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KINETIC MODELLING FOR THERMAL DECOMPOSITION
OF THE ALUMINUM HYDROXIDE DRIED, MILLED AND
CLASSIFIED

Raluca ISOPESCU'*, Gheorghe DOBRA?, Sorin ILIEV?, Lucian COTET?, Alina
BOIANGIU?, Laurentiu FILIPESCU*!

The paper presents a kinetic study based on Avrami semiempirical model for
the thermal decomposition of the aluminum hydroxide in the range 100-400 <.
From experimental evidence concerning TG and DSC measurements, different
pathways for the solid phase transformations of the gibbsite during heating were
assumed for samples with specific particle size ranges. The modelling results stand
for the existence of two distinct mechanisms that overlap. The formation of
intermediate metastable phases is more likely to take place in samples with large
particle sizes, while small particles undergo a rapid and straightforward
transformation.
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1. Introduction

Gibbsite is an intermediate product in alumina Bayer process and a
valuable raw material for manufacture of all the hydrated and non-hydrated
products, emerging as transitory phases during multiple ways of gibbsite
calcination up to the a-Al20s. Gibbsite and boehmite are the only phases capable
to promote as precursors the crystallization of all other transitional phases. Many
products from the family AlI(OH)s-3H.O — AIO(OH) - a-Al203 have important
industrial uses as low temperature calcined aluminas and as high temperature
ceramic oxides, porous ceramics and castable ceramics. Each category of the
above industrial materials has its own standards of quality and special
requirements concerning the specific surface, variable particle size distribution,
pore size and pore size distribution and the degree of crystallinity [1-4]. Most of
the low temperature calcined aluminas are used as: adsorbents and water
purification reactants fire retardants and fillers for plastics and silicon rubber
composites, coating materials and any of their precursor phases [5-10]. High
temperature calcined aluminas are used as ceramic oxides porous ceramics, and
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castable ceramics [11-14]. Also, both the low and high temperature calcined
aluminas serve as raw materials for catalysts and catalyst supports [15-17]. The
papers [18-20] offer some more information about properties of these materials.
During the thermal treatments, gibbsite undergoes various successive transitions,
turning out combinations of various compounds, the most common being the
mixtures of boehmite and one or more transitional alumina phases (including ¥, «,
Y, 0, 0, m, etc.), more or less amorphous [21]. Always, starting with low
temperature gibbsite phase, all the transition phases are arranged on two lines of
products, depending on initial pre-treatments applied to the raw materials:

Line 1: Gibbsite — y¢-Chi — k-Kappa — a- Alfa
Line 2: Gibbsite — Boehmite — y-Gamma — 8-Delta — 0-Teta — a-Alfa.

Moreover, each of the alumina hydrated or anhydrous phases can be a
precursor for one special group of transitional or crystalline phases. But most of
the research fundamentally aligns to the above concept of two-line transitions,
with the gibbsite and boehmite as main precursors for any of the rest of phases
[22]. An important aspect of the gibbsite dehydroxilation process is that all the
literature reports are indicating clearly the order in which the compounds are
formed during the thermal transformations, but did not offer enough data about
the kinetics and associated mechanisms of the dehydroxilation processes
[23].There are three dynamic factors which control all the transition mechanism
from Al203-3H20 to a- Al>Oz3: temperature and rate of heating [21-31], particles
size dimension of Al,03-3H20, before the heating treatments [32-35], advanced
grinding [36-38] and intensive mechanical activation Al203-3H2O raw material
[39-42]. In the conditions of special processing of the gibbsite or boehmite, before
or during the thermal treatments, paths of transformation (lines 1 and 2) may be
modified, and a transitional phase may be added or excluded from the above-
mentioned paths of transitions [30, 43, 44]. The kinetic and mechanism of gibbsite
phase transitions have been studied with both isothermal and non-isothermal
models. These techniques offer important information about the thermal activity
of gibbsite or any other phase from the well-known two routes from gibbsite to a-
alumina. As example, Radaoui et al, [45] have chosen three of such models,
Ozawa-Flynn-Wall (OFW) [46], Akahira-Sunose [47] and Boswell [48] to
describe the mechanism and kinetics of gibbsite phase transitions on the line
Boehmite — y-Al203 — y-Al203 — a-Al203. Based on classical Avrami model
[49-51] and of further added reviewed contributors [29, 52, 53], our previous
papers demonstrated that all these models are of great importance in TG/DSC data
processing [54-59].

The main purpose of the present study is to investigate the alumina
gibbsite phase transitions, that occur mainly in the range of 100-400°C, under
particularly conditions, where this phase is expected to transform into boehmite
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and y-alumina, and more prevalent into amorphous Al.Oz phases with variable
water content. Particularly, the investigation aims to highlight the role of particle
size dimension as dynamic factor in the mechanism and kinetics of gibbsite
transitions to AIO(OH) and y-Al>Os. It has been demonstrated that the thermal
decomposition of aluminum hydroxide (gibbsite) follows a specific transitions
row with partial recrystallized phases, and substantially depends on both heat
treatment and particle size dimension. The Avrami semiempirical model, adapted
for non-isothermal transformation [60] was used for kinetic modeling.

2. Materials and Methods

2.1. Sample Preparation.

Aluminum hydroxide sample were received from SC ALUM SA. These samples
were produced by Bayer’s process and further processed in the newly built line for
the production of special grades of dried, milled, and classified aluminium
hydroxide, that was recently presented by Dobra et al. [61]. The samples did come
from the classified aluminium hydroxide after milling and were dried at 60°C for
3 hours (Table 1). Selection of the sample for mechanism and Kkinetics
investigation is fully described in the papers [18, 19].

Table 1
Samples characteristics
Samples Granulation Mineralogy
Sample 1 0-150 um Al,03-3.H,0
Sample 2 0-45um Al,03-3.H,0
Sample 3 0-20 um Al,03-3.H,0
Sample 4 0-10 um Al,03-3.H,0
Sample 5 45-150 um | Al,O3-3.H,0

2.2. Characterization Methods

The Kinetics parameters of the thermal phase transformations studied in
this paper were measured by recording the weight losses and thermal effects
occurring during the various dehydration processes on a STA 449 F3 Jupiter
device (NETZSCH-Geratebau GmbH,Selb, Germany). The mineral phases
analysis studies by X-ray diffraction (XRD) were carried out using a PANa-lytical
Empyrean diffractometer (Almelo, Netherlands). Particle size distributions in the
analyzed samples were determined using a Malvern Panalytical Mastersizer 2000
diffraction analyzer (Almelo, The Netherlands). All details about the
characterization methods were provided in the papers [18, 19].

3. Kinetic modelling

Solid phase transformations during the dehydroxilation of gibbsite,
including recrystallization of new phases and amorphization, were assumed to
proceed by a primary nucleation process, followed by nuclei growth. As the heat
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flux generated is quite important, the process may be considered as a succession
of isothermal transformations that may be modelled by the pseudo-empirical
Avrami model [51]. The physical mechanism which is assumed in this model is
based on an athermal nucleation mechanism, i.e. the nucleation is instant, while
the entire recrystallization process is reduced to a temperature dependent nuclei
growth. In isothermal transformation, an Avrami type equation can generally give
the relation between the extent of the new phase formation in time, c(t), as:

c(t)=1- exp[— Kt”] 1)
In equation (1) the rate constant K is a measure of the growth rate, and the kinetic
exponent n is related to the growth mechanism and geometry. Initially, n was
considered to have integer values up to 4, a value of 3 or 4 reflecting a volume
growth, while lower values (n=1 or n=2) a planar or linear growth
For non-isothermal transformations, the general equation (1) was adapted [60],
considering the overall thermal transformation a succession of isothermal
processes, where temperature varies as a function of time, T(t). The corresponding
extent of the new phase can be calculated as:

c(t) 1—exp{—[j'K(l'(t))dt} } 2

The term K(T(t)]) is the kinetic constant of an isothermal process that occurs at
temperature T(t) and can be calculated using an Arrhenius type relation:

K [T (t)] =k, exp[—E/ RT (t)] (3)
Thus, the equation (2) can then be written:

c(t) 1—exp{—[j'ko exp(—E/RT(t))dt} } 4)

And the integration may be solved numerically for o<t<ts.
4. Results and Discussion

4.1 Experimental results

Five different gibbsite samples (Table 1), differing by their particle size
ranges, were analyzed by TG and DSC at a heating rate of 5°C/min up to 1000°C
(Fig. 1). The mass loss was attributed to the dehydroxilation of gibbsite that led to
the successive formation of partially dehydroxilated aluminum oxides and
eventually resulting in anhydrous Al>Oa.
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Fig. 1. DSC curves: (a) Sample 1, (b) Sample 2, (c) Sample 3, (d) Sample 4, (e) Sample 5
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The thermal effects accompanying the mass loss sustain a four stages
transformation. The approximative temperature intervals for these stages are:
Stage 1 between 100°C and 200°C, Stage 2 between 200°C and about 320°C,
Stage 3 between 425°C and 600°C, and Stage 4 which begins at 600 °C and ends
up to 1000°C. The different shapes of DSC curves, mainly for Stage 2, may
sustain specific transformations depending on the granulation of the samples. The
experimental TG and DSC curves are presented in Fig. 1(a, b, ¢, d. e.). Analyzing
the TG and DSC records, it can be noticed, that in all five samples the overall
mass loss (about 35.5%) corresponds to an overall mass balance that characterizes
the global reaction of gibbsite dihydroxylation to Al.Os. Taking into consideration
this mass loss in each sample mentioned above, a small weight loss, about 1%
over the temperature range from 100°C to 200°C can be attributed to the loss of
adsorbed or sequestrated water in the closed pores. The second step, attributed to
the temperature as dynamic factor, ranging from about 200°C to 320°C, has also a
particular feature. While the mass loss is about 26% and can be attributed the
gibbsite dihydroxylation up to a global formula of Al>03-(0.64+0.66)H20, which
may be assigned to a partially dehydrated boehmite and/or to partial dehydrated
alumina. From the point of view of DSC curve, these processes show specific
pathways for each of the five samples as effect of dynamic factor particle size
dimension. Samples 1 and sample 5, corresponding to large particles, show a clear
two-step transformation, with a first peak at around 232°C (mass loss of 5.5-5.6%)
and a second peak at 305-306°C and mass loss of about 20.5%. The samples 3 and
sample 4, corresponding to small and very small particles, show a single step
transformation with a peak at 298.7°C and 292.9°C. The DSC curve for sample 2
(particles below 45 pum), has an almost imperceptible peak at 234.7°C and a clear
peak at 294.7°C, similar to the curves registered for samples 3 and 4. Starting
from these observations, two parallel pathways may be assigned to the thermal
decomposition of gibbsite in the second step. Consequently, two different
emerging solid phases are expected, especially in samples 1 and 5. In order to
validate this hypothesis, the solid phases obtained at 260°C, 300°C and 400°C
were analyzed by XRD and composition was calculated using Rietveld method.
The data, collected from papers [18, 19] are presented in Table 2.

Table 2
Composition of solid phases during thermal decomposition of gibbsite
Sample | Particl | Temperature, Composition %

no. e sizes, °C Gibbsite Boehmite y-alumina | Amorphous

um phase

25 41.65 0.00 0.00 58.35

260 33.30 8.96 0.00 57.74

! 0-150 300 22.17 10.97 5.90 60.96

400 2.29 13.59 16.39 67.73
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25 62.54 0.00 0.00 37.46
2 0-45 260 46.42 4.15 0.00 49.43
300 34.60 5.82 0.57 59.00
400 3.32 7.45 10.61 78.60
25 61.67 0.00 0.00 38.33
3 0-20 260 4541 2.80 0.00 51.79
300 38.33 4.99 0.44 56.25
400 0.05 5.44 12.81 81.70
25 62.59 0.00 0.00 37.41
4 0-10 260 53.23 2.62 0.00 44.15
300 43.26 5.48 0.64 50.62
400 2.28 6.86 12.98 77.88
25 55.56 0.00 0.00 44.44
260 43.48 8.28 0.00 48.24
S 45-150 300 33.81 11.94 0.00 54.25
400 0.05 12.86 13.79 73.32

4.2 Kinetic Modelling

For the two possible mechanisms an Avrami type model can be assumed,
and kinetic parameters may be estimated by correlation of experimental data. In
order to include the two distinct pathways into the model, a new parameter, ® was
introduced standing for the initial phase changed fraction according to mechanism
1 and (1- w) for the fraction that emerged by mechanism 2. DSC curves (fig.1a-e)
were integrated over the endothermal transition interval corresponding to step 2.
Recrystallized fraction at moment t, in any stage of the process is evaluated by the
relation:

c(t) = jAH (t)-dt T AH (t)dt (5)

where t is the time (in seconds) elapsed from the beginning of the transition,
computed for a heating rate of 5 °C/minute, and AH(t) is the momentary value of
energy (W/g) read from the DSC diagram. During data processing, the
denominator in relation (5) was checked to give the same value as the thermal
effect registered by DSC analysis, in order to ensure a correct interpretation of
physical results. The generalization of relation (4) for two mechanisms of phase
transformation is given by relations (6-8):

Ny

c(t)=w|1—exp —[j' Kl(u)du}1 +(l-w)|1—exp —[j' Kz(u)du} (6)

K, (u) = {k,, exp[- E, /RT (u) "™ 7)
K, (U) = {ko, exp[- E, / RT (u) /"™ 8)
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where the kinetic exponents 1 and 2 are assigned to the mechanism 1 and 2, and
K1(u) and K>(u) are the rate constants for the two mechanisms.

The above model is characterized by seven parameters (n1, ko1, E1, n2, E2, ko2 and
®), which are to be identified by the minimization of the objective function in
form of the least squares:

m 2

F=37 o), —ct) ] (©)
In relation (9), c(t)exp iS the converted volume fraction computed from
experimental data, according to equation (5), c(t) is the fraction computed from
equation (6), and m is the number of experimental points chosen on the DSC
curves. The mathematical model was implemented in Matlab™(Natick, Ma,
USA) release 15, and the minimization was performed using the built-in function
ga based on genetic algorithms. As the number of model parameters to be
identified is high, the genetic algorithm main characteristic, the population size,
was established at a value of 500. The low and upper limits for the seven
parameters were chosen according to some literature data and general assumptions
considered. For the activation energy the search limits were chosen between 100-
1000 kJ/mol [31], while for the Avrami Kinetic exponents, n1 and nz, the search
interval was between 1 and 3 to stand for any type of growth mechanism. The
goodness of fit by the proposed model was appreciated by the coefficient of
determination, R? which gives the correlation between experimental and
computed values of converted volume. The results obtained are presented in Table
3. For samples 1 and 5, where large particles are present, mechanism 1 may be
attributed to the formation of a metastable phase characterized by a linear growth
(1<n1<2), caused by a deep perturbation created by heating upon the gibbsite
crystalline structure. The perturbation is significant (v=12-17%) and may stand
for metastable p-alumina formation that is mentioned also in some other studies
[36]. The present Avrami model results give an argument to sustain the formation
of p-alumina in the thermal treatment of gibbsite. For the samples containing
small particles (samples 3 and 4) the contribution of metastable phase formation is
not significant. In sample 4, ®=0.02, while the kinetic parameters obtained for

sample 3 prove that both transformations are of the same type.

Table 3
Kinetic parameters
Samp Particle’s Ko.1, E;, np o) ko_z E, Ny R2
le no | size, um st kJ/mol kJ/mol
1 0-150 7.140e4 | 78.120 | 1.42 | 0.12 | 7.401e5 | 143.72 | 2.77 | 0.997
2 0-45 9.795e5 | 92.762 | 1.86 | 0.04 | 5.587e4 | 119.32 | 2.39 | 0.995
3 0-20 4.005e5 | 109.10 | 2.17 | 0.07 | 3.902e5 | 128.45 | 2.33 | 0.997
4 0-10 7.769e5 | 77.661 | 1.15 | 0.02 | 7.570e4 | 118.25 | 2.31 | 0.996
5 45-150 6.142e4 | 84.279 | 1.65 | 0.17 | 7.543e4 | 131.90 | 2.67 | 0.997




Kinetic modelling for thermal decomposition of the aluminum hydroxide dried, milled and... 75

The kinetic exponents n; and n, for sample 3 are greater than 2, standing
for a planar growth. Similar observations can also be considered for sample 2.
When the particle sizes are small the metastable phase has no time to form, as the
rate of phase transformations are high. The two possible distinct mechanism of
phase transformations, highlighted by the kinetic modeling, are also evidenced by
the temperature dependent evolution of the solid phase presented in Table 2. The
samples 3 and 4, with small size particles have a constant increase of amorphous
phases in the range of temperatures up to 300°C showing a continuous phase
change. In samples 1 and 5, containing large particles, the amorphous phase
content varies slightly up to 300°C, while boehmite and y-alumina are formed,
proving that the process takes some two parallel pathways.

5. Conclusions

The kinetic modelling revealed the different pathways of thermal
decomposition of the aluminum hydroxide. These pathways are significantly
influenced by the particle size range. Small particles evolve by a greater rate and
intermediate metastable solid phases have not the time to crystallize. The
differences pointed out by the Avrami type model used are in good agreement
with measured data concerning the variation with temperature of the solid phase
composition.
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