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THE USE OF COMPLEX POWER METHOD IN EXPERIMENTAL
MODAL ANALYSIS

Lici FLORE'

The area of experimental modal analysis is quite extensive and it involves
different fields: vibration measurements, signal processing, post-processing,
mathematical background, issues of vibrating multi degree-of-freedom systems with
different models of damping, etc. This paper does not aim to discuss in detail all
aspects of modal testing. Instead, it focuses on showing a reliable method for system
identification. The computational model with the use of complex power method is
highly advisable in some branches (e.g. aircraft), and even mandatory. The article
presents the theoretical support, experimental procedure and some results based on
complex power method, used for aircraft structure identification.
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1. Introduction

There are at least four reasons to know the modal parameters of a structure
[1]: structure modification, assessment of the structural integrity and reliability,
structural health monitoring and model updating.

The experimental modal analysis uses the system response to calculate the
modal parameters by different identification techniques of modal analysis. The
theoretical support of these techniques and practical aspects of vibration
measurement techniques are discussed by Ewins [2].

Some of the more advanced methods available for the modal parameters
calculation in experimental modal analysis can be summarized below.

In the excitation domain, the multi-point excitation [3] is used to compute
the FRFs from a complex extraction procedure that requires different exciters to
be driving with excitation forces which are uncorrelated with their neighbors. A
very important advantage of this method is that the resulting FRF (Frequency
Response Function) data are free of any kind of inconsistency errors. The
disadvantage comes when applying for large structures, because it is difficult to
supply sufficient power to obtain significantly vibration levels.

In the measurements domain, the laser measurements with a non-intrusive
nature of their operation (they are all non-contact transducers) has been more and

" Eng., Dept. Testing Laboratory, Institute for Theoretical and Experimental Analysis of Aero-
Astronautical Structures STRAERO S.A., Romania, e-mail: lica.flore@straero.ro



32 Lica Flore

more applied and used lately [6]. The laser based response measurement
techniques include holography and laser-Doppler velocimetry.

The latest evolution in modal acquisition and computing equipment allows
an easy test set-up, as well as a quick and simple calculation of different modal
parameters. There are specialized digital boards to calculate two magnitudes (real
and imaginary parts of the response) in real time [4], reducing computation time
and increasing the accuracy of the results.

There are several methods [5] for modal parameters calculation that
exploit the same basic assumption: that in the vicinity of resonance frequency, the
entire response of the system is dominated by the nearest mode.

Quadrature forces method is a very simple way to evaluate the generalized
masses and generalized damping parameters for one mode of vibration. This is
based on simultaneous excitation with two harmonic forces out of phase by 90°, to
deduce formulas to obtain the modal parameters. This method is a more unstable
method because depends on the viscosity of the system and the test conditions
(temperature, forces levels ...).

Peak-picking method is a method that works adequately for structures
whose FRFs display well separated modes which have a moderate damping. The
applicability of this method is limited, because it is difficult to obtain accurate
measurements at resonances.

Circle-fit method exploits the fact that the behavior of most systems is
dominated by a single mode in the vicinity of a resonance. By this method, the
accurate value of natural frequency could be identified without any problem, but
the damping estimate would not be reliable.

The complex power is the most important method in experimental modal
analysis because can be obtained a lot of modal parameters with a good accuracy.
To develop this method, it is necessary to excite the structure with appropriated
forces at the resonance frequency and after this to make a micro frequency sweep
around this frequency.

2. Application of Power Complex Method

Any kind of structure, upon an external excitation, will deform and vibrate
in a characteristic manner that should be known in advance. The vibration resulted
can be a combination of different modes of vibration defined by frequency, shape,
damping and stiffness. When a structure is excited by a force whose frequency
corresponds to one of its vibration modes, the amplitude of movement can
increase up to destroying the structure. It is important to isolate the parameters
corresponding to each mode when they highly influence each other due to the
proximity modes. There are two ways for this: a theoretical one and an
experimental one, Fig. 1.
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Fig.1. Numerical and experimental approaches to identify the vibration modes.

Therefore, the experimentation is the only way to eliminate the
approximations and suppositions from numerical calculation by evaluating the
real modes from the measured data. This is based on the measurement of the
response of the structure as a result of applied forces.

The complex power of a structure with harmonic excitation is the product
between the velocities of the measurements points and the applied forces upon the
structure.

P=2-{F1-{7) m

where: {F } = excitation force vector [kg*m*s’z];

{V'} = velocities vector [m/s]

We need just to draw the real and imaginary parts of the complex power graphics
and make some mathematical calculus.

3. Summary of Modal Analysis Theory

Several mathematical expressions will allow the evaluation of the modal
parameters. To the general equation of motion for an MDOF (multi degree of
freedom) system, following equation applies:

(] {af €] (K1 = {0} )

where: [M ], [C], [K] are: mass matrix [kg], damping matrix [kg*s'],

respectively stiffness matrix [kg*s™].
With a stabilized harmonic excitation we have:

{ ()} ={F}-¢’” =harmonic excitation force vector

{x(t)} = {X } -e’”" = displacement vector
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{).c(t)} = jl@]{X}-e™ = speed vector

{x(t)} = —[a)]2 {X}-e™ = acceleration vector

Jjot

And by replacing the parameters above in eq.2 and simplifying by e

obtain:
(~[M ][] +i[Cl[o]+[K])-{ X} = {F)
Or by multiplying with the negative complex unit:

(7 [M]-[o] +[C] @] [K])-X} =i {F)
The displacement of each point is a spatial displacement and it is ideal to

use the minimum number of coordinates needed to define the configuration of the
entire system. These quantities are known as generalized coordinates.

Changing the coordinates {X}to generalized coordinates{¢} and the mass[M],

w¢€

damping [C] and stiffness[K] to generalized parameters|x],[4] and [y] based
on formulas:

(X} =lela}s [u]=[0] [M][@]; [k]=[o] [K] o]

we can write the modal equation: o
B (A1 [o)+ ilu] (@] ~ilr]}-a} =[a]{F) (3)

Where: [a] = response frequency function (complex conjugate receptance matrix
of system) [5],
j=~-1,
[®@]= eigenvector matrix,

[@] = diagonal matrix of frequencies,

{q} = generalized coordinates vector,
And:

[ 8] = generalized damping matrix,

[ 1£]= generalized mass matrix,

[]= generalized stiffness matrix.

These parameters are the global characterizing parameters for each
individual vibration mode. They show the energy of the excited mode and the
share of the mass for each mode.

With the notation:
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[2(@)]={[A)[w]+ jlu)[o] i)} “)
where: [Z (a))] called complex impedance matrix [4], the equation (3) can be
written:

[2(0)] {4} =[] {F} )
{9} =[2@)]" [a]-{F} ()

Each mode i can be isolated by applying an excitation at its natural frequencies
(w=wm,) where = resonance frequency. At this frequency, the imaginary parts

are zero and the generalized coordinates vector {q} has all of terms zero, except

the line i because only this mode contributes to the structure response. After
normalization, considering unitary the maximum amplitude for each mode, the
equation (3) becomes:

(8, o =[a]-{F) )
where: {3} =column i of the generalized damping matrix.

Considering the velocities vector:

Vy=wla]{q| @®)

then from (1) and (4) we obtain:
- 2T {a] o) ©)
or: Pz%-{ﬁ}i {q} (10)

where: { p }i =line i of the generalized damping matrix.

From (6), (7) and due to the properties of matrix [ ﬂ] the relation (10) becomes:

2
-, i -1
=0 [4] [z@)] (4] an
One mode of MDOF system is described by means of 2 parameters:
natural frequency: = Zi (12)
/uii
damping ratio: g, = Py

—— (13)
2\/7/11 “Hi

where: ¢, = damping ratio corresponding to vibration mode i ;
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By replacing the parameters from (4), (12) and (13) relation to (11) relation and
making its Taylor series expansion, around the resonance frequency @, , one can

obtain a good evaluation, just considering one order of this expansion:

(4l @, } (14)

_ (w-0) (0-0)

Because the power is a complex parameter one can write:

P(w) =R(w)+ jS(w)
where, R(w) = active power [W] and S(w) = reactive power [W] and then,
we can deduce that at the resonance (v = o, ):

Rw)=y,-C;- o (15)
S(w)=0 (16)
dR ds

— =0 d —_— =—v. 17
(dwj " (dwj & (4

In order to obtain the modal parameters, we draw the real and imaginary
parts of the complex power according to (14) graphics and find the maximum of
the real part and zero of the imaginary part (Fig. 2).

RS S(a)
R{@)

(@)

(=)

Fig.2. The real and imaginary parts of complex power at resonance

The natural frequency corresponds to this point. With relations (15) - (17)
we evaluate all of modal parameters:

natural frequency: @ = @, (corresponds at S(@)=0)
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g
. . ds Watts 3 kg -m’
eneralized stiffness: y = —| — ; = ) = 18
¢ g (dij[flz} I {s} (1
s
_kg~m2
2
generalized mass: ,u:L2 ; 8 :[kg-mz] (19)
; 1
l s*
I kg -m’
3
damping factor: £ :R(a)); Watts ~|= 5 > |=adimensional  (20)
@,y 1 Kg-m kg-m
Ls s° s’

4. Experimental Modal Analysis with Complex Power Method -
Modal Parameters Identification

The test results shown in this chapter have been developed by the author to
demonstrate the advantages obtained by using the complex power method applied
to Ground Vibration Testing of aircraft structure. The experimental procedure can
be described by the next steps:

- The excitation of the structure with harmonic forces around the supposed

natural frequency, Fig.2;
- The evaluation of the complex power as a product of forces and velocities,
around the supposed natural frequency of the structure, using (14) formula;
- The extraction of the real and imaginary parts of the complex power;
- Plotting the real and the imaginary parts, Fig.3;
- Finding the maximum of the real part and zero of the imaginary part, Fig.4;
- Calculation of the generalized stiffness, using (18) formula;
- Calculation of the other modal parameters, using (12), (13) and (15) formulas.
A typical experimental setup for harmonic excitation using a specially
developed hardware with a dynamic exciter is shown in Fig. 3. In this case, the
exciter is fixed in the reference point and the response is measured at all the
points. Thus, it provides one column of the FRF matrix. This setup was used in
modal testing for a small aircraft wing.
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Fig.3. Experimental setup to identify the natural frequencies of aircraft small wing

The extraction of the real and imaginary parts of signals is performed by
hardware using a multiplier. The response of a transducer will be a sine signal:
S(t) = Asin(wt + @) (22)
with the same frequency as excitation forces, but with different amplitude and
phase [4]. The real and imaginary parts are proportional to the sine and/or the
cosine of this phase. The signal generator provides two signals out of phase 90°:
SC(t) = F -sin(wt)
SO(t) = F -cos(awt)

By multiplying point by point the transducers response to these signals, we

(23)

obtain two magnitudes: one composed of harmonic component and one composed
of continuous component proportional to the real and imaginary parts:

Re(t) =S(¢)-SC(¢) = Asin(wt + @) - F -sin(wt) = %cos((o) - %cos(Za)t + @)

Im(¢) = S(¢)- SO(¢) = Asin(wt + @) - F -cos(wt) = %sin((/)) + %sin(Za)t + )

Both magnitude signals are computed in real time by multiplying the
temporal signal with the excitation force (0° phase) and by the quadrature of the
excitation force (90° phase).

In order to obtain one column of the FRF matrix we perform
measurements and acquire all data for one mode of the structure. After that, the
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modal analysis software is to be used to post-process this data. This part of modal
test is called experimental modal analysis corresponding to the stage called
theoretical modal analysis. In both cases, modal analysis leads to identification of
modal parameters of the system. The similarity between these approaches can be
noticed in Fig.4 where there are shown the mode shapes for the first mode of
vibration of an aircraft wing.

Fig.4. Theoretical Mode Shapes [9] and Experimental Mode Shapes of aircraft small wing obtaind

by Complex Power Method

The results may be obtained in table form (as in Table 1), but much more
illustrative is to use an animated display of the obtained the modal shape, Fig.4

right.
Table 1
The calculated modal parameters from aircraft wing harmonic excitation by
Complex Power Method
Active Reactive Generalized Generalized
Frequency . . .
[Hz] power power mass, stlf’fng:ss2 Damping ratio
(W] (W] [kg*m’] [kg*m’/s’]
10.30 3.60E-01 4.92E-01
10.32 5.10E-01 5.29E-01
10.34 6.98E-01 4.53E-01
10.36 9.04E-01 2.64E-01
10.38 0.95857 5.64E-02
10.40 0937967 75 63602 2988.736 1.275E+07 0.01207
10.42 0.973613 -1.69E-01
10.44 0.934373 -2.62E-01
10.46 0.820676 -3.36E-01
10.48 0.800494 -3.72E-01
10.50 0.761808 -4.27E-01
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Fig.5. The frequency identification from real and imaginary parts graphical representation of
complex power

A better solution to increase the resolution of resonance frequency (Fig.5)
is to use the polynomial interpolation (Fig.6). By this interpolation we can avoid
uncertainty provided by measurements devices and acquisition systems (close to
zero value the imaginary part of complex power can have multiple sign changes).

Test 141 Complex Power (w)
1.20F+00
y=L0/8/2x*- 212.94042x% +14010.90459% - 30 /2 / /88835
1.00E+00
8.00E-01
6. 00E-01
E‘ . A i
E A.00F-01 — Reactive
2
= Paoly. (Active)
2.00E 01 — Linear (Reactive)
LOOE+DU
hi.E Bh.8
-2.00E-01
y=-1.24349x+ 81.20944
-4.00E-01
Frequency [rad/s]

Fig.6. The interpolation of real and imaginary parts graphical representation
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Table 2 shows a data comparison in both cases: case A with interpolation
and case B without interpolation. Through interpolation, more accurate data has
been obtained. Improvement in accuracy is up to 5%. The values come from
unloaded wing test.

Table 2
The influences of interpolation data on frequencies identification for a small
aircraft wing (with load)

1* mode 2" mode 3" mode

Mode type Bending Bending Torsion

Interpolation Case A | CaseB | % | CaseA | CaseB | % | CaseA | CaseB | %

Frequency [Hz] | 10,930 | 10,404 | 4,81 | 49,223 | 49,463 | 0,75 | 51,069 - -

Table 3 shows the results of experimental modal analysis of aircraft wing
obtained through the procedure described above. Two other methods have been
used in order to compare the data: quadrature forces method and peak-picking

method. The complex power method offers the best results.
Table 3
The modal parameters for the first three modes of a aircraft wing (without load)
tested through harmonic excitation

1* mode 2" mode 3% mode
Mode type Bending Bending Torsion
Frequency [Hz] 10,39Hz 47,11Hz 50,27Hz
Generalized Stiffness 2,84E+07 3,20E+07 4,12E+07
[kgm™/s7]
Generalized Mass 2 2 2
[kem’] 746kgm 431kgm 288kgm
Damping ratio 0,0233 0,0072 0,010

Some observations about above parameters can be made. The generalized
masses are influenced by the correct measurement of vibration amplitudes, the
excitation forces and damping values. A correct damping measurement is an
important experimental task because damping values are not predicted by the
analytical model.

5. Conclusions

New techniques of modal tests and their analysis make the data acquisition
and processing easier but at the same time call for a better knowledge of all the
factors involved [4]. Appropriation based on the calculation of the complex
power, provide the different modal parameters. This method also allows, via a
multiplier board, the real-time calculation of the other modal parameters. During
harmonic excitation, the responses are proportional to the frequency response
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functions and therefore to the vibration modes. A better resolution, obtained
during above displayed tests, represents a own contribution at the use of complex
power method in experimental modal analysis.

The reliability of complex power method in experimental modal analysis
was verified by author through other methods of excitation, measurement,
acquisition and data processing. Finally, in aircraft structure domain this method
remains the first choice [8].

The results of tests shown in this article were carried out during several
months upon an aircraft wing in order to evaluate the influences of load in the
modal parameters identification. Various tests and identification methods were
applied. A critical review of the different tests and analysis methods, more than
the selection in this paper, will be performed.
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