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FINITE TIME CONTROL OF NONLINEAR PERMANENT 

MAGNET SYNCHRONOUS MOTOR  

Wei DONG1, Bin WANG2*, Yan LONG3, Delan ZHU4, Shikun SUN5 

The finite time control of nonlinear permanent magnet synchronous motor is 

studied in this paper. Firstly, the nonlinear vibration of permanent magnet 

synchronous motor is analyzed. Then, on the basis of finite time stability theory, a 

novel terminal sliding mode control method is proposed for the vibration control of 

nonlinear permanent magnet synchronous motor. Furthermore, the controller 

designed only needs two terms, which is one less than the conventional sliding mode 

control method and accordingly easy for implementation. Finally, numerical 

simulations have verified the effectiveness and superiority when compared with the 

existing method. 
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1. Introduction 

Due to the direct applications in many areas especially for industrial 

applications in low-medium power range, since it has excellent features such as 

simple structure, high torque-to-inertia ratio, fast response and high efficiency [1- 

2], permanent magnet synchronous motor, no. PMSM) has been widely used in 

modern high-performance servo systems [3-5]. Especially in recent years, with the 

rapid development of permanent magnetic materials, power electronics 

technology and new motor control theory, PMSM will increasingly replace the 

conventional motor, which has great application potential. However, PMSM may 

exhibit nonlinear oscillation under certain conditions, which is harmful to the safe 

and stable operation of the system [6-8]. Recently, nonlinear analysis and control 

of PMSM has attracted many scholars’ attention [9-11].  
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There have been many results about the nonlinear analysis of PMSM until 

now. For PMSM nonlinear control, some schemes also have been proposed. For 

instance, on the basis of a novel sliding-mode observer, a sensor-less speed 

control scheme for the PMSM of ship propulsion interior is proposed in [12]. A 

fuzzy control method via linear matrix inequalities for fractional-order PMSM is 

presented in [13]. And effective predictive control scheme for PMSM which not 

only has the fast response of a direct torque control but also could reduce the 

torque ripples effectively is studied in [14]. An adaptive dynamic surface control 

method for the undesirable chaotic vibration of PMSM is first proposed in [15]. 

However, most of the mentioned control methods are based on the asymptotic 

stability theory, which need infinite time to realize the control objectives 

theoretically. Well known, the transition time and overshoot are essential for the 

control quality of practical engineering. From the perspective of optimizing the 

control time, finite time stability theory based control methods should be studied, 

which has good performance on improving the transition time, overshoot and 

oscillation frequency [16-19]. Well known, terminal sliding mode, no. TSM) 

control can stabilize the nonlinear systems in a finite time [20-21]. Could TSM be 

applied to the vibration control of PMSM? If possible, what are the application 

conditions and controller expressions? Relevant reports are quite few. It is 

challenging and worth studying. 

On the basis of the above study, there are several advantages of our study. 

Firstly, based on the finite time stability theory, a novel TSM control method is 

proposed for the vibration control of nonlinear PMSM. Furthermore, it only needs 

two control terms, which is one less than the conventional sliding mode method 

and accordingly easy for implementation. Finally, simulation results are presented 

to verify the effectiveness and superiority compared with existing method.  

The rest of the paper is organized as follows. In section 2, the PMSM 

system is shown. Section 3 presents the design of finite time terminal sliding 

mode controller. Simulation results are given in Section 4. Section 5 ends this 

paper.  

2. System description 

PMSM is a time varying, nonlinear and strong coupling system. By using 

affine transformation and time scale transformation, the dimensionless form can 

be described as [22]: 

( )

x x yz

y y xz az

z b y z

  


   
                                                      (1) 
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where x and y are the stator currents, z is the rotor angular frequency, a=20, 

b=5.46. Fig. 1 shows the phase trajectory and time domain of PMSM, equation (1) 

with initial value (0) 0.1,x   (0) 0.1,y   (0) 0.1z  . It is clear that the system 

exhibits nonlinear irregular oscillations, which would affect the stable operation 

of PMSM. Therefore, it is necessary to design controller for suppressing nonlinear 

even chaotic vibration of PMSM. 
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Fig. 1. Phase trajectory and time domain of PMSM, equation 1 

3. Finite time terminal sliding mode controller design  

Lemma 1 [23]: If there is a positive definite continuous function which 

satisfies the following differential inequality: 

0 0( ) ( ), , ( ) 0V t cV t t t V t                                         (2) 

where 0c  , 0 1  . And, for any initial given time 0t , if V(t) can satisfy the 

following inequality form: 

1 1

0 0 0 1( ) ( ) (1 )( ),V t V t c t t t t t          

Here 1( ) 0V t t t  ，  and 1t  is given by: 
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1

0
1 0

( )

(1 )

V t
t t

c







 


. 

Then the system would be stabilized in a finite time 1t . 

The PMSM system, equation (1) can be simplified as: 

•

1 11 1 12 2

•

2 21 1 12 2 2 1 2 2( , )

x A x A x

x A x A x f x x B u


 


    

                             (3) 

where 1x , 2x  are state variables of the system, u is control input which needs to be 

designed, 2B  is a full rank matrix, 2 1 2( , )f x x  is the nonlinearity. For convenience, 

system, equation (3) can be rewritten as the following compact form: 
 

( )x Ax Bu f x                                                   (4) 

where: 

1

2

x
x
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  
 
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21 22

A A
A
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, 
2

0
B

B

 
  
 

, 
2

0
( )

( )
f x

f x

 
  
 

. 

In order to make the system states reach the stable operation in a finite 

time, the fast terminal sliding mode switching surface is selected: 

2 2 1 1 3 1 3 1sin sins C x C x C x Cx C x                                       (5) 

where ( )

1

n m mC R   , ( ) ( )

2

n m n mC R    , ( )

3

n m mC R   , 1 2,C C C . 

Theorem 1: If the terminal sliding mode switching surface is selected as, 

equation (5), the terminal sliding mode controller can be designed as the 

following form: 
•

11

3 1 1 1( ) ( ) (sin ) cos ( )U CB CAx Cf x C sign x x x s s


 
  

       
              (6) 

where 0  , 0  , 0 1  . The control law, equation (6) can make the state 

trajectories of PMSM system, equation (1) reaches to the sliding mode S=0 in a 

finite time. 

Proof: We take the Lyapunov function as the following form: 

1

1

2

TV s s                                                         (7) 

Taking the derivative of Lyapunov function, equation (7), one gets:  

1

1 1

2 2

T T

T

V s s s s

s s

 



                                                 (8) 

When 1sin 0x  , there is: 
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3 1

• • •

3 1 1

sin

cos

s Cx C x

s C x C x x

 


 

                                              (9) 

When 1sin 0x  , one has: 

3 1

• • •

13 1

sin

cos

s Cx C x

s C x C x x

 


 

                                           (10) 

It can be concluded that  

13 1 1sign(sin ) coss C x C x x x                                  (11) 

Here, 

1 0

sign( ) 0 0

1 0

x

x x

x




 
 

                                             (12) 

Thus, 
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According to lemma 1, it is clear that the trajectories of PMSM system, 

equation (1) will converge to the sliding mode S=0 in a finite time under the 

control law, equation (6). This completes the proof. 

Theorem 2: If there exists an invertible matrix 2C  and undetermined 

parameter matrices 1C , 3C , which make the following inequality combined with 

matrix equation hold 

1 1

11 12 2 1 11 12 2 1

1

12 2 3

( ) ( ) 0TA A C C A A C C

A C C

 



    


 
,                             (13) 

where  ( 1 , ) , 0j jdiag j m     , . Then, the designed controller, equation (6) 

can make the PMSM system, equation (1) stable in a finite time. 
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Proof: According to the variable structure theory, the system state will 

reach to S=0 in a finite time under the controller and can keep on moving on the 

sliding mode, which has the invariance. On the sliding surface, one has 

2 2 1 1 3 1sin 0s C x C x C x                                             (14) 

Thus, 
1

2 2 1 1 3 1sinx C C x C x                                                 (15) 

Substituting equation (15) into equation (3), there is  

 
1 11 1 12 2

1 1

11 12 2 1 1 12 2 3 1sinx

x A x A x

A A C C x A C C 

 

   
,                             (16) 

The Lyapunov function is selected as: 

2

2 1 1 1

1 1

2 2

TV x x x                                                  (17) 

Taking the derivative of equation (17), one gets: 
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where  min ( 1,2, , )j j m    . According to Lemma 1 and Theorem 1, it is 

clear that the system state 1x  will converge to the stabilization along the sliding 

mode S=0 in a finite time. Similarly, the system state 2x  can also converge to the 

origin in a finite time. Therefore, the PMSM system, equation (1) can be 

stabilized in a finite time under the designed controller, equation (6). 
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4. Numerical simulations 

After adding the controller, the PMSM system, equation (1) can be 

represented as: 

1

2

5.46 5.46

20

z y z

x x yz u

y y xz z u

 


   
     

                                           (18) 

where 1u , 2u  are the control inputs determined by the controller, equation (6). 

Meanwhile, one can get: 

11 ( 5.46)A   , 12 (0 5.46)A  , 21

0

20
A

 
  
 
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1 0

0 1
A
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  
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,

0

( )f x zy

xz

 
 


 
  

. 

The parameter matrix of the selected finite time terminal sliding mode 

surface is given as:  

1 2 3

1 1 0 0
| |

0 0 1 1
C C C C

 
   

 
. 

Thus, there is:  
1 1

11 12 2 1 11 12 2 1

1

12 2 3

( ) ( ) 10.92 0

5.46 0

TA A C C A A C C

A C C

 



      


 
              (19) 

The conditions of theorem 2 are satisfied. So, the finite time terminal 

sliding mode surface can be designed as the following form: 

1

sinz2

z xs
s

ys

  
    

   
                                              (20) 

According to Theorem 1, finite-time stabilization controllers are presented 

as follows:  

 1

1

1

2

5.46 5.46

20 5.46 sign(sinz) cos(z) 5.46 (sinz) cos(z) ( ) s

u z x y zy xz s s

u z y y z sign s





 

 





          
  


             
 

, 

(21) 

The parameters are selected as 1   , 0.5  . Fig. 2 shows the 

simulation result with controller, equation (21). From Fig. 2, it is obvious that 

when the controller is applied to PMSM system, equation (18), the state variables 

are stable about the equilibrium point quickly, which shows the validity of the 

proposed method.  
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Fig. 2. Time domain of PMSM system, equation (18) with controller, equation (21) 

 

When taking the existing method in Ref. [24], the following sliding mode, 

equation (22) and control law, equation (23) can be obtained. Fig. 3 shows the 

simulation result with controller, equation (23). As to the existing method, it takes 

long time for these state variables to stabilize to the equilibrium point. 

Accordingly, simulation result has demonstrated the effectiveness and superiority 

of the new scheme. 
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Fig. 3. Time domain of PMSM system, equation (18) with controller, equation (23) in Ref. [24] 

 

5. Conclusions 

This paper studied the finite time control of nonlinear permanent magnet 

synchronous motor. A novel terminal sliding mode control method is proposed for 

the vibration control of nonlinear permanent magnet synchronous motor based on 

finite time stability theory. The designed scheme only needed two terms, which 

was one less than the conventional sliding mode control method and accordingly 

easy for implementation. Simulation result has verified the effectiveness and 

superiority when compared with the existing method.  

The scheme designed is simple and easy to implement and could be 

applied to similar fractional order nonlinear PMSM systems such as in mechanical 
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system, electrical system, and so on. In the future, to improve the transient 

process, more efficient finite time control methods should be studied for 

permanent magnet synchronous motor. There may be a focus on nonlinear control 

on the basis of finite time stability theory. 
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