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APPLICATION OF CANONICAL REPRESENTATION 
METHOD TO LINEAR RANDOM VIBRATIONS  

Felicia Eugenia NICOREŞTIANU1, Tudor SIRETEANU2 

In this paper is presented the canonical representations method for analyzing 
the random vibrations of a linear system in the cases of two covariance functions 
commonly used in the study of the random vibrations of mechanical systems. 

 The results obtained with the canonical method representations are 
compared with the exact ones obtained by the method of transfer functions. 

Keywords: canonical representation, random process, random vibrations of linear 
system 

1. Introduction 

 The application of the canonical representations method in the study of 
dynamical systems with random excitations is analogous with the function series 
expansion method used for deterministic dynamical systems [1]. 

Using canonical representations, the advantage is that the time dependence 
is transferred to some deterministic functions, the randomness being preserved by 
the random variables. In this way, the operations of derivation and integration of 
random processes are reduced to the usual operations of deterministic functions, 
which can lead to significant simplifications. On the other hand, from the practical 
point of view, random processes can be represented only approximately through 
canonical representations, which converge in mean-square sense in an array of 
values of the argument or on an argument range of variation; but the rapidity of 
convergence should be investigated in each case. 
 Starting from a canonical representation of a random process one can 
deduce a certain expansion in series (also called canonical) of its covariance 
function and vice versa. This is of great practical importance because in most 
practical problems the excitation covariance function is known. An important 
feature of these representations is the ability to build the canonical representation 
of a random process and of its covariance function in infinite ways, allowing a 
convenient choice of the coefficients and of the coordinate functions of the 
expansion in terms of the rapidity of convergence and volume of calculation 
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involved. A big disadvantage of this method is that it generally cannot provide 
sufficient information on the distribution of the investigated random processes, 
except for Gaussian random processes. This disadvantage becomes stronger in 
case of nonlinear dynamical systems for which the output is generally not 
Gaussian, even when the input is Gaussian. 

Also for nonlinear systems the canonical representations method becomes 
practically available if associated with certain linearization methods, which 
generally result in loss of information on the type of nonlinearity of the system 
characteristics.  

Canonical representations method is especially useful for evaluating the 
mean and the covariance function (and hence the spectral density) of the randomly 
excited dynamical systems response. 

2. Canonical representation of random processes  

A scalar random process [ ]{ }Tttxt ,, 0∈  defined by the relation,  
( )tXxt ϕ= , (2.1)

where X  is a random  variable with { } 0E =X , and  ( )tϕ  is a determinist function 
defined on [ ]Tt ,0 , is an elementary random process. Obviously, 

( ) ( ){ } { } ( )x E E 0m t X t X tϕ ϕ= = =  (2.2)
The covariance function (equal to the correlation function) of the elementary 
random process { }tx is given by 

( ) ( ) { } ( ) ( )2
xx xx, ' , ' E 'c t t k t t X t tϕ ϕ= =   (2.3)

We consider the scalar random process [ ]{ }Tttxt ,, 0
0 ∈  

∑=
n

ntt xx0 , (2.4)

where [ ]{ }Tttxnt ,, 0∈ are uncorrelated elementary random processes: 
( )tXx nnnt ϕ= , 

{ } { } { } nmXXDXX mnnnn ≠=== ,0E;E;0E 2  
(2.5)

The random process{ }0
tx  has zero average ( ( )0x

0m t = ) and its correlation 
function is given by 

( ) ( ) ( )0 0 x xx x
( , ') , ' '

n n n n n
n n

k t t k t t D t tϕ ϕ= =∑ ∑  (2.6)

Consider now the random process 
( ) ( )t n n

n

x t X t= ϕ + ϕ∑  (2.7)  
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where ( )tϕ  is a  given determinist function.We can write 
{ } ( )txt ϕ=E , ( ) ( ) ( ) ( ) ( )0 0xx x xx x

, ' , ' , ' '
n n n n n

n n
c t t k t t k t t D t tϕ ϕ= = =∑ ∑  (2.8)

A random process representation of the form (2.7), where ( ) x ( )t m tϕ = , is 
called the canonical representation of the random process. The covariance 
function reprezentation ( )xx , 'c t t  through the relation (2.8) is called canonical 
representation of the covariance  function. The random variables nX are called 
coeficients and the  functions ( )tnϕ  are called coordinate functions of the 
canonical representation.  
 In many cases canonical representations facilitate the application of certain 
(especially linear) operators to random processes, as their time dependence is 
expressed by means of deterministic functions (coordinate functions). Therefore 
using canonical expansions, operations (such as integration, derivation, solving 
differential equations, etc.) in which random processes are involved, can be 
reduced to regular operations with deterministic functions. The fact that the 
coefficients of the canonical representations are uncorrelated random variables 
simplifies significantly the description of the correlation functions of random 
processes.  

It can be shown that if the covariance function ( )xx , 'c t t is  continuous and 
∞< T , the canonical representation of the random process{ }tx , converges in the 

mean square for all [ ]Ttt ,0∈ . 
 Consider now a random stationary process ( ){ }TTtxt ,, −∈ . Its covariance 
function ( ) ( )xx , 2 , 2c T Tτ τ∈ − can be represented on the interval )2,2( TT−  
through a  Fourier series  of  period 4T: 

xx ( ) ,
2

ni
n n

n

nc D e
T

ω τ π
τ ω

∞

=−∞

= =∑ , (2.9)

where 

( )
2

xx
2

1 ,
4

n

T
i

n
T

D c e d
T

ω ττ τ−

−

= ∫  ,...2,1,0 ±±=n   (2.10)

Relation (2.9) can be written as  
'

xx ( ') n ni t i t
n

n
c t t D e eω ω

∞

=−∞

− = ∑ . (2.11)

Relation (2.11) gives the canonical expansion for the covariance function of the 
random process { }tx . Therefore, the canonical representation of the random 
process { }tx is  
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x ,ni t
t n

n
x m X e ω

∞

=−∞

= + ∑  (2.12)

where Xn are uncorrelated random variables, with zero mean and the dispersions 
Dn, so that all the coefficients Dn   are positive. 
 We have shown that a possible canonical representation for a stationary 
random process on the finite interval (-T, T) is its trigonometric series expansion 
after the 4T periodic harmonics (in the sense of mean square convergence). From 
(2.9) we have 

                                                 { } ( )2
x xxE 0t n

n
x m c D

∞

=−∞

− = = ∑ . (2.13) 

3. Application of canonical representation to random vibration of 
linear systems 

 In this paper is exemplified the application of the canonical representations 
method  in order to determine the r.m.s. response of a linear oscillating system 
with one freedom degree to a random excitation represented by a stationary 
random process in the broad sense. The equation of motion of this system is 

2 2
p p 0 p 02x x x x xω ζ ω ω+ + = − =       (3.1)

Considering the canonical representations of the random input process ( )0x t and 

output process ( )x t of the oscillating system described by the equation (3.1)we 
can write 

( ) ( )0 0 ,n ni t i t
n n

n n

x t X e x t X eω ω
∞ ∞

=−∞ =−∞

= =∑ ∑       (3.2)

where the dispersions { } nn DX 0
2

0E = are known. The random variables nX  will 
be determined introducing relations (3.2) in (3.1) and identifying the coefficients 
of the same spectral components. It is considered that the random process ( )0x t is 
a stationary random process in the broad sense with zero mean and with the 
covariance function 

0 0x x ( )c τ . The dispersion xeσ of the exact solution is compared 
with the dispersion xσ of the approximate solution, obtained by the canonical 
representations method, for different expressions of the covariance function used 
in practice [2]. 

3.1. Exponential covariance function 

 In this case the covariance function, 
0 0x x ( )c τ , and the one sided spectral 

density, obtained by applying the Fourier transform of 
0 0x x ( )c τ  are 
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( ) ( )0 0 0 0

2
2 0

x x x 2 2

2( ) , , 0xc e G−α τ σ α
τ = σ ω = ω ≥

π ω + α
      (3.3)

Fig. 1 illustrates typical plots of exponential covariance function and its one sided 
spectral density: 
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Fig. 1. The exponential covariance function and its one sided spectral density 
Considering a unit value for 0σ , with the physical dimension of the 

random  process ( )0x t , it can be written 

0 0x x 0( ) , , 0, 1, 2,...
2

ni
n n

n

nc D e n
T

ω τ π
τ ω

∞

=−∞

= = = ± ±∑  (3.4)

The coefficients nD0   are given by  

( )
0 0

2 2 2

0
2 2 0

1 2

2 2

1 1 1e e cos( )
4 4 2

1 ( 1) e
2

nn

T T T
ii

n x x n
T T

n T

n

D c d d e d
T T T

T

− ω τ−α τ− ω τ −ατ

− −

+ − α

= τ τ = τ = ω τ τ =

α + −
=

α + ω

∫ ∫ ∫
    (3.5)

Introducing the expansion (3.2) in equation (3.1) it follows 

( )2 2 2
p p p 02 n ni t i t

n n n n
n n

i X e X eω ωω ω ω ζ ω ω
∞ ∞

=−∞ =−∞

− + + =∑ ∑        (3.6)

Considering nn XX ,0  real random variables and identifying the absolute values of 
the same spectral components in the above relation, yields 

2
p 0

2 2 2 2 2 2
p p( ) 4

n
n

n n

X
X

ω
=

ω − ω + ω ω ζ
       (3.7)

Therefore nX are uncorrelated random variables with zero mean and with the 
dispersions 
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4
p 0

2 2 2 2 2 2
p p( ) 4

n
n

n n

D
D

ω

ω ω ω ω ζ
=

− +
       (3.8)

From (2.9), (3.2), (3.5) and (3.8) results 

( )
4 1 2
p2

x xx 2 2 2 2 2 2 2 2
0 p p

1 ( 1)0 lim
( )[( ) 4 ]

n TN

n Nn n n n n

ec D
T

ααω
σ

α ω ω ω ω ω ζ

+ −∞

→∞
=−∞ =

+ −
= = =

+ − +∑ ∑       (3.9)

It is known that the mean square of the stationary random process ( )x t , which 
satisfies the stochastic differential equation (3.1) can be obtained from the relation 
([3],[4]) 

( ) ( ) ( )
0 0

22
xe x xx x

0 0

d dG H G
∞ ∞

σ = ω ω = ω ω ω∫ ∫        (3.10)

where ( )
0xxH ω is the frequency response function corresponding to the input 

( )0x t  and output ( )x t of the oscillatory system described by the equation (3.1 ), 
given by 

( )
0

2
p

xx 2 2
p p2

H
i

ω
ω =

ω − ω + ζω ω
       (3.11)

Using (3.3) and (3.11) in (3.10), yields 
4
p2

xe 2 2 2 2 2 2 2 2
p p0

2 d
( )[( ) 4 ]

∞αω ω
σ =

π ω + α ω − ω + ζ ω ω∫        (3.12)

Introducing the notations 

p p p p

, , , 0,1,2,..
2

n
n

n n
T

α ω ω π
μ = ξ = ξ = = =

ω ω ω ω
       (3.13)

 (3.9) and (3.12) become 
2 2
xe x x x

p

2 lim ( , , ), lim ( , , , )
N N

N N T
T→∞ →∞

μ μ
σ = η ζ μ σ = λ ζ μ

π ω
       (3.14)

where 

⎥
⎦

⎤
⎢
⎣

⎡ −+
+

+−+
=

=
+−+∞→

=
∞→ ∫

ζ
ζμ

μμζμ
π

ζξξξμ
ξ

μζη

2
411

])21(21[2

]4)1)[((
lim),,(lim

22

422

0
222222x

N d
N

N
N

       (3.15)

and 
1 2

x 2 2 2 2 2 2
0

1 ( 1)( , , , )
( )[( 1) 4 ]

n TN

n n n n

eN T
+ − α

=

+ −
λ ζ μ =

μ + ξ ξ − + ξ ζ∑        (3.16)

From (3.14)1 and  (3.15) it follows 
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⎥
⎦

⎤
⎢
⎣

⎡ −+
+

+−+
=

ζ
ζμ

μμζμ
μ

σ
2

411
)21(21

22

422
2

ex        (3.17)

The number of terms, N , considered in the canonical expansion of the 
process ( )x t  can be determined imposing the condition that the relative error, re , 
between the exact value xeσ  given by (3.17) and the approximate one xσ obtained 
from (3.14)2 

( )x x
p

, ( , , , )N T N T
T

μ
σ = λ ζ μ

ω
       (3.18)

to be less than a given value ε : 
( )xe x

r
xe

,
1

N T
e

σ − σ
= < ε

σ
    (3.19)

In order to satisfy this approximation condition the value of  T can be taken of the 
form  pT N= ω . In this case, ( ),x N Tσ can be calculated from the relation 

( )x x ( , , )N N
N
μ

σ = λ ζ μ        (3.20)

where 
1 2

x 2 2 2 2 2 2
0

p

1 ( 1)( , , )
( )[( 1) 4 ]

, 1,2,3..,
2

n NN

n n n n

n
n

eN

n n N
N

+ − μ

=

+ −
λ ζ μ =

μ + ξ ξ − + ξ ζ
ω π

ξ = = =
ω

∑
       (3.21)

In order to calculate x
1lim ( , , )

N
N

N→∞
λ ζ μ , it can be written  

x

2 2 2 2 2 2
0

2 1

2 2 2 2 2 2
0

1lim ( , , )

1 1lim
( )[( 1) 4 ]

( 1)lim
( )[( 1) 4 ]

N

N

N n n n n

N nN

N n n n n

N
N

N

e
N

μ

λ ζ μ

μ ξ ξ ξ ζ

μ ξ ξ ξ ζ

→∞

→∞
=

− +

→∞
=

=

⎡ ⎤
= +⎢ ⎥+ − +⎣ ⎦

⎡ ⎤−
+ ⎢ ⎥+ − +⎣ ⎦

∑

∑

 

The second limit being null and since 1 2n n N
π

ξ ξ+ − = , the first limit can be 

considered as the Riemann series of the integral: 
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/ 2

x 2 2 2 2 2 2
0

1 2lim ( , , )
( )[( 1) 4 ]N

dN
N

π ξ
λ ζ μ

π μ ξ ξ ξ ζ→∞
=

+ − +∫        (3.21)’

The equations  (3.20) and(3.21)’  yield 
2
x 2 2 4

2 22 2 2 2
1

22 2 2

2 1
[1 2 (1 2 ) ] 2

4 1 43 4 1 4ln tan
4 1 / 48 1 4 1 4

arctgμ π
σ

π μ ζ μ μ μ

π π ζζ μ μ ζ πζ
ζ πζ π π ζ

−

⎡
= ⋅ −⎢+ − + ⎣

− − +− + + − ⎤− + ⎥− ⎦− + − +

   (3.22)

where 

2

1
2

2

2arctan , 0 1
1

2tan , 1
1 2

2arctan , 1
1

ζξ
ξ

ξ
ζξ π

ξ
ξ

ζξ
π ξ

ξ

−

⎧ ≤ <⎪ −⎪
⎪

= =⎨− ⎪
⎪ + >⎪ −⎩

       

Taking for example the values 1 1
p[ ], 2 [ ], 100s s Nα π ω π− −= = = , for the 

excitation parameters, figure 2 shows the plot of the relative error re  
between xeσ and xσ , for  various situations μ  and ζ .  
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Fig. 2. Relative error between xeσ and xσ  
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3.2. Exponential cosine covariance function 

Consider now the input covariance function and its one sided spectral 
density of the form 

0 0 0x x x 2 2 2 2

1 1( ) cos( ), ( ) , 0
( ) ( )

c e Gα τ α
τ βτ ω ω

π α ω β α ω β
− ⎡ ⎤

= = + ≥⎢ ⎥+ + + −⎣ ⎦
 (3.23)

Their typical plots are given in figure 3. 
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Fig. 3. The exponential cosine covariance function and its one sided spectral density 

In this case we obtain for the expansion in (3.4) the coefficients: 
2

0
2

2

2 2

2

2 2

1 cos( )
4

( 1) [ cos(2 ) ( )sin(2 )]1
4 ( )

( 1) [ cos(2 ) ( )sin(2 )]
( )

[

]

n

T
i

n
T

n T
n

n
n T

n

n

D e e d
T

e T T
T

e T T

α τ ω τ

α

α

βτ τ

α α β β ω β
α β ω

α α β β ω β
α β ω

− −

−

−

−

= =

+ − − + −
= +

+ −

+ − − + +
+

+ +

∫

 (3.24)

Using (3.8) we have: 

( )
4
p2

x xx 2 2 2 2 2 2
0 p p

2

2 2

2

2 2

0 ,
2 [( ) 4 ]

( 1) [ cos(2 ) ( )sin(2 )]
( )

( 1) [ cos(2 ) ( )sin(2 )]
( )

n
n

n n n n

n T
n

n
n

n T
n

n

Rc D
T

e T T
R

e T T

α

α

ω
σ

ω ω ω ω ζ

α α β β ω β
α β ω

α α β β ω β
α β ω

∞ ∞

=−∞ =

−

−

= = =
− +

+ − − + −
= +

+ −

+ − − + +
+

+ +

∑ ∑

 (3.25)

Using (3.11) and (3.23)in (3.10) yields 
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( )
4 2 2 2
p2

xe x 2 2 2 2 2 2 2 2 2 2 2 2
p p0 0

2 ( )d
[( ) 4 ][( ) 4 ]

dG
αω ω α β ω

σ ω ω
π ω α β α ω ω ω ζ ω ω

∞ ∞ + +
= =

− − + − +∫ ∫  (3.26)

Introducing the notations 

  
p p p

, ,α ω β β
μ ξ λ

ω ω α μω
= = = =      (3.27)

it follows 
2 2 2

2
xe 2 2 2 2 2 2 2 2 2 2

0

2 [ ( 1)]
{[( ( 1)] 4 }[(1 ) 4 ]

dμ ξ μ λ ξ
σ

π ξ μ λ μ ξ ξ ζ ξ

∞ + +
=

− + + − +∫  (3.28)

On the other hand  

2
x 2 2 2 2

0

2
p

2 2
p

2
p

2 2
p

2 2 2 2 2
0

1 1lim
2 ( 1) 4

( 1) [( / )sin(2 ) cos(2 )]
( / )

( 1) [( / )sin(2 ) cos(2 )]
( / )

1 1lim
2 ( 1) 4

N

N n n n

n N
n

n

n N
n

n

N

N n n n

N

e T T

e T T

N

μ

μ

σ
ξ ξ ζ

μ β ω ξ β μ β

μ β ω ξ

μ β ω ξ β μ β

μ β ω ξ

μ
ξ ξ ζ μ

→∞
=

−

−

→∞
=

⎧
= ⋅⎨ − +⎩

⎡ + − − −
⋅ +⎢

+ −⎢⎣
⎫⎤+ − + − ⎪+ ≅⎥⎬+ + ⎥⎪⎦⎭

⎧
≅ ⎨ − +⎩

∑

∑ 2 2 2

1
( ) ( )n nλμ ξ μ λμ ξ

⎫⎡ ⎤⎪+ ⎬⎢ ⎥+ − + + ⎪⎣ ⎦⎭

 (3.29)

Taking the values 
      1

p[ ], 2 [rad / ], 100, 0.5, 0.25s s Nα π ω β π μ ζ−= = = = = =  (3.30)
and using Origin software, one obtains from (3.29) and (3.30) 2

x 1.575σ =  
respectively 2

xe 1.595σ =  so that the relative error is r 0.01e < . 

4. Spectral analysis 

In what follows, the discret spectral densities components, estimated for 
canonical representations of system input and output  (3.2), are given by [2] 

0

* *0
x x 12 , 2 , , 1,2,...,

2n n

n n
n n

D DG G n N
T
π

Δω ω ω
Δω Δω += = = − = =        (4.1)

In Figs. 4 and 5  are shown comparatively the values (4.1) obtained by 
canonical representations and the plots of spectral densities 

0x ( )G ω and 

x ( )G ω calculated for -1[s ]α π= , p 2 rad/sω π= , 100N = , 0.5μ =  and 0.3ζ =  
(exponential correlation function) and for values  (3.30)  (exponential cosine  
correlation function). 
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Fig. 4. One sided spectral densities for the exponential covariance function 
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Fig. 5. One sided spectral densities for the exponential cosine covariance function 

5. Conclusions 

The results obtained in this paper demonstrate the applicability of 
canonical representations method to analysis of linear random vibrations. The 
relative errors between the exact r.m.s. output and its approximation obtained by 
the canonical representation method were less than 1% for both types of the 
considered input correlation functions. Moreover, the discrete spectral frequency 
components of the canonical representation of the input and output random 
processes are practically equal with the exact values obtained by Fourier 
transform of input correlation function and by transfer function method for output 
spectral density, respectively. 
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