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FINITE TIME CONTROL OF NONLINEAR PERMANENT
MAGNET SYNCHRONOUS MOTOR

Wei DONG?, Bin WANG?*, Yan LONG?, Delan ZHU?*, Shikun SUN®

The finite time control of nonlinear permanent magnet synchronous motor is
studied in this paper. Firstly, the nonlinear vibration of permanent magnet
synchronous motor is analyzed. Then, on the basis of finite time stability theory, a
novel terminal sliding mode control method is proposed for the vibration control of
nonlinear permanent magnet synchronous motor. Furthermore, the controller
designed only needs two terms, which is one less than the conventional sliding mode
control method and accordingly easy for implementation. Finally, numerical
simulations have verified the effectiveness and superiority when compared with the
existing method.
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1. Introduction

Due to the direct applications in many areas especially for industrial
applications in low-medium power range, since it has excellent features such as
simple structure, high torque-to-inertia ratio, fast response and high efficiency [1-
2], permanent magnet synchronous motor, no. PMSM) has been widely used in
modern high-performance servo systems [3-5]. Especially in recent years, with the
rapid development of permanent magnetic materials, power electronics
technology and new motor control theory, PMSM will increasingly replace the
conventional motor, which has great application potential. However, PMSM may
exhibit nonlinear oscillation under certain conditions, which is harmful to the safe
and stable operation of the system [6-8]. Recently, nonlinear analysis and control
of PMSM has attracted many scholars’ attention [9-11].
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There have been many results about the nonlinear analysis of PMSM until
now. For PMSM nonlinear control, some schemes also have been proposed. For
instance, on the basis of a novel sliding-mode observer, a sensor-less speed
control scheme for the PMSM of ship propulsion interior is proposed in [12]. A
fuzzy control method via linear matrix inequalities for fractional-order PMSM is
presented in [13]. And effective predictive control scheme for PMSM which not
only has the fast response of a direct torque control but also could reduce the
torque ripples effectively is studied in [14]. An adaptive dynamic surface control
method for the undesirable chaotic vibration of PMSM s first proposed in [15].
However, most of the mentioned control methods are based on the asymptotic
stability theory, which need infinite time to realize the control objectives
theoretically. Well known, the transition time and overshoot are essential for the
control quality of practical engineering. From the perspective of optimizing the
control time, finite time stability theory based control methods should be studied,
which has good performance on improving the transition time, overshoot and
oscillation frequency [16-19]. Well known, terminal sliding mode, no. TSM)
control can stabilize the nonlinear systems in a finite time [20-21]. Could TSM be
applied to the vibration control of PMSM? If possible, what are the application
conditions and controller expressions? Relevant reports are quite few. It is
challenging and worth studying.

On the basis of the above study, there are several advantages of our study.
Firstly, based on the finite time stability theory, a novel TSM control method is
proposed for the vibration control of nonlinear PMSM. Furthermore, it only needs
two control terms, which is one less than the conventional sliding mode method
and accordingly easy for implementation. Finally, simulation results are presented
to verify the effectiveness and superiority compared with existing method.

The rest of the paper is organized as follows. In section 2, the PMSM
system is shown. Section 3 presents the design of finite time terminal sliding
mode controller. Simulation results are given in Section 4. Section 5 ends this

paper.
2. System description

PMSM is a time varying, nonlinear and strong coupling system. By using
affine transformation and time scale transformation, the dimensionless form can
be described as [22]:

X=—X+Yyz
y=—-y-—-Xz+az
2=bx(y-2) )
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where x and y are the stator currents, z is the rotor angular frequency, a=20,
b=5.46. Fig. 1 shows the phase trajectory and time domain of PMSM, equation (1)
with initial value x(0)=0.1, y(0)=0.1, z(0)=0.1. It is clear that the system

exhibits nonlinear irregular oscillations, which would affect the stable operation
of PMSM. Therefore, it is necessary to design controller for suppressing nonlinear
even chaotic vibration of PMSM.
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Fig. 1. Phase trajectory and time domain of PMSM, equation 1
3. Finite time terminal sliding mode controller design

Lemma 1 [23]: If there is a positive definite continuous function which
satisfies the following differential inequality:
V(t) <—cV"(t), vt >t,,V(t,) >0 (2)
where ¢>0, 0<n<1. And, for any initial given time t,, if V(t) can satisfy the
following inequality form:

VET(t) <V () —c@-m)(t—t).t, st<t
Here V(t)=0, vt>t and t, is given by:
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V(L)

=t 0L,
R

Then the system would be stabilized in a finite timet, .

The PMSM system, equation (1) can be simplified as:

X = A11)(1 + AiZXZ
X, = Ay X + ALX, + T,(X,X,) +B,u

©)

where x,, x, are state variables of the system, u is control input which needs to be
designed, B, is a full rank matrix, f,(x,x,) is the nonlinearity. For convenience,
system, equation (3) can be rewritten as the following compact form:

X=Ax+Bu+ f(x) 4)

)l R o)
XZ AZl AZZ BZ fZ(X)

In order to make the system states reach the stable operation in a finite
time, the fast terminal sliding mode switching surface is selected:

where:

s =C,X, +C;x, +C,[sinx | =Cx+C,|sin x| (5)
where C, e R"™™, C, e R"™-M  C e R™™M C=|C,C,|.

Theorem 1: If the terminal sliding mode switching surface is selected as,
equation (5), the terminal sliding mode controller can be designed as the
following form:

U=—(CB)* |:CAX +Cf (x) + Csign(sin x,) >£1 cosx, +(u+n ||s||ﬂ1)s} (6)

where x>0, >0, 0<pB<1. The control law, equation (6) can make the state

trajectories of PMSM system, equation (1) reaches to the sliding mode S=0 in a
finite time.

Proof: We take the Lyapunov function as the following form:

V, = %STS (7
Taking the derivative of Lyapunov function, equation (7), one gets:
0
\}1 _logri Loy
2 2 ®)

=s's

Whensinx, >0, there is:
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s=Cx+C,sinx,
. . . €)]
s=Cx+C;x,c0sX,
Whensinx, <0, one has:
s=Cx-C;sinx,
. . . (10)
s=Cx-C,x1C08X
It can be concluded that
0 ] 0
s=C-x+C, - xi-sign(sinx,) - cos x; (11)
Here,
1 x>0
sign(x) =40 x=0 (12)
-1 x<0
Thus,

Vi=s' (C X+ C,- ;<1-sign(><1) : cosxlj
=s' [CAX+ CBu+Cf (x)+C,- il-sign(xl) -C0S Xl)

=" (+nls)”)-s

<=nlls| I
p+1

PR
—a| 31 | 2

According to lemma 1, it is clear that the trajectories of PMSM system,

equation (1) will converge to the sliding mode S=0 in a finite time under the
control law, equation (6). This completes the proof.

Theorem 2: If there exists an invertible matrix C, and undetermined

(An - A12C2_1C1) + (An - A12C2_1C1)T <0
A&2C£1C3 =A ,

parameter matrices C,, C,, which make the following inequality combined with
matrix equation hold

(13)

where A =diag{A;(j=1---,m)},A;>0. Then, the designed controller, equation (6)
can make the PMSM system, equation (1) stable in a finite time.
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Proof: According to the variable structure theory, the system state will
reach to S=0 in a finite time under the controller and can keep on moving on the
sliding mode, which has the invariance. On the sliding surface, one has

s=C,X, +Cyx +C,|sinx|=0 (14)
Thus,

X, ==C;*[ Cx, +Cyfsinx| ] (15)
Substituting equation (15) into equation (3), there is

i
X1 = A11)(1 + A12X2

-1 -1 . ! (16)
= (As = AuC5C,)- X, — A,C;C, sin, |
The Lyapunov function is selected as:
1 1 9
V=2 %= 17
2 =5% % =[x (17)

Taking the derivative of equation (17), one gets:

v =%X1T 'X1+%X1T'X1
=X X
=X [(An - A,C;IC, )% + A,CCy |sinxl|]
<—x{ - A,C,"C;sinx,|
<-x -A,C,'C,
== (A %]+ Ay X+ + A X )
< =AY X |+ X ])

S_/l\/xfl"'xizz +"’+X12m
=4[l

1
=—2av2

where A=min{A;(j=12,--,m)}. According to Lemma 1 and Theorem 1, it is

clear that the system state x, will converge to the stabilization along the sliding
mode S=0 in a finite time. Similarly, the system state x, can also converge to the

origin in a finite time. Therefore, the PMSM system, equation (1) can be
stabilized in a finite time under the designed controller, equation (6).
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4. Numerical simulations

After adding the controller, the PMSM system, equation (1) can be
represented as:
2=5.46y —5.467
X=—X+YyzZ+U, (18)
y=-y—-xz+20z+u,
where u,, u, are the control inputs determined by the controller, equation (6).
Meanwhile, one can get:
0 -1 0 0
A11:(_5-46)1 A, =(0 5.46), %12{20}! A, :{0 _Ja f(x)=|zy
—Xz
The parameter matrix of the selected finite time terminal sliding mode
surface is given as:
c=c, G, c3|=[1 1o O]
0 011
Thus, there is:

(19)

(A, - A,C,'C) +(A, - A,C,'C,)" =-10.92<0
A,C,'C, =5.46>0

The conditions of theorem 2 are satisfied. So, the finite time terminal
sliding mode surface can be designed as the following form:

s11 [z+x
S:LZ}:[yﬂsian (20)

According to Theorem 1, finite-time stabilization controllers are presented
as follows:

u, =—[—5.462 —X+5.46y + 2y — xz +(y+n||s||ﬂ_l)s}

u, = —[202 —y+5.46y -sign(sinz) - cos(z) — 5.46z - sign(sinz) - cos(z) + (u + 77||s||ﬂ71) - s}

(21)

The parameters are selected as u=n=1, f=05. Fig. 2 shows the

simulation result with controller, equation (21). From Fig. 2, it is obvious that

when the controller is applied to PMSM system, equation (18), the state variables

are stable about the equilibrium point quickly, which shows the validity of the
proposed method.
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Fig. 2. Time domain of PMSM system, equation (18) with controller, equation (21)

When taking the existing method in Ref. [24], the following sliding mode,
equation (22) and control law, equation (23) can be obtained. Fig. 3 shows the
simulation result with controller, equation (23). As to the existing method, it takes
long time for these state variables to stabilize to the equilibrium point.
Accordingly, simulation result has demonstrated the effectiveness and superiority
of the new scheme.

S, =¢ +I(T)5e1(r)d (7)

s,=¢, +| SSez(z')d (7) (22)

S, =e, +j85e3(f)d ()
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u, —yz —4e, —(0.45+abs(yz))sign(S,)
u=|us |=| xz—4e, —20e, — (0.45+ abs(—xz))sign(S,) (23)
Us —5.46e, + 0.46e, — 0.45sign(S;)
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Fig. 3. Time domain of PMSM system, equation (18) with controller, equation (23) in Ref. [24]

5. Conclusions

This paper studied the finite time control of nonlinear permanent magnet
synchronous motor. A novel terminal sliding mode control method is proposed for
the vibration control of nonlinear permanent magnet synchronous motor based on
finite time stability theory. The designed scheme only needed two terms, which
was one less than the conventional sliding mode control method and accordingly
easy for implementation. Simulation result has verified the effectiveness and
superiority when compared with the existing method.

The scheme designed is simple and easy to implement and could be
applied to similar fractional order nonlinear PMSM systems such as in mechanical
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system, electrical system, and so on. In the future, to improve the transient
process, more efficient finite time control methods should be studied for
permanent magnet synchronous motor. There may be a focus on nonlinear control
on the basis of finite time stability theory.
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