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WEIGHTED GENERALIZATION OF SOME INTEGRAL
INEQUALITIES FOR DIFFERENTIABLE CO-ORDINATED
CONVEX FUNCTIONS

M. A. LATIF}, S. S. DRAGOMIR?, E. MOMONIAT?

In this paper, a new weighted identity for differentiable functions of two
variables defined on a rectangle from the plane is established. By using the obtained
identity and analysis, some new weighted integral inequalities for the classes of co-
ordinated convex, co-ordinated wright-convex and co-ordinated quasi-convex
functions on the rectangle from the plane are established which provide weighted
generalization of some recent results proved for co-ordinated convex functions.

Keywords: Hermite-Hadamard's inequality, co-ordinated convex function, co-
ordinated wright-convex function, co-ordinated quasi-convex
function, Holder's integral inequality, quadrature formula.

1. Introduction

A function f: 1 >R, J=1cR, is said to be convex on | if the
inequality
f(AX+(L-A)y)< Af (x)+@1—2)F (y),
holds forall x, yel and 1<[0,1].

The most celebrated inequality for convex functions is the Hermite-
Hadamard's inequality (see for instance [7]). This double inequality is stated as:

a+b 1 f(a)+ f(b)
fl — [<—— | f(x)Jdx<——"—, 1
[ . j L) . (1)
where f:1 >R, =1 cR is a convex function, a, bel with a<b. The
inequalities in (1) are reversed if f isa concave function.
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The inequalities (1) have various applications for generalized means,
information measures, quadrature rules etc., and there is a growing literature
providing its new proofs, extensions, refinements and generalizations, see for
example [2, 4, 5, 6, 9, 21, 22] and the references therein.

Let us consider now a bidimensional interval [a,b]x[c,d] in R* with
a<b and c<d. A mapping f:[a b]x[c,d]—>R is said to be convex on
[a,b] x[c,d] if the inequality

f(IX+(Q-A)z, 2y +(L-2)w) < Af (X, y) +(1—-2) T (z,w),
holds for all (x,y),(z,w) e[a,b]x[c,d] and A [0,1] .

A modification for convex functions on [a,b]x[c,d], which are also
known as co-ordinated convex functions, was initiated by Dragomir [4, 6] as
follows:

A function f :[a,b]x[c,d] >R is said to be convex on co-ordinates on
[a,b]x[c,d] if the partial mappings f, :[a,b]>R,f (u)="f(,y) and
f,:[c,d] >R, f,(v)=f(x,v) are convex where defined for all
x e[a,b],y e[c,d].

A formal definition for co-ordinated convex functions may be stated as
follows:

Definition 1.1. [13] A function f :[a,b]x[c,d] > R is said to be convex on co-
ordinates on [a,b]x[c,d] if the inequality
f(tx+(@-t)y,su+(1-s)w)
<tsf (x,u)+t(1-s) f(x,w)+s(1-t)f(y,u)+(@Q-t)(1-s) f(y,w),
holds for all (t,s)<0,1]x0,1] and (x,u),(y,w) € [a,b]x[c,d].
Clearly, every convex mapping f :[a,b]x[c,d]—>R is convex on co-

ordinates. Furthermore, there exist co-ordinated convex functions which are not
convex, (see for example [4, 6]).

In a recent paper [20], Ozdemir et al. give the notion of co-ordinated
quasi-convex functions which generalize the notion of co-ordinated convex
functions as follows:

Definition 1.2. [20] A function f :[a,b]x[c,d]cR?* ->R is said to be quasi-
convex on [a,b]x[c,d] if the inequality

f(AX+(1-A)z, y+(1-A)w) < max{f x,y), f(z,wW)},
holds for all (x,y),(z,w) €[a,b]x[c,d] and A€ [0,1] .
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A function f :[a,b]x[c,d] >R is said to be quasi-convex on co-ordinates
on [ab]x[c,d] if the partial mappings f,:[a,b] >R, f,(u)=f(uy) and
f,:[c,d] >R, f (v)=f(x,v) are quasi-convex where defined for all
x e[a,b],y €[c,d].

The definition of co-ordinated quasi-convex functions may be stated as
follows.

Definition 1.3. [16] A function f :[a,b]x[c,d]cR?* - R is said to be quasi-
convex on co-ordinates on [a,b]x|c,d] if

f (tx+(1-t)z, sy +(1-s)w) <max{f(x,y), f(x,w), f(z,y) f(z,w)}
forall (x,y),(z,w) e[a,b]x[c,d] and (s,t)e [0] x[0,1] .

The class of co-ordinated quasi-convex functions on [a,b]x[c,d] is
denoted by QC([a,b]x[c,d]). It has also been proved in [20] that every quasi-
convex function on [a,b]x[c,d] is quasi-convex on co-ordinates on [a,b]x[c,d].
It is to be noted that there exist quasi-convex functions on co-ordinates which are
not quasi-convex, see for instance [16].

Another generalization of the notion of the co-ordinated convex functions
is the concept of wright-convex functions which is given in the definition below.

Definition 1.4. [20] A function f :[a,b]x[c,d]cR? -R is said to be wright-
convex on [a,b]x[c,d] if the inequality
fF(X+(1-D)z, y+(1- )W)+ F (1—-A)x+ Az,(1- A1)y + Aw)
<max{f (x,2), f (y,w)}
holds for all (x,z),(y,w) e[a,b]x[c,d] and A1 [0,1] .

A function f:[a,b]x[c,d] >R is said to be wright-convex on co-
ordinates on [a,b]x[c,d] if the partial mappings f, :[a,b] >R, f,(u)= f(u,y)
and f,:[c,d]>R, f (v)= f(x,v) are wright-convex where defined for all
x e[a,b],y €[c,d].

Definition 1.5. [20] A function f :[a,b]x[c,d]cR?* >R is said to be wright-
convex on co-ordinates on [a,b]x[c,d] if

f(tx+(1-t)z,sy+(1-s)w)+ f((1-t)x+1z,(1-5s)y +sw)

< f(xy)+ f(z,y)+ f(x,w)+ f(z,w)
forall (x,2),(y,w) [a,b]x[c,d] and (s,t)e [0,1] x[0,1] .
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The class of co-ordinated wright-convex functions on [a,b]x[c,d] is
represented by W ([a,b]x[c,d]). It has also been proved in [20] that every wright-
convex function on [a,b]x[c,d] is wright-convex on co-ordinates on [a,b]x[c,d].

For recent results on co-ordinated convex, co-ordinated quasi-convex, co-
ordinated m -convex, co-ordinated (« ,m)-convex and co-ordinated s-convex
functions on a rectangle [a,b]x[c,d] from the plane R?, we refer the readers to
[1, 4,5, 8], [10]-[20].

In the present paper, we establish a new weighted identity for
differentiable mappings defined on a rectangle [a,b]x[c,d] from the plane R?

and by using the obtained identity and analysis, some new weighted integral
inequalities for differentiable co-ordinated convex, co-ordinated wright-convex
and co-ordinated quasi convex functions are proved. The results proved in the
paper provide a weighted generalization of the results given in [15].

2. Main Results

The following notions will be used throughout this section for our
convenience

Ul(a,b,t)=Ul(t)= %aﬂLl%tb, L1(a,b,t)= |—1(t)= ﬂajtl%tb,
U,(c,d,s)=U,(s)= 1_78(3"‘1-'_78(1, L,(c.d,s)=L,(s)= HTSC—Fl_Tsd,
|fo(a,c)+|f(a,d)+|f(b,c)+|f(b,d)

¥(a,b,c,d;|f,|)= 4

a+b c+d
0. 222 1,

- max{| f(b,d), f%b,%j‘,

,12(&1(1,&_”),&;“60
2 2

= max{| fo(a,d), fia,%)‘,

a+b c+d |fts|j

*{b’c’T’T;

(a+b c+d)
fol ——— |
2 2
(a+b c+dj
fol ——— |
2 2

fts(a—m,d)‘,

2

fts(a+b dj‘
2
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fts[b’c_'—dj’ fts[a+b,cj, fts(a+b,c+dj
2 2 2 2
i{a,c,a;b,cm ;|fts|j

2
= max{| fts(a,c)|, fts(a,czd}, fts(a;b,Cj‘, fts(azb,cﬁ;dj‘}.

The following lemma is the key result to establish the results in this section.

= max{| f(b,c),

and

Lemma 2.1. Let f:AcR®*—R be a twice partially differentiable mapping on

A and p:[a,b]x[c,d]—[0,50) be continuous and symmetric about a% and

C+2d for [a,b]x[c,d]c A with a<h, c<d.If f_eL([a,b]x[c,d]), then

2

_Ij [ C+dj Xy)dxdy—fcJ'af(aTm,y)p(x,y)dxdy

- (omalde) LT 16y oy ] 0, 000,6)
LUOLE)- LLOUE)- LLOLEP @

S(a,b,c,d;p, f)= f(a+b C+d}jjpx ydxdy+jj X, y)p(x, y)dxdy

Proof. Let
(0aXd=e) P 1,y 1, 0.00.66)
fts(Ul(t),Lz(s)) fo(LOU(8)+ f(Li(t) Ly(s)dsdt
and
LLZ(S).LH(t)p(X, Y)dXdy _ q(t, s)_
then

1= 0aXAZE P o, 0.0V (6)- 10,0 L6)

— f (LU, () + fi (L (). Ly(s))Jdsalt.
Now by integration by parts and by using the symmetry of p(x,y) about
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x:a% and y:% we have
%Hqt )f, (U, (1)U, (s))dsdt
_ (b;a)j[q(t L ULOU, 6] - [0, 691 U,0.U, (s ))ds}d
(b;a) IO{_ ft( C+d j(J.HdJ. p(x, y dxdyj
N j(( [ pxusts dx) 1 (Ul(t),Uz(s))ds}dt
= _Mrf (U C+dj(jc+dj' p(x, y dxdy}
R S a1 POy 1,000, vy

- f(aT—i_b C+d jJ.c+dIa+bp X y dXdy jc+d Ia+b (X %dj p(X, y)dXdy

d b
et (T Y ol YKy L L apl ) Ry (3
2 2 2 2

Similarly, we have
_(b-a)d—c) a)(d —c) b=akd=e) o, )6, U, (0, Ly s)dsct
_.(a+b c+d +d
= f(T —)f jampx y Jxdy — j IM (X ij(x’ y )dxdy

__[C+ J.a+b (a b j X,y dXdy+I J.a+bp X, y (X y)dXdy (4)

_(b-ajd—c) a)(d b=akd=0) PPy )1, (L (1)U (st
= f("”b C+djjc+dj (% y)dxdy—jid jayf(x,ﬂjp(x, y)dxdy
+3 _L;a L (Tyj X, y Jdxdy+ J°+d j o y)f(x, y)dxdy (5)

and
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(b a(d C”qts . L,(s))dsdt
f[a”’ ”d)IMIM (c.y)ixdy - Imfagbf( 12 ot iy

ﬂ a+b c+d a+b

j I ( j xydxdy+'[ f y)f(x, y)dxdy. (6)
Adding (3)-(6), we get the desired result.
Remark 2.1. If we take p(x, y):m for all (x,y)e[ab]x[c,d] in
Lemma 2.1, we get Lemma 1 in [15, page 3]. Moreover, for
for all (x,y)e[a,b]x[c,d], it is natural to consider

1
PY)= G ara o)

following notation
a+b c+d 1 d ¢b
b,c,d; f)=f f(x,y)dxd
e )= {25225 o g Lty

2 2

1 c+d 1 ¢ _(a+b
——|f dx — f LY (dyl.
b—aa( 2) d—cJ.C[Z yjy

Now by using lemma 2.1, we present the main results of this section.

Theorem 2.1. Let f:AcR* —R be a twice differentiable mapping on A" and

p:[a,b]x[c,d]—[0,20) be continuous and symmetric about a;b and C;d for

[a,b]x[c,d]c A with a<b, c<d.If f,eL(ab]x[c,d])and|f,|* is convex on
co-ordinates on [a,b]x|[c,d] for g>1, then
1
3(a,b,c,d; p, f)<(b—a)d —c)[‘P(a, b,c,d;] fts|q)F

x J‘:.[:J‘CLZ(S) .LLl(t)p(x, y )dxdydsdt @)

Proof. Taking absolute value on both sides of (2), by using the properties of
absolute value and the Hélder inequality, we have

IS(a, Pedip ) . W(Eﬂ[ﬂﬂs}ﬁmp(ﬁ y)dxdy}dsdtjlf14

X [U‘:EULZ(S)J‘:(I)F)(X’ y)dXdyJ i (U (t). U, ()" deJq
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1

U ) U 21",y dxdy}l (U, ]qudtj
U ) U LZ IH X,y dxdy}l fio (Lt ]qudt)
U ) U Lz I “p(x,y dXdy}I (Lt )qusdt) ] (8)

By the power-mean inequality (a, +a; +aj +a; <4 "(a, +a,+a,+4a,)" for a,
a,, a;, a,>0 and r <1) and using the convexity of |fts|q on co-ordinates on

[a,b]x[c,d] for g>1, we have

U LT e ylanay | 0,00 1qudt)l

U ) U b,y dxdy}l f, (U ]“dsdt)
AL L5t y)dxdy}“ 2<s>]qudt)
(f ) U " f “n(x,y dxdy}l fio(Ly }qudt) ]

1

1
q

1

s}

< 41_ahfts(a,c)|q +|f(ad ) +| f(b,c)* +| (b, d )’

1
(L ynayasat)© ®

A usage of (9) in (8) yields the desired result.

Remark 2.2. If we take p(x, y):m for all (x,y)e[ab]x[c,d] in

Theorem 2.1, we get Theorem 4 in [15, page 8].
A different approach leads to the following result.

Theorem 2.2. Let f:AcR?* >R be a twice differentiable mapping on A" and

+b and c+d for

p:[a,b]x[c,d]—[0,20) be continuous and symmetric about ; 5

a,blx[c,d|cA with a<b, c<d. If f_eL([a,blx[c,d]) and |f.|" is convex on
[a,b]x[c,d] « € L([a,b]x[c,d]) and |,
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co-ordinates on [a,b]x|[c,d] for g >1, then

Sab,c,d: p ) < (b-afd —clab,c.ai £,

y ( [ j:[ [2[p(x, y)dxdy} p dsdtj g (10)
where 1 + 1 =1.

P q

Proof. From Lemma 2.1 and the H6lder inequality, we have

e 1SS

l( [[1t0.00,6) dsdt): +( [fu0Le) dsdt):

+( L) fts(l—l(t),Uz(s))qusdt)q +( [iEAC) Lz(s)]qudt)q]. (11)

By the power-mean inequality (a, +aj +aj +a; <4 "(a, +a,+a,+4a,)" for a,,

a,, 8, a,>0 and r<1) and using the convexity of |f,|' on co-ordinates on
[a,b]x[c,d] for g>1, we have

U:.Ll| fts(Ul(t),Uz(S)lqudt); +(J-01J.:| fts(Ul(t), L, (S))|q det);

+U01Ll| fts(Ll(t),Uz(S))lqudt): +( [l LOLE) dsoltjq
. 41‘1*[ [[1£.0, 00U, () dsdt+ [ [] £, (U, (1) L ()| dsct

|

PO dsd [[16 (L 0.1 (5)) dsat

4

_ 4{Ifts(a,c) +fo(ad)’ +[f(b.c)" +] (b, 0) ] (12)

Using (12) in (11), we get (10).
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Remark 2.3. If we take p(x,y)= for all (x,y)e[a,b]x|c,d] in

1
(b—a)d—c)
Theorem 2.2, we get Theorem 3 in [15, page 6].
Remark 2.4. Theorem 2.1 and Theorem 2.2 continue to hold true if in their
statements we replace the condition “ convex on the co-ordinates” with the
condition “ wright-convex on co-ordinates”. However, the details are left to the
interested reader.

In what follows we give our results for the quasi-convex mappings on co-

ordinates on [a,b]x|c,d].
Theorem 2.3. Suppose the assumptions of Theorem 2.1 are satisfied. If the

mapping | f,|* is quasi-convex on co-ordinates on [a,b]x[c,d] for g >1, then the
following inequality holds

|3(a,b,C,d;p,f]§W [ﬂ“(b’d'aTm'ﬂ Il ﬂl

1

1 1
+[/12[a,d,a—+b crd g | H {As(b,c,a—m g e ﬂ

2 2
+[ﬂ4£a,c,a7+b c+d [ f Hq EI:LLZ(S)LH(t)p(x, y Jdxdydtds. (13)

Proof. We continue inequality (8) in the proof of Theorem 2.1. Now, by the quasi-
convexity on co-ordinates of |f,|* on [a,b]x[c,d] for g>1 and the power-mean
inequality, we obtain

1. (U, (0).U, ()" < 4, b,d,aT“’,”d £ j (14)

1 LOUE) < 4fad 252 8 as)

UL s 4be 52 S50 )
and

fts(Ll(t),Lz(s))‘q£/14(a, aT+b crd g p j (17)

forall (t,s)e[0,1]x[0,1]. Using (14)-(17) in (13) we get the desired result.
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Corollary 2.1. Suppose the assumptions of Theorem 2.3 are fulfilled and if
p(x, y):m for all (x,y)e[a,b]x[c,d], then the following inequality
holds valid
|3(a,b,c,d; flgw
64

1

1
a+b c+d q)d a+b c+d q) |9
b,d,——,——|f Al a,d,——,——|f

{M L KR

1 1

a+b c+d q)ld a+b c+d q)|d
b,c,——,—;|f Al a,c,——,——;|f . (18
om0 22 S8 ) o a2 |jH (8

Corollary 2.2. Suppose the assumptions of Theorem 2.3 are satisfied and
additionally

1.1f | f,|* is non-decreasing on co-ordinates on [a,b]x[c,d], then

‘S(a,b,c,d;p,f)‘SW{ fts(a%b,dj

c+d a+b c+d Teiply(s) ply(t)
ftS(b’T)‘+ f‘S(T’T)‘}LLLZ . p(xy)oxdyduds.  (19)

holds valid.

fo(bd)[+

+

2.1f | f,|" is non-increasing on co-ordinates on [a,b]x[c,d], then

3(a,b.c.d;p, f) S%‘fd—c){ fo(a.c)|+|f, (aTer,c]

c+d a+b c+d LelpeLy(s) ply(t)
(a0 (222 S0 T bt o

2 2
holds true.

_|_

Corollary 2.3. In Corollary 2.1
1.1f | f,|* is non-decreasing on co-ordinates on [a,b]x[c,d], then

‘S(a’b,C,d;f)\s(b_aE)S#
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f, (b,d )\ +

x{ f (aT”)dj‘+ f (b¥j‘+ f [a%b%j‘} (21)

holds valid.
2. 1f | f,|" is non-increasing on co-ordinates on [a,b]x|c,d], then

( c+d]
folCco— [+
2

‘S(avb,C,d;f)\gw

64
{ (a+b J
X fo| ——.C ||+
2
holds true.

fo (a,c)+

(1)) e

3. Conclusions

A new weighted identity involving a twice differentiable mapping defined
on a rectangle from the plane and a continuous positive valued mapping which is
symmetric on co-ordinates is established. The identity proved in this paper is
more general than the results proved in earlier works. Some new weighted
Hermite-Hadamard type inequalities are obtained using the achieved identity,
analysis, the notion of convexity, quasi convexity and wright convexity on co-
ordinates on a rectangle from the plane. The results can be used to refine previous
related results since the notion of gausi convexity and wright convexity on co-
ordinates are more general than notion of convexity on co-ordinates and hence the
findings are believed to be very useful for further research in this filed.
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