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In this paper we study an ODE model on the microRNA - mRNA dynamics.

We prove the existence of two equilibrium points (one with strictly positive compo-

nents) and obtain a biologically consistent, sufficient asymptotic stability condition

for the strictly positive equilibrium.

1. Introduction

In the last decades there was an increased interest in the study of the mRNA-

microRNA dynamics ([3], [1], [2],[10],[9], [11], [12]). In [13] we studied ODE models

on microRNA - mRNA dynamics. Starting from the mathematical model proposed

by Hauser and Zavolan ([7]), in this paper we analyze the dynamics of a one mRNA

- two microRNA species. We obtain results on the nature of the equilibria and on

stability - Theorems 2.1 and 3.1, respectively, as well as on the crosstalking between

the two microRNA species through the mRNA.

Let the following system of differential equations

dx

dt
= α− µx− β (S − y1 − y2)x+ (ν1 − ν)y1 + (ν2 − ν)y2

dy1
dt

= β (S − y1 − y2)x− ν1y1 (1)

dy2
dt

= β (S − y1 − y2)x− ν2y2

The coeficient α is the rate of transcription of the targeted mRNA, with concentra-

tions x, while the coefficient β is the association rate to the corresponding microRNA

species (having the concentrations y1 and y2). Furthermore, νi, i = 1, 2 and µ stand

for the elimination rates of the microRNAs and ν is the association rate between the
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mRNA and the microRNA species. Naturally, all coefficients are strictly positive,

including S - the total amount of microRNA y1 +y2 < S. It is assumed that ν < ν1,

ν < ν2.

2. Equilibria

By using the same technique as in our previous paper [13], one can show that

the solutions of the associated Cauchy problem to (1) exist and are unique, they are

bounded and the positive octant R3
+ is an invariant set.

We start by writing the corresponding algebraic equations defining the equi-

libria (x∗, y∗1, y
∗
2):

α− µx− β (S − y1 − y2)x+ (ν1 − ν)y1 + (ν2 − ν)y2 = 0

β (S − y1 − y2)x− ν1y1 = 0 (2)

β (S − y1 − y2)x− ν2y2 = 0

From the last two equations in (2) one gets

y∗1 =
βSν2

βx∗(ν1 + ν2) + ν1ν2
x∗

y∗2 =
βSν1

βx∗(ν1 + ν2) + ν1ν2
x∗

By replacing now y∗1 and y∗2 in the first equation of (2), the following quadratic

equation in x emerges:

µβ(ν1 + ν2)x
2 − [αβ(ν1 + ν2) + βS(ν1ν2 − ν(ν1 + ν2)) − µν1ν2] x− αν1ν2 = 0 (3)

This quadratic equation has always two real solutions, one positive and one negative;

hence we obtained the following result.

Theorem 2.1. For every set of strictly positive coeficients α, β, µ, ν, ν1, ν2 and

S, the system (1) has two equilibrium points, one of them (x∗, y∗, y∗) with strictly

positive components.

Remark 2.1.

(1) Dividing equation (2) by ν1ν2 and by denoting

1

ν1
+

1

ν2
= γ,

the quadratic equation becomes

µβγx2 − [αβγ + βS(1 − νγ) − µ] x− α = 0. (4)

(2) It is easy to see that

ν1y
∗
1 = ν2y

∗
2.
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3. Stability

Our main purpose is to investigate the stability properties of the equilibrium

point with strictly positive components, since it is the relevant one from the biological

perspective. Denote it by (x∗, y∗1, y
∗
2) - as in Theorem 2.1.

The natural approach is to calculate the Jacobian matrix associated to the vec-

tor field defining (1) at the equilibrium point (x∗, y∗, y∗) and then to check whether

all its three eigenvalues lie in the open complex left half-plane.

In accordance with the equations of system (1), one can easily deduce that

J(x, y1, y2) =

−µ− β(S − y1 − y2) βx+ ν1 − ν βx+ ν2 − ν

β(S − y1 − y2) −βx− ν1 −βx
β(S − y1 − y2) −βx −βx− ν2.

 (5)

Let A := S − y1 − y2 > 0. The characteristic polynomial of J is calculated as

det(sI3 − J) =

∣∣∣∣∣∣
s+ µ+ βA −βx− ν1 + ν −βx− ν2 + ν

−βA s+ βx+ ν1 βx

−βA βx s+ βx+ ν2

∣∣∣∣∣∣
= (s+ µ+ βA)

[
s2 + (2βx+ ν1 + ν2)s+ (βx+ ν1)(βx+ ν2) − β2x2

]
+

− βA [(−βx− ν2 + ν)(−ν1) + (−βx− ν1 + ν)(−ν2) + (2βx− 2ν + ν1 + ν2)s]

= s3 + (µ+ βA+ 2βx+ ν1 + ν2)s
2+

[ν1ν2 + (ν1 + ν2)(βx+ µ) + 2βµx+ 2βAν] s+ (µ−βA)ν1ν2 + (ν1 + ν2)(µβx+βAν)

not
= p(s) = s3 + as2 + bs+ c. (6)

Applying the Hurwitz criterion to the third order polynomial above (6), one

immediately deduces the necessary and sufficient conditions for p(s) having all three

roots in the open complex left half-plane: a > 0, b > 0, c > 0 and ab − c > 0.

The first two inequalities are clearly satisfied since all coefficients (but also A) are

strictly positive for all positive values of x, y1, y2. The last inequality follows based

on the same assumptions after simple, straightforward calculations.

Checking the positivity of c requires a slightly more involved argument. Dividing

the inequality c > 0 by ν1ν2 > 0 and multiplying it by x∗ > 0 one gets

(µ− βA+ γβAν)x∗ + γβµ(x∗)2 > 0

By replacing now (x∗)2 from (4), the above inequality becomes

[µ− βA(1 − γν)]x∗ + [αβγ + βS(1 − νγ) − µ]x∗ + α > 0 (7)

or, equivalently,

[αγ + (S −A)(1 − νγ)]βx∗ + α > 0 (8)

Obviously, S − A > 0 and with the condition νγ < 1 the last inequality is verified.

According to the data in [7], this last condition ν(ν1 + ν2) < ν1ν2 is biologically

consistent. Thus the following results holds:
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Theorem 3.1. For every set of strictly positive coeficients α, β, µ, ν, ν1, ν2 and S,

such that ν(ν1 + ν2) < ν1ν2, the system (1) has an asymptotically stable equilibrium

point (x∗, y∗, y∗) in R3
+.

4. Numerical examples. Conclusions.

We choose the following set of values for the system coefficients: α = 8, β = 3,

ν1 = 4.64, ν2 = 60.58, ν = 0.32, µ = 1 and S = 30, within the range of values

indicated by [7].

Figure 1. Typical dynamics in state-space

Solving the polynomial equation (4), one can easily compute the equilibrium

point values: x∗ = 126.35, y∗1 = 27.55, y∗2 = 2.11. These are consistent with steady-

state values observed in the simulation results on a sufficiently long time horizon

(Figure 2).

Thus, we conclude that for any set of strictly positive coefficients, system (1)

has a biologically consistent equilibrium point - a relevant fact in the analysis of the

cross-talking modeling in a micro-RNA target network.

Please also note (see Figure 3) that the total amount of the two microRNA

species, y1 + y2, remains always bounded by S. In other words, A = S− y1− y2 > 0

for every y1, y2 on on a given trajectory.
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Figure 2. Time-domain: shorter settling times for y1 and y2

Figure 3. Limitation of y1 + y2
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An interesting open problem, which will be addressed in the future, is to

prove that the (unique) biologically relevant equilibrium is a global attractor for the

positive octant R3
+. This can be done in a similar manner as in [4]. Alternatively,

the stability sufficient condition might be relaxed by employing the LMI approach

used in [12].
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