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OPTIMAL ALLOCATION OF DISTRIBUTION GENERATOR
FOR RADIAL DISTRIBUTION NETWORK USING GREY
WOLF OPTIMIZER

Jaleel AL HASHEME?, Murtadha AL-KAABI?, Lucian TOMA?3

Electric power utilities are paying a lot of attention right now to the optimal
location and size of distributed generation (DG) at the radial distribution grids with
the goal of minimizing real power loss. Power loss minimization has several built-in
advantages, such as reducing the power flow on reducing the power flow on the
feeder lines, relieving stress on feeder loading to extend their life, increasing the
possibility of using the current facility to meet any increase in load demand,
avoiding the need to buy power from the grid, saving money on loss-compensating
equipment, lowering customer bills, etc. In this paper, the optimal location and size
of distributed generation (DG) units will be addressed using one of the most popular
metaheuristic optimization techniques, namely the Grey Wolf Optimizer (GWO). The
main aim of this paper is to minimize the real power losses on the distribution
network, improve the voltage profiles, and enhance the voltage stability index by
adding DG units to the optimal location and determining the optimal size while
satisfying the equality and inequality constraints. The approach proposed
determining the optimal location by reconfiguring the DG on all buses, calculating
the real power losses, and improving the voltage deviation. The optimal location is
achieved on a bus with the lowest real power losses. The optimal sizing of the DG
unit can be achieved by using Grey Wolf Optimizer (GWO). GWO is a meta-
heuristics optimization technique inspired by the social behavior of gray wolves. The
IEEE 69 bus power system and Babylon Radial Distribution Network (BRDN) will
be tested to prove the superiority and efficiency of the proposed algorithm.
According to the simulation results that were obtained and the evaluation of the
various cases that were taken into consideration, the placement of DG units results
in a large loss reduction with a favorable voltage profile as well as a release in the
line loading in the power distribution networks.

Keywords: Distributed generation, Grey Wolf Optimizer, Optimal location,
Optimal sizing, real power Loss minimization, IEEE 69-bus system,
Babylon Radial Distribution Network (BRDN)

1. Introduction

The high-voltage transmission systems are connected to the low-voltage
electric power distribution networks, which ultimately provide power to clients at
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low voltage. Due to low voltage and high current in comparison to high-voltage
networks, distribution network lines have substantial total power losses. This
leads to a rise in energy costs and a poor voltage profile along the distribution
feeder. Real power loss and reactive power loss make up the total power loss in
the distribution network. The first loss is caused by the flow of active current
required by the load, whereas the second loss is caused by the flow of reactive
current needed to make up for the reactive power needs of network components
and, as a result, control the voltage of the system. The impact of active power loss
is crucial since it degrades the voltage profile and lowers power transfer
efficiency, which represents one of these losses. In comparison to the transmission
system, minimizing real power loss in the distribution networks is particularly
crucial. Electric power distribution is primarily responsible for reducing power
loss and improving the power efficiency of the electric power delivery system.
According to reports, power losses at the distribution level account for up to 13%
of all wasted energy [1]. Since the capacity of radial lines is frequently
constrained, it is important to consider various alternate techniques to meet future
load demands while ensuring supply quality and dependability.

Due to the inductive nature of the majority of distribution network
components, such as motors and transformers, the power factor in the network
will be lagging, which reduces system capacity, raises system losses, and lowers
voltage. Some of these issues are resolved using shunt capacitors [2-4]. Shunt
capacitors improve the voltage profile, power factor, and voltage stability of the
system, in addition to reducing power losses. Since distributed generation (DG)
integration into the distribution system defers major system upgrades, lowers total
energy loss, and enhances supply quality and reliability, it can now play a
significant role in distribution system planning [5]. Although DG technologies
have favorable effects on the distribution system, adding active DG units to a
traditional passive system may present certain technical difficulties. It is important
to note that DG units should be used effectively without impairing supply quality,
system performance, or dependability. On the other hand, while planning the
expansion of a distribution system, shunt capacitors, which are frequently used for
reactive power compensation, can also be considered. On the other hand, while
planning the expansion of a distribution system, shunt capacitors with DG units,
which are frequently used for reactive power compensation, can also be
considered. Any loss reduction is advantageous to distribution utilities, who
typically bear the burden of keeping losses at a minimum. Therefore, loss
minimization is the most crucial issue to take into account when planning and
operating DG [6].

According to the literature, shunt capacitors' reactive power injection can
efficiently lower system energy loss, ease feeder stress, and enhance supply
reliability [7]. To prevent voltage, rise problems and thereby lower the operating
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cost of DG units, special consideration must be given to the placement and sizing
of shunt capacitors. The placement of capacitors, network reconfiguration, DG
deployment, network reconfiguration in the presence of DG, and DG capacitor
placement are some of the techniques that can be utilized to reduce power losses
in distribution networks [8].

In power systems, various optimization techniques have been used to solve
multiple problems. For example, several techniques are used to solve optimal
power flow, such as Differential Evolution (DE) [9], Grey Wolf Optimizer
(GWO) [15, 16], Hunger Games Search (HGS) [12], Harris Hawks Optimization
(HHO) [14, 15], Improved Differential Evolution (IDE) [16, 18], Modified
Artificial Bee Colony (MABC) [18], Slime Mould Algorithm (SMA)
[19],Modified Fibonacci Search Algorithm (MFSA) [20], oppositional-based
manta ray foraging optimization algorithm (OMRFO) [21], and honey badger
algorithm (HBA) [22]. In optimal allocation (placement and sizing) of DG in the
distribution networks, many optimization methods were proposed to reduce power
loss, such as analytical methods [20-23], genetic algorithms (GA) [27], artificial
bee colony (ABC) algorithms [28], evolutionary programming (EP) [29], GA-TS
[30], Manta Ray Foraging Optimization algorithm (MRFO) [31], and black
widow optimization (BWO) [32], and improved whale optimizer algorithm
(IWOA) [33] were used.

All the above techniques used the optimal siting and sizing of DG units in the
most effective way. The optimal distribution of DG is considered in the current
work, considering that DG can also deliver reactive power in addition to real
power. The optimal placement and sizing are the main goals of this paper: to
minimize real power losses in the distribution network, improve the voltage
profiles, and enhance the voltage stability index while satisfying the equality and
inequality constraints. The placement of DG units is determined using the
reconfiguration approach. The best bus to place a DG unit on is the one with the
lowest real power losses after selecting the best size. The optimal sizing of DG
units will be determined by the proposed algorithm, Grey Wolf Optimizer
(GWO). The convergence speed of the proposed algorithms is fast and requires
less iteration to reach optimal solutions compared to the other optimization
techniques reported in the literature. The proposed algorithms have been tested on
two radial power systems: the IEEE 69-bus system and the Babylon Radial
Distribution Network (BRDN).

This paper will be arranged as follows: Section 2 includes the problem
formulation, which includes objective functions and constraints. Section 3
presents the overview and mathematical model of the proposed algorithm, Grey
Wolf Optimizer (GWO). Section 4 involved the simulation results and discussion
to determine the optimal location and sizing for the IEEE 69-bus system and
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Babylon Radial Distribution Network (BRDN) to reduce the real power losses.
Finally, the conclusions are represented in Section 5.

2. Problem formulation

2.1 Objective function

The main goal of the proposed approach is to set the best location and size for
DG to achieve the optimal objective function (real power losses) under various
operational constraints. It can be formulated for the real power losses as follows
[34]:

Mln( floss) = Z I:)Ioss (1)
Where:
Ploss :Z Z(aij(F)in+Qin)+ i (QiP'_Pin )) 2)
i=1  j=1
R = PGi - PDi 3)
Q= QGi - QDi 4)
o, =~ cos(s, - 5,) 5)
V; j
Xi .
By =—sin(8, - 5) (6)
ViVj
And
rij + inj = Z; (7)
ijth element of [Z_bus ] matrix is
[Zbus] = [Ybus ]71 (8)

P

loss

flowing out of bus i and bus j. Q, and Q, are the reactive power flowing out of

: Total real power losses of whole system. B and P, are the real power

bus i and busj. P, and P,, are the real power supplied by DG and demand at bus
1.Qg and Qp; are the reactive power output for DG unit and demand at bus i. v; is
voltage at bus i, r; and Xx; are resistance and reactance of the line section between
buses i and j respectively.

2.3 Constrain

The following constraints apply to these objective functions as follows:
a) Power balance constraint
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where and P, and Qg are the real and reactive power supplied by DG at
busi. P,

loss(i,i+1,

yand Q. are the real and reactive power loss from buses i to

i+1.
b) Voltage constraint
V,-V|<AV Vi=12,.n (11)
c) Thermal limit
|Ji|£\]imax (12)

J.. Maximum thermal current through line i. Utilizing the amount of

current flowing via each branch, the thermal limit is computed. The objective
function penalizes the violation of the inequality constraints.

3. Proposed methodology

In this section, the authors have proposed two approaches to finding the
optimal location and sizing. The first approach is used to find the optimal
location. The reconfiguration method is the approach used to select the optimal
placement (bus number) of the DG unit. The second method is used to find the
optimal size (MW) of the DG unit. Grey Wolf Optimizer (GWO) is the proposed
optimization method to determine the optimal sizing of the DG unit. These
approaches can be summarized as follows:

3.1 Reconfiguration Method (RM)

In a single DG connection, the proposed method to determine the optimal
location is the reconfiguration method. The reconfiguration method is the
approach used to select the best bus by placing the DG unit at each bus and
calculating the real power losses at this bus. The total losses of all buses will be
arranged, and the bus that has the lowest value represents the optimal bus. The
reconfiguration method is the proposed method used to find the optimal location
of the DG unit. The optimal size of the DG unit will be determined by GWO. The
main steps are:

1. Calculate the real power loss at each bus after connecting the DG unit,

thus selecting the optimal size based on GWO.

2. The bus showing the lowest real power loss is the candidate bus to connect

the DG unit.
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3.2 Grey Wolf Optimizer (GWO)

The Grey Wolf Optimizer (GWO) is a novel heuristic optimization
algorithm that draws inspiration from the social behavior exhibited by grey
wolves, who are members of the Canidae family [35]. The grey wolves are
categorized into four hierarchical levels based on their leadership roles, namely
alpha (a), beta (B), delta (), and omega (o), as illustrated in Figure 1. In the Grey
Wolf Optimization (GWO) algorithm, the alpha wolf denotes the most optimal
solution, while the beta and delta wolves represent the second and third best
options, respectively. The omega wolf symbolizes the subsequent solutions that
succeed the solutions of the preceding three wolves in order to attain the best
solution. The primary stages involved in grey wolf hunting are as follows:

A. Encircling Prey

This procedure exemplifies the optimal strategy for encompassing prey
within a circular area during the act of hunting. The phenomenon of Grey Wolves
surrounding their prey might be conceptualized as:

D=[C-Y,(t)-Y () (13)
Y(t+1)=Y,(t)-B-D (14)
B=2b-r,—b (15)
C=2-r, (16)

Here B and C are the coefficients. t denotes the current iteration. Y and Y, are

the position vector of the grey wolf and prey, respectively. b is changed from 2 to
0 decreasingly. r,and r, are random vectors in [0, 1]

A

)
@

Fig. 1. Hierarchy of grey wolf in GWO
B. Hunting

During this process, the vector adjusts its position inside the search space
based on the optimal positions of alpha, beta, and delta. The placements of the
remaining agents will be adjusted within the search space in order to converge
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towards the location of the most optimal search agents. The agents' positions will
be updated based on the selection of the three most optimal solutions, which have
been saved and utilized in prior instances, as depicted in Figure 2. Hunting
behavior can be characterized by the following formulas:

D, =[C,-Y, -Y|,D, =[C,-Y, -Y|,D, =[C, Y, - Y| (15)
Y,=Y,-B,-D,.,Y,=Y,-B,-D,,Y, =Y, ~B,-D, (16)
Y(t+1) =t et (17)

The estimation of position can be represented by Y,, Y,and Y, based on alpha,
beta and delta, respectively. The final position was updated by Y (t+1).

Fig. 2. Position updating in GWO.

C. Attacking

The act of attacking the prey signifies the final stage in the hunting
behavior of Grey wolves, occurring when the prey ceases its movement. The
mathematical description of this procedure involves iteratively decreasing the
value from 2 to 0. The local search mechanism of the Grey Wolf Optimizer
(GWO) can be analogously conceptualized as the hunting behavior of wolves
targeting their prey.

D. Searching

The initiation of prey seeking in Grey wolves is contingent upon the
spatial arrangement of o, B, and & individuals. The divergence of Grey wolves

occurs during the process, whereas the convergence takes place during the attack
on the prey. When the value decreases, it implies that the wolves are compelled to



378 Jaleel Al Hasheme, Murtadha Al-Kaabi, Lucian Toma

seek out more suitable prey. The procedure outlined here is the global search or
exploration for the Global Welfare Organization (GWO). Figure 3 depicts the
flowchart of the Grey Wolf Optimization (GWO) method.

Csat > ‘
? | Update the GWO parameters |
v

| Initiate a random population of n grey wolves |
* I Calculate the fitness value of each search agent |

| Initialization of the GWO parameters |

e | Update Y,, Yz and Y; |
| Calculate the fitness value of each search agent | *
Y @ No Convergence
| Calculate Y, 7 and Yz | criterion satisfied 2,
G=1
| Determine the optimal solution Y,
—>| Update the position of search agent | *

Fig. 3. Flowchart of the Grey Wolf Optimizer GWO
4. Simulation results

The proposed method is tested on the IEEE-69 bus system and the
Babylon Radial Distribution Network (BRDN) to demonstrate its efficacy. Both
test systems share the same initialized GWO algorithm parameters. MATLAB
software is utilized to run the power flow, execute the GWO algorithm, and
determine the best position and size for DG units.

4.1. IEEE-69 Bus system.

The IEEE 69 bus system is the first case-tested system using the proposed
algorithm, GWO. Fig. A.1 represents the single-line diagram for the IEEE 69 bus
power system. The bus and line data of the IEEE 69 bus system are tabulated in
Table A.1. The main characteristics of this system are 69 buses and 68 lines; the
voltage bus is 12.6 [kV], and the active and reactive loads are 3800 [kW] and
2690 [kVAr], respectively. The reconfiguration approach is the method used to
select the optimal location of the DG unit. The GWO algorithm is the method
used to determine the optimal size. Table 1 presents the optimal location and size
for the IEEE 69 bus system. It can be observed that the optimal size of the DG
unit is 2.375 MW. The optimal location of the DG unit is bus 61. The real power
losses will be reduced from 224.94 [kW] in the initial case (without DG) to 91.48
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[kW] in the optimal case (with DG unit), with a reduction rate of 58.94%. Also,
the reactive power losses have been reduced from 101.22 [kVATr] in the initial
case (without DG) to 43.19 [KVAr] in the optimal case (with DG units). Fig. 4
illustrates the effect of the placement and size of the DG unit on reducing the real
power losses in the IEEE 69 bus system. Fig. 5 shows the voltage profiles of all
buses without and with the DG unit. The minimum voltage improved from 0.909
[p.u.] (Bus 65) in the initial case (without DG unit) to 0.9713 [p.u.] (Bus 27) in
the optimal case (with DG unit). Fig. 6 illustrates the effect of the installation of
the DG unit on the voltage stability index. It can be observed that the minimum
voltage stability index ranges from 0.6852 (Bus 65) in the initial case (without
DG) to 0.890 (Bus 27) in the optimal case (with DG units). Table 2 shows the
comparison results obtained by the proposed algorithm GWO with other modern
optimization techniques. This table demonstrates the effectiveness and efficiency
of the proposed algorithm to solve optimal power flow in a distribution network.

Table 1
The optimal location and sizing on IEEE 69 bus system
Items Without DG With DG units using GWO
Location (BusNo.) | = ----- 61
Size[kW] | - 2,375
Total real loss [KW] 224.94 91.48
Total reactive loss [KVAr] 101.22 43.19
Reduction of real loss (%) | - 58.94%
Min voltage [p.u.] 0.9093 0.9713
Minimum VSI 0.6852 0.890
Total VSI 61.27 65.55
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Fig. 4. Real power losses after installation DG unit at each bus on IEEE-69 bus system
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Fig. 5. Voltage profile with and without DG for IEEE-69 bus system.
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Fig. 6. Voltage stability index without and with DG for IEEE-69 bus system.

Table 2
Comparison the optimal results of proposed algorithm with other optimization techniques

Technique Real power loss
Value (KW) | Percentage %

Initial (without DG units) 224.94
GWO [36] 98.5687 56.17
PSO [36] 98.5687 56.17
GWO-PSO [36] 98.5687 56.17
GA [37] 89.0 60.44
SGA [38] 89.4 60.3
Analytical [39] 92 59.1
GWO 91.48 58.94
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4.2. Babylon Radial Distribution Network (BRDN)

The Babylon Radial Distribution Network (BRDN) is the particle system that
has been applied in this study to demonstrate the efficiency and superiority of the
proposed algorithm. The bus and line data of BRDN are tabulated in Table A.2.
This system contains 100 buses and 99 branches. The real power load is 10467
[kW], and the reactive power load is 5069.4 [kVAr]. According to the
reconfiguration of the DG unit, the candidate bus number is 33. The optimal
sizing of DG units is determined by using the proposed algorithm, GWO. Table 3
illustrates the optimal location and sizing for BRDN. The optimal sizing [kW] is
8440. The real power losses will be decreased from 409.85 [kW] in the initial case
(without DG) to 93.363 [kW] in the optimal case (with DG unit), with a reduction
rate of 77.22%. Also, the reactive power losses have been reduced from 453.33
[KVAr] in the initial case (without DG) to 104.956 [KVAr] in the optimal case
(with DG unit). Fig. 7 illustrates the effect of the placement and size of the DG
unit on reducing the real power losses in the IEEE 69 bus system.

Table 3
The optimal location and sizing on IEEE 69 bus system
Items Without DG With DG units using GWO
Location (BusNo.) | = ----- 33
Size[kW] | ----- 8440
Total real loss [kW] 409.85 93.363
Total reactive loss [KVAr] 453.33 104.956
Reduction of real loss (%) |  ----- 77.22%
Min voltage [p.u.] 0.9374 0.9766
Minimum VSI 0.7721 0.9097
Total VSI 93.243 83.348
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Fig. 7. Real power losses after installation DG unit at each bus on BRDN network.
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Fig. 8 presents the voltage profiles of all buses without and with the DG unit.
The minimum voltage improved from 0.9374 [p.u.] (Bus 48) in the initial case
(without DG unit) to 0.9766 [p.u.] (Bus 48) in the optimal case (with DG unit).
Fig. 9 illustrates the effect of the installation of DG units on the voltage stability
index. It can be observed that the minimum voltage stability index ranges from

0.7721 (Bus 48) in the initial case (without DG) to 0.9097 (Bus 48) in the optimal
case (with DG unit).
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Fig. 8. Voltage profile with and without DG on BRDN network.
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5. Conclusion

This paper offers a study aimed at determining the ideal position and
sizing (allocation) of a distributed generation (DG) unit using the Grey Wolf
Optimizer (GWO), which is a widely used metaheuristic optimization technique.
The primary objective of this study is to mitigate the actual power losses within
the entire system while enhancing the voltage profiles and voltage stability. The
reconfiguration technique is employed to ascertain the most favorable placement
of distributed generation (DG) units. The GWO algorithm is offered as the
method for determining the size of the DG unit. In order to validate the efficacy
and practicality of the algorithm under consideration, experimental evaluations
were conducted on two distinct power systems, namely the IEEE 69 bus power
system and the Babylon Radial Distribution Network (BRDN). The Global
Weight Optimization (GWO) algorithm is known for its ease of implementation,
shorter execution time, and improved accuracy. The suggested algorithm
demonstrated higher performance and efficiency compared to alternative
algorithms, providing favorable solutions for radial distribution networks. The
acquired findings from the two systems, namely the IEEE 69 bus and BRDN,
demonstrate the rapid convergence characteristics and resilience of the proposed
approach. Based on the observed results, it can be inferred that the suggested
method is well-suited for determining the optimal position and size of distributed
generation (DG) units in distribution networks. The suggested approach offers
several key advantages, including ease of implementation, reduced computational
effort, the ability to achieve optimal or near-ideal solutions, and the capability to
identify plausible outcomes.
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Fig. A. 1 Single line diagram of IEEE 69 bus power system.

The Bus and Line data of IEEE 69 bus system

Bus Data Line Data
Bus Pload | Q Load From To R [Q] X [Q]
(kW] | [KVAT] | (Bus) | (Bus)
1 0 0 1 2 0.0005 | 0.0012
2 0 0 2 3 0.0005 | 0.0012
3 0 0 3 4 0.0015 | 0.0036
4 0 0 4 5 0.0251 | 0.0294
5 0 0 5 6 0.366 0.1864
6 2.6 2.2 6 7 0.3811 | 0.1941
7 40.4 30 7 8 0.0922 0.047
8 75 54 8 9 0.0493 | 0.0251
9 30 22 9 10 0.819 0.2707
10 28 19 10 11 0.1872 | 0.0619
11 145 104 11 12 0.7114 | 0.2351
12 145 104 12 13 1.03 0.34
13 8 5 13 14 1.044 0.345
14 8 5.5 14 15 1.058 0.3496
15 0 0 15 16 0.1966 | 0.065
16 45.5 30 16 17 0.3744 | 0.1238

Table A. 1
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17 60 35 17 18 0.0047 | 0.0016
18 60 35 18 19 0.3276 | 0.1083
19 0 0 19 20 0.2106 | 0.069
20 1 0.6 20 21 0.3416 | 0.1129
21 114 81 21 22 0.014 | 0.0046
22 5.3 3.5 22 23 0.1591 | 0.0526
23 0 0 23 24 0.3463 | 0.1145
24 28 20 24 25 0.7488 | 0.2475
25 0 0 25 26 0.3089 | 0.1021
26 14 10 26 27 0.1732 | 0.0572
27 14 10 3 28 0.0044 | 0.0108
28 26 18.6 28 29 0.064 | 0.1565
29 26 18.6 29 30 0.3978 | 0.1315
30 0 0 30 31 0.0702 | 0.0232
31 0 0 31 32 0.351 0.116
32 0 0 32 33 0.839 | 0.2816
33 14 10 33 34 1.708 | 0.5646
34 19.5 14 34 35 1.474 | 0.4873
35 6 4 3 36 0.0044 | 0.0108
36 26 18.55 36 37 0.064 | 0.1565
37 26 18.55 37 38 0.1053 | 0.123
38 0 0 38 39 0.0304 | 0.0355
39 24 17 39 40 0.0018 | 0.0021
40 24 17 40 41 0.7283 | 0.8509
41 1.2 1 41 42 0.31 0.3623
42 0 0 42 43 0.041 | 0.0478
43 6 4.3 43 44 0.0092 | 0.0116
44 0 0 44 45 0.1089 | 0.1373
45 39.22 26.3 45 46 0.0009 | 0.0012
46 39.22 26.3 4 47 0.0034 | 0.0084
47 0 0 47 48 0.0851 | 0.2083
48 79 56.4 48 49 0.2898 | 0.7091
49 384.7 | 2745 49 50 0.0822 | 0.2011
50 384.7 | 2745 8 51 0.0928 | 0.0473
51 40.5 28.3 51 52 0.3319 | 0.1114
52 3.6 2.7 9 53 0.174 | 0.0886
53 4.35 3.5 53 54 0.203 | 0.1034
54 26.4 19 54 55 0.2842 | 0.1447
55 24 17.2 55 56 0.2813 | 0.1433
56 0 0 56 57 1.59 0.5337
57 0 0 57 58 0.7837 | 0.263
58 0 0 58 59 0.3042 | 0.1006
59 100 72 59 60 0.3861 | 0.1172
60 0 0 60 61 0.5075 | 0.2585
61 1244 888 61 62 0.0974 | 0.0496
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62 32 23 62 63 0.145 0.0738
63 0 0 63 64 0.7105 | 0.3619
64 227 162 64 65 1.041 0.5302
65 59 42 11 66 0.2012 | 0.0611
66 18 13 66 67 0.0047 | 0.0014
67 18 13 12 68 0.7394 | 0.2444
68 28 20 68 69 0.0047 | 0.0016
69 28 20
Table A. 2
The Bus and Line data of BRDN network.
Bus Data Line Data
gus | Pload | QLoad | From | To R[Q] X [Q]
[kW] [kVAr] | (Bus) | (Bus)
1 0 0 1 2 0.00693 | 0.01155
2 0 0 2 3 0.00459 | 0.00595
3 0 0 3 4 0.01296 | 0.0168
4 225 108.9725 4 5 0.0351 0.0455
5 90 43.58899 5 6 0.01404 | 0.0182
6 0 0 6 7 0.00495 | 0.00385
7 0 0 7 8 0.01344 | 0.0168
8 0 0 8 9 0.06705 | 0.05215
9 0 0 9 10 0.00108 | 0.0014
10 0 0 10 11 0.00486 | 0.0063
11 225 108.9725 11 12 0.10665 | 0.13825
12 0 0 12 13 0.00729 | 0.00945
13 0 0 13 14 0.01188 | 0.0154
14 0 0 14 15 0.03591 | 0.04655
15 225 108.9725 15 16 0.01026 | 0.0133
16 0 0 16 17 0.01755 | 0.02275
17 0 0 17 18 0.0126 0.0098
18 0 0 18 19 0.0351 0.0273
19 0 0 19 20 0.09765 | 0.07595
20 0 0 20 21 0.0468 0.0364
21 0 0 21 22 0.00855 | 0.00665
22 0 0 22 23 0.0072 0.0056
23 0 0 23 24 0.01316 | 0.01645
24 0 0 24 25 0.01064 | 0.0133
25 0 0 25 26 0.00189 | 0.00315
26 225 108.9725 26 27 0.00588 | 0.00735
27 0 0 27 28 0.03612 | 0.04515
28 0 0 28 29 0.01155 | 0.01925
29 0 0 29 30 0.0168 0.021
30 0 0 30 31 0.01029 | 0.01715
31 0 0 31 32 0.01148 | 0.01435
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32 0 0 32 33 0.01131 | 0.01015
33 0 0 33 34 0.03136 | 0.0392
34 0 0 34 35 0.00952 | 0.0119
35 225 108.9725 | 35 36 0.00546 | 0.0091
36 225 108.9725 | 36 37 0.02436 | 0.03045
37 0 0 37 38 0.0108 0.0084
38 0 0 38 39 0.04508 | 0.05635
39 225 108.9725 | 39 40 0.02128 | 0.0266
40 0 0 40 41 0.07095 | 0.07525
41 225 108.9725 | 41 42 0.02541 | 0.02695
42 0 0 42 43 0.01551 | 0.01645
43 360 174.356 43 44 0.01386 | 0.0147
44 360 174.356 44 45 0.02409 | 0.02555
45 225 108.9725 | 45 46 0.03762 | 0.0399
46 225 108.9725 | 46 47 0.01782 | 0.0189
47 0 0 47 48 0.0045 0.0035
48 360 174.356 5 49 0.00741 | 0.00665
49 360 174.356 5 50 0.00621 | 0.00805
50 0 0 50 51 0.00594 | 0.0077
51 225 108.9725 6 52 0.06808 | 0.01295
52 0 0 52 53 0.046 0.00875
53 225 108.9725 | 53 54 0.01485 | 0.01155
54 0 0 8 55 0.01482 | 0.0133
55 0 0 55 56 0.06669 | 0.05985
56 0 0 14 57 0.00486 | 0.0063
57 0 0 57 58 0.02772 | 0.0294
58 225 108.9725 | 57 59 0.0099 0.0077
59 0 0 59 60 0.00864 | 0.0112
60 0 0 16 61 0.0126 0.0098
61 360 174.356 61 62 0.0171 0.0133
62 0 0 17 63 0.02268 | 0.0294
63 225 108.9725 19 64 0.01485 | 0.01155
64 0 0 64 65 0.01258 | 0.00595
65 900 435.8899 20 66 0.01215 | 0.00945
66 0 0 66 67 0.00594 | 0.0077
67 0 0 23 68 0.00294 | 0.0049
68 225 108.9725 | 24 69 0.01008 | 0.0126
69 225 108.9725 | 25 70 0.01755 | 0.01575
70 0 0 70 71 0.02324 | 0.02905
71 0 0 71 72 0.04347 | 0.05635
72 225 108.9725 | 72 73 0.01485 | 0.01925
73 360 174.356 73 74 0.00594 | 0.0077
74 0 0 74 75 0.00891 | 0.01155
75 0 0 75 76 0.00308 | 0.00385
76 225 108.9725 | 28 77 0.00609 | 0.01015




390

Jaleel Al Hasheme, Murtadha Al-Kaabi, Lucian Toma

77 225 108.9725 | 30 78 0.00693 | 0.01155
78 225 108.9725 | 32 79 0.03976 | 0.0497
79 567 274.6106 | 79 80 0.00616 | 0.0077
80 0 0 80 81 0.00273 | 0.00455
81 0 0 81 82 0.01848 | 0.0231
82 0 0 33 83 0.01482 | 0.0133
83 0 0 83 84 0.00962 | 0.00455
84 90 43.58899 | 33 85 0.01242 | 0.0161
85 0 0 85 86 0.00504 | 0.0084
86 225 108.9725 | 85 87 0.00972 | 0.0126
87 0 0 87 88 0.00567 | 0.00945
88 225 108.9725 | 87 89 0.00297 | 0.00385
89 360 174.356 89 90 0.03348 | 0.0434
90 0 0 90 91 0.00399 | 0.00665
91 225 108.9725 | 91 92 0.01998 | 0.0259
92 0 0 92 93 0.00231 | 0.00385
93 225 108.9725 | 92 94 0.00729 | 0.00945
94 0 0 94 95 0.00294 | 0.0049
95 0 0 95 96 0.00252 | 0.0042
96 225 108.9725 | 96 97 0.00225 | 0.00175
97 0 0 97 98 0.00336 | 0.0056
98 225 108.9725 | 34 99 0.01782 | 0.0189
99 225 108.9725 | 40 100 | 0.04095 | 0.03185
100 225 108.9725




