We denote by $B(E, F)$ the set of bounded linear operators from E into F . For a Banach algebra A , we also denote by **A-mod** the category of Banach left A -modules. For each $E, F \in \mathbf{A-mod}$, let ${}_A B(E, F)$ be the closed subspace of $B(E, F)$ consisting of the left A -module morphisms. An operator $T \in B(E, F)$ is called *admissible* if there exists $S \in B(F, E)$ such that $T \circ S \circ T = T$. A Banach left A -module E is called *injective* if for each $F, K \in \mathbf{A-mod}$ and admissible monomorphism $T \in {}_A B(F, K)$, the induced map ${}_A B(K, E) \rightarrow {}_A B(F, E)$ is onto. Throughout the paper, we regard the space $B(A, E)$ as a Banach A -bimodule with the following module actions:

$$(a \cdot T)(b) = T(ba), \quad (T \cdot a)(b) = T(ab) \quad (T \in B(A, E), a, b \in A).$$

Let $\Delta(A)$ be the set of all characters of the Banach algebra A , $\phi \in \Delta(A)$ and $E \in \mathbf{A-mod}$. We set,

$$I(\phi, E) = \text{span}\{a \cdot x - \phi(a)x : a \in A, x \in E\}.$$

We recall that ϕ -injectivity of Banach modules was first introduced by Nasr-Isfahani and Soltani Renani in [11].

Definition 2.1. Let A be a Banach algebra, $\phi \in \Delta(A)$ and $E \in \mathbf{A-mod}$. We say that E is ϕ -injective if, for each $F, K \in \mathbf{A-mod}$ and admissible monomorphism $T : F \rightarrow K$ with $I(\phi, K) \subseteq \text{Im}(T)$, the induced map $T_E : {}_A B(K, E) \rightarrow {}_A B(F, E)$ defined by $T_E(R) = R \circ T$ is onto.

Let $E \in \mathbf{A-mod}$ and $A^\sharp = A \times \mathbb{C}$ denotes the unitization of A . Then E is a Banach left A^\sharp -module with the following left module action:

$$(a, \lambda) \cdot x = a \cdot x + \lambda x \quad (a \in A, \lambda \in \mathbb{C}, x \in E).$$

According to [11], ${}_A B(A^\sharp, E)$ is the set of all $T \in B(A^\sharp, E)$ satisfy

$$T(ab - \phi(b)a) = a \cdot T(b - \phi(b)e^\sharp) \quad (a, b \in A),$$

where $e^\sharp = (0, 1)$ denotes the unit of A^\sharp . For each $a, b, c \in A$ and $T \in {}_\phi B(A^\sharp, E)$,

$$\begin{aligned} (c \cdot T)(ab - \phi(b)a) &= T(abc - \phi(b)ac) \\ &= T(a(bc - \phi(b)c)). \end{aligned}$$

By definition, since $\phi(bc - \phi(b)c) = 0$ and $T \in {}_\phi B(A^\sharp, E)$ we conclude that,

$$\begin{aligned} (c \cdot T)(ab - \phi(b)a) &= a \cdot T(bc - \phi(b)c) \\ &= a \cdot (c \cdot T)(b - \phi(b)e^\sharp). \end{aligned}$$

This follows that ${}_\phi B(A^\sharp, E)$ is a closed A -submodule of $B(A^\sharp, E)$. Moreover, *the canonical morphism* $\Pi : E \longrightarrow B(A^\sharp, E)$ is regarded as follows:

$$\Pi(x)(a) = a \cdot x \quad (x \in E, a \in A^\sharp).$$

It is straightforward to check that $\text{Im}(\Pi) \subseteq {}_\phi B(A^\sharp, E)$. According to this fact, the canonical map Π can be denoted by ${}_\phi \Pi$ as a map from E into ${}_\phi B(A^\sharp, E)$. The following theorem gives a characterization for ϕ -injectivity in terms of a coretraction problem; see [11, Theorem 2.4].

Theorem 2.1. *Let A be a Banach algebra and $\phi \in \Delta(A)$. For $E \in \mathbf{A-mod}$ the following statements are equivalent.*

- (i) E is ϕ -injective.
- (ii) There exists a left A -module morphism ${}_\phi \rho : {}_\phi B(A^\sharp, E) \longrightarrow E$ such that is a left inverse for the canonical morphism ${}_\phi \Pi$.

In this section, we first give the definition of 0-injectivity and character injectivity of Banach left A -module. Also, we obtain relation between 0-injectivity of Banach left A -modules and ϕ -injectivity of A^\sharp -modules.

Similar to [11], for each $E \in \mathbf{A-mod}$ we can define,

$${}_0 B(A^\sharp, E) = \{T \in B(A^\sharp, E) : T(ab) = a \cdot T(b) \text{ for all } a, b \in A\},$$

which is a closed left Banach A -submodule of $B(A^\sharp, E)$.

Definition 2.2. *Let A be a Banach algebra and $E \in \mathbf{A-mod}$. We say that*

- (i) E is 0-injective if there exists a map ${}_0 \rho : {}_0 B(A^\sharp, E) \longrightarrow E$ such that is a left A -module morphism and a left inverse for the canonical morphism ${}_0 \Pi$.
- (ii) E is character injective if E is ϕ -injective for each $\phi \in \Delta(A) \cup \{0\}$.

Proposition 2.1. *Let A be a Banach algebra and $E \in \mathbf{A-mod}$. Then E is 0-injective if and only if for each $F, K \in \mathbf{A-mod}$ and admissible monomorphism $T : F \longrightarrow K$ for which $A \cdot K = \text{span}\{a \cdot k : a \in A, k \in K\} \subseteq \text{Im}(T)$, the induced map $T_E : {}_0 B(K, E) \longrightarrow {}_0 B(F, E)$ is onto.*

Proof. It is clear that ${}_0 \Pi$ is an admissible monomorphism from E into ${}_0 B(A^\sharp, E)$. First, suppose that for each $F, K \in \mathbf{A-mod}$ and admissible monomorphism $T : F \longrightarrow K$ for which

$$A \cdot K = \text{span}\{a \cdot k : a \in A, k \in K\} \subseteq \text{Im}(T),$$

the induced map $T_E : {}_0 B(K, E) \longrightarrow {}_0 B(F, E)$ is onto. Take $F = E$, $K = {}_0 B(A^\sharp, E)$ and $T = {}_0 \Pi$. Then $A \cdot K \subseteq \text{Im}({}_0 \Pi)$ and $a \cdot T = {}_0 \Pi(T(a))$, for each $a \in A$ and $T \in K$. Hence, for

the identity map $I_E \in {}_A B(F, E) = {}_A B(E, E)$, there exists $\rho \in {}_A B(K, E) = {}_A B({}_0 B(A^\sharp, E), E)$ such that $\rho \circ {}_0 \Pi = \rho \circ T = I_E$. It follows that E is 0-injective.

Conversely, let E be 0-injective. Suppose that $F, K \in \mathbf{A-mod}$ and $T : F \rightarrow K$ is an admissible monomorphism such that, $A \cdot K \subseteq \text{Im}(T)$. Let $W \in {}_A B(F, E)$ and define the map $R : K \rightarrow {}_0 B(A^\sharp, E)$ by

$$R(k)(a) = W \circ T'(a \cdot k) \quad (k \in K, a \in A^\sharp),$$

where $T' \in B(K, F)$ satisfies $T \circ T' \circ T = T$. We show that R is well defined, i.e., $R(k) \in {}_0 B(A^\sharp, E)$ for each $k \in K$. So, we will show that $R(k)(ab) = a \cdot R(k)(b)$ for each $a, b \in A$. By assumption $A \cdot K \subseteq \text{Im}(T)$ and so there exist $f, f' \in F$ such that $b \cdot k = T(f)$ and $ab \cdot k = T(f')$. Therefore,

$$\begin{aligned} a \cdot R(k)(b) &= a \cdot W \circ T'(b \cdot k) = a \cdot W \circ T'(T(f)) \\ &= a \cdot W(f) = W(a \cdot f) \end{aligned}$$

and,

$$R(k)(ab) = W \circ T'(ab \cdot k) = W \circ T'(T(f')) = W(f').$$

On the other hand,

$$T(a \cdot f) = a \cdot T(f) = a \cdot (b \cdot k) = ab \cdot k = T(f').$$

Hence,

$$a \cdot f = T' \circ T(a \cdot f) = T' \circ T(f') = f'.$$

Therefore, $a \cdot f = f'$ and this implies that $a \cdot R(k)(b) = R(k)(ab)$. Moreover, for each $b \in A^\sharp$ we have

$$\begin{aligned} R(a \cdot k)(b) &= W \circ T'(b \cdot (a \cdot k)) = W \circ T'(ba \cdot k) \\ &= R(k)(ba) = (a \cdot R(K))(b). \end{aligned}$$

It follows that $R(a \cdot k) = a \cdot R(k)$. Now, take $S = {}_0 \rho \circ R \in {}_A B(K, E)$. Since $R \circ T = {}_0 \Pi \circ W$, we conclude that $S \circ T = W$ and the proof is complete. \square

Recall that for a Banach algebra A , $\phi_\infty : A^\sharp \rightarrow \mathbb{C}$ denotes the character on A^\sharp defined by $\phi_\infty(a, \lambda) = \lambda$. In the following theorem, we obtain the relation between 0-injectivity of Banach A -modules and ϕ_∞ -injectivity of Banach modules over the unitization of Banach algebra A .

Theorem 2.2. *Let A be a Banach algebra and $E \in \mathbf{A-mod}$. Then the following are equivalent:*

- (i) $E \in \mathbf{A-mod}$ is 0-injective.
- (ii) E as a left A^\sharp -module is ϕ_∞ -injective.

Proof. (i) \Rightarrow (ii) Suppose that $E \in \mathbf{A-mod}$ is 0-injective. Thus, there exists a left A -module morphism $\rho : {}_0 B(A^\sharp, E) \rightarrow E$ such that $\rho \circ {}_0 \Pi = I_E$. Note that for each $T \in {}_{\phi_\infty} B((A^\sharp)^\sharp, E)$, we have $T|_{A^\sharp} \in {}_0 B(A^\sharp, E)$. Now, we define the map $\tilde{\rho} : {}_{\phi_\infty} B((A^\sharp)^\sharp, E) \rightarrow E$ by

$$\tilde{\rho}(T) = \rho(T|_{A^\sharp}) \quad (T \in {}_{\phi_\infty} B((A^\sharp)^\sharp, E)).$$

Hence, for each $T \in {}_{\phi_\infty} B((A^\sharp)^\sharp, E)$ and $(a, \lambda) \in A^\sharp$,

$$\begin{aligned}\tilde{\rho}((a, \lambda) \cdot T) &= \rho((a, \lambda) \cdot T|_{A^\sharp}) = \rho(a \cdot T|_{A^\sharp}) + \lambda \rho(T|_{A^\sharp}) \\ &= a \cdot \rho(T|_{A^\sharp}) + \lambda \rho(T|_{A^\sharp}) = (a, \lambda) \cdot \rho(T|_{A^\sharp}) \\ &= (a, \lambda) \cdot \tilde{\rho}(T).\end{aligned}$$

On the other hand, for each $x \in E$ we have

$$(\tilde{\rho} \circ {}_{\phi_\infty} \Pi)(x) = \rho({}_{\phi_\infty} \Pi(x)|_{A^\sharp}) = \rho({}_0 \Pi(x)) = x.$$

This follows that E as a left A^\sharp -module is ϕ_∞ -injective.

(ii) \Rightarrow (i) Suppose that E as a left A^\sharp -module is ϕ_∞ -injective. So, there exists a left A^\sharp -module morphism $\rho : {}_{\phi_\infty} B((A^\sharp)^\sharp, E) \rightarrow E$ such that $\rho \circ {}_{\phi_\infty} \Pi = I_E$. Now, define the map $\tilde{\rho} : {}_0 B(A^\sharp, E) \rightarrow E$ by

$$\tilde{\rho}(T) = \rho(\tilde{T}) \quad (T \in {}_0 B(A^\sharp, E)),$$

where the map $\tilde{T} : (A^\sharp)^\sharp \rightarrow E$ is defined by

$$\tilde{T}((a, \lambda), \mu) = T(a, \lambda + \mu) \quad (a \in A, \lambda, \mu \in \mathbb{C}).$$

First, note that for each $(a, \lambda), (b, \mu) \in A^\sharp$ we have

$$\begin{aligned}(a, \lambda) \cdot \tilde{T}((b, \mu) - \phi_\infty(b, \mu)e_{(A^\sharp)^\sharp}) &= (a, \lambda) \cdot \tilde{T}((b, \mu), -\mu) \\ &= (a, \lambda) \cdot T(b, 0) \\ &= (a, 0) \cdot T((b, 0)) + \lambda T((b, 0)).\end{aligned}$$

Since $T \in {}_0 B(A^\sharp, E)$, we have

$$\begin{aligned}(a, \lambda) \cdot \tilde{T}((b, \mu) - \phi_\infty(b, \mu)e_{(A^\sharp)^\sharp}) &= T((a, 0)(b, 0)) + \lambda T((b, 0)) \\ &= T((ab + \lambda b, 0)) \\ &= \tilde{T}((ab + \lambda b, 0), 0) \\ &= \tilde{T}((ab + \lambda b + \mu a, \lambda \mu) - (\mu a, \mu \lambda)) \\ &= \tilde{T}((a, \lambda)(b, \mu) - \phi_\infty(b, \mu)(a, \lambda)).\end{aligned}$$

This follows that $\tilde{T} \in {}_{\phi_\infty} B((A^\sharp)^\sharp, E)$ and so $\tilde{\rho}$ is well defined.

On the other hand, for each $a \in A$ and $T \in {}_0 B(A^\sharp, E)$,

$$\tilde{\rho}(a \cdot T) = \rho(\tilde{a} \cdot \tilde{T}) = \rho(a \cdot \tilde{T}) = a \cdot \rho(\tilde{T}) = a \cdot \tilde{\rho}(T),$$

and

$$(\tilde{\rho} \circ {}_0 \Pi)(x) = \rho(\widetilde{{}_0 \Pi(x)}) = \rho({}_{\phi_\infty} \Pi(x)) = x \quad (x \in E).$$

Now, we conclude that $E \in \mathbf{A-mod}$ is 0-injective and the proof is complete. \square

The following is an analogous result of [12, Proposition 3.1] which holds for ϕ -injectivity of Banach modules.

Proposition 2.2. *Let A be a Banach algebra, $\phi \in \Delta(A)$, $S \subseteq A^\sharp$ and $E \in \mathbf{A-mod}$. Suppose that $T \in {}_\phi B(A^\sharp, E)$ satisfies the following relation*

$$T(ab) = a \cdot T(b) \quad (a \in A^\sharp, b \in S).$$

If E is ϕ -injective, then there exists $x_0 \in E$ such that $T(b) = b \cdot x_0$ for each $b \in S$.

Proof. Since E is ϕ -injective there exists $\rho \in_A B({}_\phi B(A^\sharp, E), E)$ such that $\rho \circ \phi \Pi = I_E$. Now, the result follows by taking $x_0 = \rho(T)$. \square

Proposition 2.3. *Let A be a Banach algebra, $\phi \in \Delta(A)$ and B be a subalgebra of A . Then,*

- (i) *if A as a left B^\sharp -module is ϕ_∞ -injective, then there exists $a_0 \in A$ such that $b = ba_0$ for all $b \in B$.*
- (ii) *if A as a left A^\sharp -module is ϕ_∞ -injective, then A has a right identity.*
- (iii) *if A is a Banach algebra with a left approximate identity and A as a left A^\sharp -module is ϕ_∞ -injective, then A is unital.*

Proof. (i) Let $T : (B^\sharp)^\sharp \rightarrow A$ defined by

$$T((b, \lambda), \mu) = b \quad (b \in B, \lambda, \mu \in \mathbb{C}).$$

For each $a, b \in B$ and $\lambda, \mu \in \mathbb{C}$, we have

$$\begin{aligned} T(((a, \lambda), 0)((b, \mu), 0) - \phi_\infty((b, \mu), 0)((a, \lambda), 0)) &= ab + \mu a + \lambda b - \mu a \\ &= ab + \lambda b, \end{aligned}$$

and

$$((a, \lambda), 0) \cdot T(((b, \mu), 0) - \phi_\infty((b, \mu), 0)((0, 0), 1)) = ((a, \lambda), 0) \cdot b = ab + \lambda b.$$

Therefore, $T \in {}_{\phi_\infty} B((B^\sharp)^\sharp, A)$. On the other hand, for all $a, b \in B$ and $\lambda, \mu \in \mathbb{C}$ we have

$$T(((a, \lambda), \mu)((b, 0), 0)) = ab + \lambda b + \mu b = ((a, \lambda), \mu) \cdot T(((b, 0), 0)).$$

By Proposition 2.2 with $E = A$ and $S = B$, we conclude that there exists $a_0 \in A$ such that $b = ba_0$ for all $b \in B$.

- (ii) This easily follows from the part (i) with $B = A$.
- (iii) Let (e_α) be a left approximate identity for A . According the clause (ii), suppose that a_0 is a right identity for A . Hence $e_\alpha = e_\alpha a_0 \rightarrow a_0$ and for each $a \in A$, we have

$$e_\alpha a \rightarrow a, \quad e_\alpha a \rightarrow a_0 a.$$

It follows that a_0 is an identity of A . \square

Theorem 2.3. *Let A be a unital Banach algebra. Then $A \in \mathbf{A-mod}$ is 0-injective.*

Proof. Let e be the identity of A . Define the map $\rho : {}_0 B(A^\sharp, A) \rightarrow A$ by

$$\rho(T) = T(e) \quad (T \in {}_0 B(A^\sharp, A)).$$

It is obvious that ρ is a left inverse for ${}_0 \Pi$, because for each $a \in A$ we have,

$$(\rho \circ {}_0 \Pi)(a) = ({}_0 \Pi(a))(e) = ea = a.$$

Moreover, for each $a \in A$ and $T \in {}_0B(A^\sharp, A)$,

$$\begin{aligned}\rho(a \cdot T) &= (a \cdot T)(e) = T(ea) = T(a) \\ &= T(ae) = a \cdot T(e) = a \cdot \rho(T).\end{aligned}$$

It follows that ρ is a left A -module morphism. Therefore, $A \in \mathbf{A-mod}$ is 0-injective. \square

As a consequence, we characterize 0-injectivity of $A \in \mathbf{A-mod}$, in the case where A has a left approximate identity.

Corollary 2.1. *Let A be a Banach algebra with a left approximate identity. Then the following are equivalent:*

- (i) $A \in \mathbf{A-mod}$ is 0-injective.
- (ii) A has an identity.

Proof. (i) \Rightarrow (ii) Apply Theorem 2.2 and Proposition 2.3(iii).

(ii) \Rightarrow (i) This follows from Theorem 2.3. \square

Example 2.1. Consider the Banach algebra $A = A_\phi(X)$ [11, Example 2.5] where X is a Banach space with $\dim(X) > 2$ and $\phi \in X' \setminus \{0\}$ and the multiplication is defined by

$$ab = \phi(a)b \quad (a, b \in A).$$

This Banach algebra has a left identity but does not have any right identity. Using Corollary 2.1, it follows that A is not 0-injective in $\mathbf{A-mod}$. Moreover, $A \in \mathbf{A-mod}$ is ϕ -injective [11, Example 2.5].

We finish this section with a result on left invariantly complemented ideals. Let X be a Banach left A -module and Y be a Banach A -submodule of X . Following [4, Definition 6.3], we say that Y is *left (right) invariantly complemented* in X if there exists a $P \in {}_A B(X, Y)$ ($P \in B_A(X, Y)$) such that $P^2 = P$ and $P(X) = Y$.

Proposition 2.4. *Let A be a Banach algebra and I be a closed ideal of A . Then,*

- (i) *if A/I as a left A^\sharp -module is ϕ_∞ -injective, then I has a right modular identity.*
- (ii) *if I is left invariantly complemented and I as a left A^\sharp -module is ϕ_∞ -injective, then there exists $b_0 \in I$ such that $a = ab_0$ for all $a \in I$.*
- (iii) *if I is left invariantly complemented and I'' as a left A^\sharp -module is ϕ_∞ -injective, then I has a bounded right approximate identity.*

Proof. (i) Consider the operator $T : (A^\sharp)^\sharp \rightarrow A/I$ defined by

$$T(((a, \lambda), \mu)) = a + I \quad (a \in A, \lambda, \mu \in \mathbb{C}).$$

Now, apply Proposition 2.2.

(ii) Since I is left invariantly complemented there exists a projection $P \in {}_A B(A, A)$ such that $P(A) = I$. Define $T : (A^\sharp)^\sharp \rightarrow I$ by $T(((a, \lambda), \mu)) = P(a)$. For each $b \in I$, $a \in A$ and scalars λ, μ we have

$$T(((a, \lambda), \mu)((b, 0), 0)) = P(ab + \lambda b + \mu b) = ab + \lambda b + \mu b = ((a, \lambda), \mu) \cdot T(((b, 0), 0)).$$

Moreover,

$$\begin{aligned} T(((a, \lambda), 0)((b, \mu), 0) - \phi_\infty((b, \mu), 0)((a, \lambda), 0)) &= P(ab + \mu a + \lambda b) - P(\mu a) \\ &= P(ab + \lambda b), \end{aligned}$$

and

$$\begin{aligned} ((a, \lambda), 0) \cdot T(((b, \mu), 0) - \phi_\infty((b, \mu), 0)((0, 0), 1)) &= ((a, \lambda), 0) \cdot P(b) \\ &= a \cdot P(b) + P(\lambda b) \\ &= P(ab + \lambda b). \end{aligned}$$

Now, using Proposition 2.2 the proof is complete.

(iii) Suppose that $T : (A^\sharp)^\sharp \rightarrow I''$ is defined by $T(((a, \lambda), \mu)) = \widehat{P(a)}$. Hence similar to the proof of part (ii), there exists $\Phi \in I''$ such that for all $a \in I$,

$$a \cdot \Phi = \widehat{P(a)} = \widehat{a}.$$

Now, the result follows from the Goldstine and Mazur Theorems; see [1, A.3.29, (i), (ii)]. \square

3. Some examples on harmonic analysis

In this section, with some examples we show difference between 0-injectivity, character injectivity and injectivity of Banach modules.

Example 3.1. Let $\ell^1(\mathbb{N}_\wedge)$ be the semigroup algebra on semigroup $S = (\mathbb{N}, \wedge)$ with the following product:

$$\mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}, \quad (m, n) \longrightarrow m \wedge n = \min\{m, n\}.$$

It has been proved in [3, Theorem 3.2] that $\ell^1(\mathbb{N}_\wedge)$ as a Banach left $\ell^1(\mathbb{N}_\wedge)$ -module is ϕ -injective, for each $\phi \in \Delta(\ell^1(\mathbb{N}_\wedge))$. Since $\ell^1(\mathbb{N}_\wedge)$ is a non-unital Banach algebra with a bounded approximate identity, by Corollary 2.1, we conclude that $\ell^1(\mathbb{N}_\wedge)$ as a Banach left $\ell^1(\mathbb{N}_\wedge)$ -module is not 0-injective.

Example 3.2. Let $\ell^1(\mathbb{N}_\vee)$ be the semigroup algebra on semigroup $S = (\mathbb{N}, \vee)$ with the following product:

$$\mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}, \quad (m, n) \longrightarrow m \vee n = \max\{m, n\}.$$

It is proved in [3, Theorem 3.3] that $\ell^1(\mathbb{N}_\vee)$ as a Banach left $\ell^1(\mathbb{N}_\vee)$ -module is ϕ -injective for each $\phi \in \Delta(\ell^1(\mathbb{N}_\vee))$. Moreover, since $\ell^1(\mathbb{N}_\vee)$ is unital we conclude that $\ell^1(\mathbb{N}_\vee)$ as a Banach left $\ell^1(\mathbb{N}_\vee)$ -module is character injective. Recall that by a modification of [12, Theorem 4.8] for right modules, we conclude that $c_0(\mathbb{N}_\vee)$ as a Banach right $\ell^1(\mathbb{N}_\vee)$ -module is not flat. Thus $\ell^1(\mathbb{N}_\vee)$ as a Banach left $\ell^1(\mathbb{N}_\vee)$ -module is not injective.

In the sequel, we concentrate on character injectivity of some classes of Banach modules over the group algebra $L^1(G)$ and the measure algebra $M(G)$.

Example 3.3. For a locally compact group G , by Corollary 2.1, we conclude that $L^1(G) \in \mathbf{L}^1(\mathbf{G})\text{-mod}$ is 0-injective if and only if G is discrete. Moreover, it follows that $M(G) \in \mathbf{M}(\mathbf{G})\text{-mod}$ is 0-injective. Recall that $M(G) \in \mathbf{M}(\mathbf{G})\text{-mod}$ is injective if and only if G is

amenable [13, Table 3.1, Page 50]. Similar to [13, Theorem 3.1.2], $M(G) \in \mathbf{L}^1(\mathbf{G})\text{-mod}$ is 0-injective.

For a locally compact group G , the space of all bounded left uniformly continuous functions $LUC(G)$, is a closed submodule of $L^\infty(G)$ as a Banach $M(G)$ -bimodule. Thus, we can regard $LUC(G)'$ as a Banach $M(G)$ -bimodule with the dual module actions; for more details see [1] and [10]. It is shown in [10, Theorem 2.6] that $LUC(G)'$ as the Banach left (right) $M(G)$ -module is injective if and only if G is amenable. In the following, we prove that $LUC(G)'$ as the Banach left $M(G)$ -module and $L^1(G)$ -module is always 0-injective.

Theorem 3.1. *Let G be a locally compact group. Then we have*

- (i) $LUC(G)' \in \mathbf{L}^1(\mathbf{G})\text{-mod}$ is 0-injective.
- (ii) $LUC(G)' \in \mathbf{M}(\mathbf{G})\text{-mod}$ is 0-injective.

Proof. (i) By Theorem 2.2, it suffices to show that $LUC(G)'$ as a Banach left $L^1(G)^\sharp$ -module is ϕ_∞ -injective. Since $\ker \phi_\infty = L^1(G)$ has a bounded approximate identity, it follows from [6, Proposition 2.1] that $L^1(G)^\sharp$ is ϕ_∞ -amenable. Now, by [11, Proposition 3.1] we conclude that $LUC(G)' \in \mathbf{L}^1(\mathbf{G})^\sharp\text{-mod}$ is ϕ_∞ -injective and the proof is complete.

The clause (ii) follows by a similar argument. \square

In the following, we show that for some classes of Banach modules the notions 0-injectivity, character injectivity and injectivity are equivalent. This leads to a generalization of [10, Theorem 2.4].

Theorem 3.2. *Let G be a locally compact group. Then the following statements are equivalent:*

- (i) $LUC(G) \in \mathbf{L}^1(\mathbf{G})\text{-mod}$ is injective.
- (ii) $LUC(G) \in \mathbf{L}^1(\mathbf{G})\text{-mod}$ is character injective.
- (iii) $LUC(G) \in \mathbf{L}^1(\mathbf{G})\text{-mod}$ is 0-injective.
- (iv) G is discrete.

Proof. The implications (i) \Rightarrow (ii) and (ii) \Rightarrow (iii) are obvious. By [10, Theorem 2.5], the statement (i) and (iv) are equivalent.

(iii) \Rightarrow (iv) Let $LUC(G)$ as a Banach left $L^1(G)$ -module be 0-injective. Thus, there exists a left inverse $\rho \in {}_{L^1(G)}B({}_0B(L^1(G)^\sharp, LUC(G)), LUC(G))$ for the canonical morphism ${}_0\Pi$. Define the map $Q : L^\infty(G) \longrightarrow {}_0B(L^1(G)^\sharp, LUC(G))$ by

$$Q(g)((f, \lambda)) = f \cdot g \quad (\lambda \in \mathbb{C}, f \in L^1(G), g \in L^\infty(G)).$$

It is easy to check that Q is well defined. On the other hand, we have

$$Q(h)((f, 0)) = {}_0\Pi(h)((f, 0)) \quad (h \in LUC(G), f \in L^1(G)).$$

Now, we show that $\rho \circ Q : L^\infty(G) \rightarrow LUC(G)$ is a projection. Let (e_α) be a left bounded approximate identity for $LUC(G)$ in $L^1(G)$. Thus for all $h \in LUC(G)$ we have,

$$\rho(Q(h) - h) = \lim_\alpha e_\alpha \cdot \rho(Q(h) - {}_0\Pi(h)) = \lim_\alpha \rho(e_\alpha Q(h) - e_\alpha {}_0\Pi(h)) = 0.$$

Now, since $LUC(G)$ is a closed subspace of $C_b(G)$ which contains $C_0(G)$, the result follows from [8, Theorem 4]. \square

We finish the paper with the following open problem.

Let G be a locally compact group. It is shown in [2, Theorem 4.9] that $L^1(G) \in \mathbf{L}^1(\mathbf{G}\text{-mod})$ is injective if and only if G is amenable and discrete. Now, suppose that $L^1(G) \in \mathbf{L}^1(\mathbf{G}\text{-mod})$ is character injective. By Corollary 2.1, it follows that $L^1(G)$ has an identity and so G is discrete, but we do not know whether G is amenable.

Open problem: Are the following statements equivalent?

- (i) $L^1(G) \in \mathbf{L}^1(\mathbf{G}\text{-mod})$ is character injective.
- (ii) G is amenable and discrete.

Acknowledgment: The authors would like to thank the referee(s) of the paper for his/her valuable comments and suggestions.

REFERENCES

- [1] *H. G. Dales*, Banach Algebras and Automatic Continuity, Clarendon press, Oxford, 2000.
- [2] *H. G. Dales, M. E. Polyakov*, Homological properties of modules over group algebras, Proc. London Math. Soc. **89** (2004), 390–426.
- [3] *M. Essmaili, M. Fozouni and J. Laali*, Hereditary properties of character injectivity with application to semigroup algebras, Ann. Funct. Anal. **6** (2015), no 2, 162–172.
- [4] *B. E. Forrest*, Amenability and bounded approximate identities in ideals of $A(G)$, Illinois J. Math. Vol **34**. no 1 (1990), 1–25.
- [5] *A. Ya. Helemskii*, The Homology of Banach and Topological Algebras, Kluwer Academic Publishers Group, Dordrecht, 1989.
- [6] *E. Kaniuth, A. T. Lau and J. S. Pym*, On φ -amenability of Banach algebras, Math. Proc. Cambridge philos. Soc. **144** (2008), 85–96.
- [7] *E. Kaniuth, A. T. Lau and J. S. Pym*, On character amenability of Banach algebras, J. Math. Anal. Appl. **344** (2008), 942–955.
- [8] *A. T. M. Lau, V. Losert*, Complementation of certain subspaces of $L^\infty(G)$ of a locally compact group, Pacific J. Math. **141** (1990), no. 2, 295–310.
- [9] *M. S. Monfared*, Character amenability of Banach algebras, Math. Proc. Cambridge Philos. Soc. **144** (2008), 697–706.
- [10] *R. Nasr-Isfahani, S. Soltani Renani*, On homological properties for some modules of uniformly continuous functions over convolution algebras, Bull. Aust. Math. Soc. **84** (2014), 177–185.
- [11] *R. Nasr-Isfahani, S. Soltani Renani*, Character injectivity and projectivity of Banach modules, Quart. J. Math. **65** (2) (2014), 665–676.
- [12] *P. Ramsden*, Homological properties of modules over semigroup algebras, J. Funct. Anal. **258** (2010) 3988–4009.
- [13] *P. Ramsden*, Homological properties of semigroup algebras, Ph. D. Thesis, University of Leeds, 2008.