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OPTIMAL ALLOCATION OF DISTRIBUTION GENERATOR 

FOR RADIAL DISTRIBUTION NETWORK USING GREY 

WOLF OPTIMIZER 

Jaleel AL HASHEME1, Murtadha AL-KAABI2, Lucian TOMA3 

Electric power utilities are paying a lot of attention right now to the optimal 

location and size of distributed generation (DG) at the radial distribution grids with 

the goal of minimizing real power loss. Power loss minimization has several built-in 

advantages, such as reducing the power flow on reducing the power flow on the 

feeder lines, relieving stress on feeder loading to extend their life, increasing the 

possibility of using the current facility to meet any increase in load demand, 

avoiding the need to buy power from the grid, saving money on loss-compensating 

equipment, lowering customer bills, etc. In this paper, the optimal location and size 

of distributed generation (DG) units will be addressed using one of the most popular 

metaheuristic optimization techniques, namely the Grey Wolf Optimizer (GWO). The 

main aim of this paper is to minimize the real power losses on the distribution 

network, improve the voltage profiles, and enhance the voltage stability index by 

adding DG units to the optimal location and determining the optimal size while 

satisfying the equality and inequality constraints. The approach proposed 

determining the optimal location by reconfiguring the DG on all buses, calculating 

the real power losses, and improving the voltage deviation. The optimal location is 

achieved on a bus with the lowest real power losses. The optimal sizing of the DG 

unit can be achieved by using Grey Wolf Optimizer (GWO). GWO is a meta-

heuristics optimization technique inspired by the social behavior of gray wolves. The 

IEEE 69 bus power system and Babylon Radial Distribution Network (BRDN) will 

be tested to prove the superiority and efficiency of the proposed algorithm. 

According to the simulation results that were obtained and the evaluation of the 

various cases that were taken into consideration, the placement of DG units results 

in a large loss reduction with a favorable voltage profile as well as a release in the 

line loading in the power distribution networks. 

Keywords: Distributed generation, Grey Wolf Optimizer, Optimal location, 

Optimal sizing, real power Loss minimization, IEEE 69-bus system, 

Babylon Radial Distribution Network (BRDN) 

1. Introduction 

The high-voltage transmission systems are connected to the low-voltage 

electric power distribution networks, which ultimately provide power to clients at 
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low voltage. Due to low voltage and high current in comparison to high-voltage 

networks, distribution network lines have substantial total power losses. This 

leads to a rise in energy costs and a poor voltage profile along the distribution 

feeder. Real power loss and reactive power loss make up the total power loss in 

the distribution network. The first loss is caused by the flow of active current 

required by the load, whereas the second loss is caused by the flow of reactive 

current needed to make up for the reactive power needs of network components 

and, as a result, control the voltage of the system. The impact of active power loss 

is crucial since it degrades the voltage profile and lowers power transfer 

efficiency, which represents one of these losses. In comparison to the transmission 

system, minimizing real power loss in the distribution networks is particularly 

crucial. Electric power distribution is primarily responsible for reducing power 

loss and improving the power efficiency of the electric power delivery system. 

According to reports, power losses at the distribution level account for up to 13% 

of all wasted energy [1]. Since the capacity of radial lines is frequently 

constrained, it is important to consider various alternate techniques to meet future 

load demands while ensuring supply quality and dependability.  

Due to the inductive nature of the majority of distribution network 

components, such as motors and transformers, the power factor in the network 

will be lagging, which reduces system capacity, raises system losses, and lowers 

voltage. Some of these issues are resolved using shunt capacitors [2–4]. Shunt 

capacitors improve the voltage profile, power factor, and voltage stability of the 

system, in addition to reducing power losses. Since distributed generation (DG) 

integration into the distribution system defers major system upgrades, lowers total 

energy loss, and enhances supply quality and reliability, it can now play a 

significant role in distribution system planning [5]. Although DG technologies 

have favorable effects on the distribution system, adding active DG units to a 

traditional passive system may present certain technical difficulties. It is important 

to note that DG units should be used effectively without impairing supply quality, 

system performance, or dependability. On the other hand, while planning the 

expansion of a distribution system, shunt capacitors, which are frequently used for 

reactive power compensation, can also be considered. On the other hand, while 

planning the expansion of a distribution system, shunt capacitors with DG units, 

which are frequently used for reactive power compensation, can also be 

considered. Any loss reduction is advantageous to distribution utilities, who 

typically bear the burden of keeping losses at a minimum. Therefore, loss 

minimization is the most crucial issue to take into account when planning and 

operating DG [6]. 

According to the literature, shunt capacitors' reactive power injection can 

efficiently lower system energy loss, ease feeder stress, and enhance supply 

reliability [7]. To prevent voltage, rise problems and thereby lower the operating 
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cost of DG units, special consideration must be given to the placement and sizing 

of shunt capacitors. The placement of capacitors, network reconfiguration, DG 

deployment, network reconfiguration in the presence of DG, and DG capacitor 

placement are some of the techniques that can be utilized to reduce power losses 

in distribution networks [8]. 

In power systems, various optimization techniques have been used to solve 

multiple problems. For example, several techniques are used to solve optimal 

power flow, such as Differential Evolution (DE) [9], Grey Wolf Optimizer 

(GWO) [15, 16], Hunger Games Search (HGS) [12], Harris Hawks Optimization 

(HHO) [14, 15], Improved Differential Evolution (IDE) [16, 18], Modified 

Artificial Bee Colony (MABC) [18], Slime Mould Algorithm (SMA) 

[19],Modified Fibonacci Search Algorithm (MFSA) [20], oppositional-based 

manta ray foraging optimization algorithm (OMRFO) [21], and honey badger 

algorithm (HBA) [22].   In optimal allocation (placement and sizing) of DG in the 

distribution networks, many optimization methods were proposed to reduce power 

loss, such as analytical methods [20–23], genetic algorithms (GA) [27], artificial 

bee colony (ABC) algorithms [28], evolutionary programming (EP) [29], GA-TS 

[30], Manta Ray Foraging Optimization algorithm (MRFO) [31], and black 

widow optimization (BWO) [32], and improved whale optimizer algorithm 

(IWOA) [33] were used. 

All the above techniques used the optimal siting and sizing of DG units in the 

most effective way. The optimal distribution of DG is considered in the current 

work, considering that DG can also deliver reactive power in addition to real 

power. The optimal placement and sizing are the main goals of this paper: to 

minimize real power losses in the distribution network, improve the voltage 

profiles, and enhance the voltage stability index while satisfying the equality and 

inequality constraints. The placement of DG units is determined using the 

reconfiguration approach. The best bus to place a DG unit on is the one with the 

lowest real power losses after selecting the best size. The optimal sizing of DG 

units will be determined by the proposed algorithm, Grey Wolf Optimizer 

(GWO). The convergence speed of the proposed algorithms is fast and requires 

less iteration to reach optimal solutions compared to the other optimization 

techniques reported in the literature. The proposed algorithms have been tested on 

two radial power systems: the IEEE 69-bus system and the Babylon Radial 

Distribution Network (BRDN). 

This paper will be arranged as follows: Section 2 includes the problem 

formulation, which includes objective functions and constraints. Section 3 

presents the overview and mathematical model of the proposed algorithm, Grey 

Wolf Optimizer (GWO). Section 4 involved the simulation results and discussion 

to determine the optimal location and sizing for the IEEE 69-bus system and 
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Babylon Radial Distribution Network (BRDN) to reduce the real power losses. 

Finally, the conclusions are represented in Section 5. 

2. Problem formulation 

2.1 Objective function 

The main goal of the proposed approach is to set the best location and size for 

DG to achieve the optimal objective function (real power losses) under various 

operational constraints. It can be formulated for the real power losses as follows 

[34]: 
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lossP : Total real power losses of whole system. iP  and jP  are the real power 

flowing out of bus i and bus j. iQ  and jQ   are the reactive power flowing out of 

bus i and bus j. GiP  and DiP  are the real power supplied by DG and demand at bus 

i. GiQ  and DiQ  are the reactive power output for DG unit and demand at bus i. iv  is 

voltage at bus i, ijr  and ijx  are resistance and reactance of the line section between 

buses i and j respectively. 

2.3 Constrain 

The following constraints apply to these objective functions as follows: 

a) Power balance constraint 
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where and DGiP  and DGiQ are the real and reactive power supplied by DG at 

bus i. ( , 1)loss i iP + and ( , 1)loss i iQ +  are the real and reactive power loss from buses i to 

i+1. 

b) Voltage constraint 

1 max
1,2,...

i
V V V i n−    =                         (11) 

c) Thermal limit 

maxi i
J J                                                      (12) 

maxi
J maximum thermal current through line i. Utilizing the amount of 

current flowing via each branch, the thermal limit is computed. The objective 

function penalizes the violation of the inequality constraints. 

3. Proposed methodology 

In this section, the authors have proposed two approaches to finding the 

optimal location and sizing. The first approach is used to find the optimal 

location. The reconfiguration method is the approach used to select the optimal 

placement (bus number) of the DG unit. The second method is used to find the 

optimal size (MW) of the DG unit. Grey Wolf Optimizer (GWO) is the proposed 

optimization method to determine the optimal sizing of the DG unit. These 

approaches can be summarized as follows: 

3.1 Reconfiguration Method (RM) 

In a single DG connection, the proposed method to determine the optimal 

location is the reconfiguration method. The reconfiguration method is the 

approach used to select the best bus by placing the DG unit at each bus and 

calculating the real power losses at this bus. The total losses of all buses will be 

arranged, and the bus that has the lowest value represents the optimal bus. The 

reconfiguration method is the proposed method used to find the optimal location 

of the DG unit. The optimal size of the DG unit will be determined by GWO. The 

main steps are:  

1. Calculate the real power loss at each bus after connecting the DG unit, 

thus selecting the optimal size based on GWO. 

2. The bus showing the lowest real power loss is the candidate bus to connect 

the DG unit. 
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3.2 Grey Wolf Optimizer (GWO) 

The Grey Wolf Optimizer (GWO) is a novel heuristic optimization 

algorithm that draws inspiration from the social behavior exhibited by grey 

wolves, who are members of the Canidae family [35]. The grey wolves are 

categorized into four hierarchical levels based on their leadership roles, namely 

alpha (α), beta (β), delta (δ), and omega (ω), as illustrated in Figure 1. In the Grey 

Wolf Optimization (GWO) algorithm, the alpha wolf denotes the most optimal 

solution, while the beta and delta wolves represent the second and third best 

options, respectively. The omega wolf symbolizes the subsequent solutions that 

succeed the solutions of the preceding three wolves in order to attain the best 

solution. The primary stages involved in grey wolf hunting are as follows: 

A. Encircling Prey 

 This procedure exemplifies the optimal strategy for encompassing prey 

within a circular area during the act of hunting. The phenomenon of Grey Wolves 

surrounding their prey might be conceptualized as: 

( ) ( )pD C Y t Y t=  −                                                   (13) 

( 1) ( )pY t Y t B D+ = −                                                 (14) 

12B b r b=  −                                                      (15) 

22C r=                                                           (16) 

Here B and C are the coefficients. t denotes the current iteration. Y and pY  are 

the position vector of the grey wolf and prey, respectively. b is changed from 2 to 

0 decreasingly. 1r and 2r  are random vectors in [0, 1] 

       β

            δ

                

α

 
Fig. 1. Hierarchy of grey wolf in GWO 

B. Hunting 

 During this process, the vector adjusts its position inside the search space 

based on the optimal positions of alpha, beta, and delta. The placements of the 

remaining agents will be adjusted within the search space in order to converge 
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towards the location of the most optimal search agents. The agents' positions will 

be updated based on the selection of the three most optimal solutions, which have 

been saved and utilized in prior instances, as depicted in Figure 2. Hunting 

behavior can be characterized by the following formulas: 

1 2 3, ,D C Y Y D C Y Y D C Y Y     =  − =  − =  −                 (15) 

1 1 2 2 3 3, ,Y Y B D Y Y B D Y Y B D     = −  = −  = −                    (16) 

1 2 3( 1)
3

Y Y Y
Y t

+ +
+ =                                            (17) 

The estimation of position can be represented by 1Y , 2Y and 3Y  based on alpha, 

beta and delta, respectively. The final position was updated by ( 1)Y t + . 
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𝐷𝛼 

𝐷𝛽  

 
Fig. 2. Position updating in GWO. 

C. Attacking 

The act of attacking the prey signifies the final stage in the hunting 

behavior of Grey wolves, occurring when the prey ceases its movement. The 

mathematical description of this procedure involves iteratively decreasing the 

value from 2 to 0. The local search mechanism of the Grey Wolf Optimizer 

(GWO) can be analogously conceptualized as the hunting behavior of wolves 

targeting their prey. 

D. Searching 

 The initiation of prey seeking in Grey wolves is contingent upon the 

spatial arrangement of α, β, and δ individuals. The divergence of Grey wolves 

occurs during the process, whereas the convergence takes place during the attack 

on the prey. When the value decreases, it implies that the wolves are compelled to 
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seek out more suitable prey. The procedure outlined here is the global search or 

exploration for the Global Welfare Organization (GWO). Figure 3 depicts the 

flowchart of the Grey Wolf Optimization (GWO) method. 
 

Start

Initiate a random population of n grey wolves

Initialization of the GWO parameters

G = 1

No

Yes

Calculate the fitness value of each search agent

Calculate 𝑌𝛼 , 𝑌𝛽  and 𝑌𝛿  

 Update the position of search agent

Update the GWO parameters

Calculate the fitness value of each search agent

Update 𝑌𝛼 , 𝑌𝛽  and 𝑌𝛿  

Convergence 

criterion satisfied ?

Determine the optimal solution 𝑌𝛼  

End

G=G+1

 
Fig. 3. Flowchart of the Grey Wolf Optimizer GWO 

4. Simulation results 

The proposed method is tested on the IEEE-69 bus system and the 

Babylon Radial Distribution Network (BRDN) to demonstrate its efficacy. Both 

test systems share the same initialized GWO algorithm parameters. MATLAB 

software is utilized to run the power flow, execute the GWO algorithm, and 

determine the best position and size for DG units. 

4.1. IEEE-69 Bus system. 

The IEEE 69 bus system is the first case-tested system using the proposed 

algorithm, GWO. Fig. A.1 represents the single-line diagram for the IEEE 69 bus 

power system. The bus and line data of the IEEE 69 bus system are tabulated in 

Table A.1. The main characteristics of this system are 69 buses and 68 lines; the 

voltage bus is 12.6 [kV], and the active and reactive loads are 3800 [kW] and 

2690 [kVAr], respectively. The reconfiguration approach is the method used to 

select the optimal location of the DG unit. The GWO algorithm is the method 

used to determine the optimal size. Table 1 presents the optimal location and size 

for the IEEE 69 bus system. It can be observed that the optimal size of the DG 

unit is 2.375 MW. The optimal location of the DG unit is bus 61. The real power 

losses will be reduced from 224.94 [kW] in the initial case (without DG) to 91.48 
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[kW] in the optimal case (with DG unit), with a reduction rate of 58.94%. Also, 

the reactive power losses have been reduced from 101.22 [kVAr] in the initial 

case (without DG) to 43.19 [kVAr] in the optimal case (with DG units). Fig. 4 

illustrates the effect of the placement and size of the DG unit on reducing the real 

power losses in the IEEE 69 bus system. Fig. 5 shows the voltage profiles of all 

buses without and with the DG unit. The minimum voltage improved from 0.909 

[p.u.] (Bus 65) in the initial case (without DG unit) to 0.9713 [p.u.] (Bus 27) in 

the optimal case (with DG unit). Fig. 6 illustrates the effect of the installation of 

the DG unit on the voltage stability index. It can be observed that the minimum 

voltage stability index ranges from 0.6852 (Bus 65) in the initial case (without 

DG) to 0.890 (Bus 27) in the optimal case (with DG units). Table 2 shows the 

comparison results obtained by the proposed algorithm GWO with other modern 

optimization techniques. This table demonstrates the effectiveness and efficiency 

of the proposed algorithm to solve optimal power flow in a distribution network. 
  

Table 1  

The optimal location and sizing on IEEE 69 bus system 

Items Without DG With DG units using GWO 

Location (Bus No.) ----- 61 

Size [kW] ----- 2,375 

Total real loss [kW] 224.94 91.48 

Total reactive loss [kVAr] 101.22 43.19 

Reduction of real loss (%) ----- 58.94% 

Min voltage [p.u.] 0.9093 0.9713 

Minimum VSI 0.6852 0.890 

Total VSI 61.27 65.55 

 
Fig. 4. Real power losses after installation DG unit at each bus on IEEE-69 bus system 
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Fig. 5. Voltage profile with and without DG for IEEE-69 bus system. 

 
Fig. 6. Voltage stability index without and with DG for IEEE-69 bus system. 

 

Table 2  

Comparison the optimal results of proposed algorithm with other optimization techniques 

Technique 
Real power loss 

Value (kW) Percentage % 

Initial (without DG units) 224.94 ---- 

GWO [36] 98.5687  56.17 

PSO [36] 98.5687  56.17 

GWO-PSO [36] 98.5687 56.17 

GA [37] 89.0  60.44 

SGA [38] 89.4  60.3 

Analytical [39] 92  59.1 

GWO 91.48 58.94 
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4.2. Babylon Radial Distribution Network (BRDN) 

The Babylon Radial Distribution Network (BRDN) is the particle system that 

has been applied in this study to demonstrate the efficiency and superiority of the 

proposed algorithm. The bus and line data of BRDN are tabulated in Table A.2. 

This system contains 100 buses and 99 branches. The real power load is 10467 

[kW], and the reactive power load is 5069.4 [kVAr]. According to the 

reconfiguration of the DG unit, the candidate bus number is 33. The optimal 

sizing of DG units is determined by using the proposed algorithm, GWO. Table 3 

illustrates the optimal location and sizing for BRDN. The optimal sizing [kW] is 

8440. The real power losses will be decreased from 409.85 [kW] in the initial case 

(without DG) to 93.363 [kW] in the optimal case (with DG unit), with a reduction 

rate of 77.22%. Also, the reactive power losses have been reduced from 453.33 

[kVAr] in the initial case (without DG) to 104.956 [kVAr] in the optimal case 

(with DG unit). Fig. 7 illustrates the effect of the placement and size of the DG 

unit on reducing the real power losses in the IEEE 69 bus system.  
Table 3  

The optimal location and sizing on IEEE 69 bus system 
Items Without DG With DG units using GWO 

Location (Bus No.) ----- 33 

Size [kW] ----- 8440 

Total real loss [kW] 409.85 93.363 

Total reactive loss [kVAr] 453.33 104.956 

Reduction of real loss (%) ----- 77.22 % 

Min voltage [p.u.] 0.9374 0.9766 

Minimum VSI 0.7721 0.9097 

Total VSI 93.243 83.348 

 
Fig. 7. Real power losses after installation DG unit at each bus on BRDN network. 
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Fig. 8 presents the voltage profiles of all buses without and with the DG unit. 

The minimum voltage improved from 0.9374 [p.u.] (Bus 48) in the initial case 

(without DG unit) to 0.9766 [p.u.] (Bus 48) in the optimal case (with DG unit). 

Fig. 9 illustrates the effect of the installation of DG units on the voltage stability 

index. It can be observed that the minimum voltage stability index ranges from 

0.7721 (Bus 48) in the initial case (without DG) to 0.9097 (Bus 48) in the optimal 

case (with DG unit). 

 
Fig. 8. Voltage profile with and without DG on BRDN network. 

 
Fig. 9. Voltage stability index without and with DG on BRDN network. 
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5. Conclusion 

This paper offers a study aimed at determining the ideal position and 

sizing (allocation) of a distributed generation (DG) unit using the Grey Wolf 

Optimizer (GWO), which is a widely used metaheuristic optimization technique. 

The primary objective of this study is to mitigate the actual power losses within 

the entire system while enhancing the voltage profiles and voltage stability. The 

reconfiguration technique is employed to ascertain the most favorable placement 

of distributed generation (DG) units. The GWO algorithm is offered as the 

method for determining the size of the DG unit. In order to validate the efficacy 

and practicality of the algorithm under consideration, experimental evaluations 

were conducted on two distinct power systems, namely the IEEE 69 bus power 

system and the Babylon Radial Distribution Network (BRDN). The Global 

Weight Optimization (GWO) algorithm is known for its ease of implementation, 

shorter execution time, and improved accuracy. The suggested algorithm 

demonstrated higher performance and efficiency compared to alternative 

algorithms, providing favorable solutions for radial distribution networks. The 

acquired findings from the two systems, namely the IEEE 69 bus and BRDN, 

demonstrate the rapid convergence characteristics and resilience of the proposed 

approach. Based on the observed results, it can be inferred that the suggested 

method is well-suited for determining the optimal position and size of distributed 

generation (DG) units in distribution networks. The suggested approach offers 

several key advantages, including ease of implementation, reduced computational 

effort, the ability to achieve optimal or near-ideal solutions, and the capability to 

identify plausible outcomes. 
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APPENDIX 
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Fig. A. 1 Single line diagram of IEEE 69 bus power system. 

 

Table A. 1  

The Bus and Line data of IEEE 69 bus system 

Bus Data Line Data 

Bus 

 

P load  

[kW] 

 

Q Load  

[kVAr] 

 

 

From  

(Bus) 

 

 

To  

(Bus) 

 

 

R [Ω] 

 

 

X [Ω] 

1 0 0 1 2 0.0005 0.0012 

2 0 0 2 3 0.0005 0.0012 

3 0 0 3 4 0.0015 0.0036 

4 0 0 4 5 0.0251 0.0294 

5 0 0 5 6 0.366 0.1864 

6 2.6 2.2 6 7 0.3811 0.1941 

7 40.4 30 7 8 0.0922 0.047 

8 75 54 8 9 0.0493 0.0251 

9 30 22 9 10 0.819 0.2707 

10 28 19 10 11 0.1872 0.0619 

11 145 104 11 12 0.7114 0.2351 

12 145 104 12 13 1.03 0.34 

13 8 5 13 14 1.044 0.345 

14 8 5.5 14 15 1.058 0.3496 

15 0 0 15 16 0.1966 0.065 

16 45.5 30 16 17 0.3744 0.1238 
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17 60 35 17 18 0.0047 0.0016 

18 60 35 18 19 0.3276 0.1083 

19 0 0 19 20 0.2106 0.069 

20 1 0.6 20 21 0.3416 0.1129 

21 114 81 21 22 0.014 0.0046 

22 5.3 3.5 22 23 0.1591 0.0526 

23 0 0 23 24 0.3463 0.1145 

24 28 20 24 25 0.7488 0.2475 

25 0 0 25 26 0.3089 0.1021 

26 14 10 26 27 0.1732 0.0572 

27 14 10 3 28 0.0044 0.0108 

28 26 18.6 28 29 0.064 0.1565 

29 26 18.6 29 30 0.3978 0.1315 

30 0 0 30 31 0.0702 0.0232 

31 0 0 31 32 0.351 0.116 

32 0 0 32 33 0.839 0.2816 

33 14 10 33 34 1.708 0.5646 

34 19.5 14 34 35 1.474 0.4873 

35 6 4 3 36 0.0044 0.0108 

36 26 18.55 36 37 0.064 0.1565 

37 26 18.55 37 38 0.1053 0.123 

38 0 0 38 39 0.0304 0.0355 

39 24 17 39 40 0.0018 0.0021 

40 24 17 40 41 0.7283 0.8509 

41 1.2 1 41 42 0.31 0.3623 

42 0 0 42 43 0.041 0.0478 

43 6 4.3 43 44 0.0092 0.0116 

44 0 0 44 45 0.1089 0.1373 

45 39.22 26.3 45 46 0.0009 0.0012 

46 39.22 26.3 4 47 0.0034 0.0084 

47 0 0 47 48 0.0851 0.2083 

48 79 56.4 48 49 0.2898 0.7091 

49 384.7 274.5 49 50 0.0822 0.2011 

50 384.7 274.5 8 51 0.0928 0.0473 

51 40.5 28.3 51 52 0.3319 0.1114 

52 3.6 2.7 9 53 0.174 0.0886 

53 4.35 3.5 53 54 0.203 0.1034 

54 26.4 19 54 55 0.2842 0.1447 

55 24 17.2 55 56 0.2813 0.1433 

56 0 0 56 57 1.59 0.5337 

57 0 0 57 58 0.7837 0.263 

58 0 0 58 59 0.3042 0.1006 

59 100 72 59 60 0.3861 0.1172 

60 0 0 60 61 0.5075 0.2585 

61 1244 888 61 62 0.0974 0.0496 
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62 32 23 62 63 0.145 0.0738 

63 0 0 63 64 0.7105 0.3619 

64 227 162 64 65 1.041 0.5302 

65 59 42 11 66 0.2012 0.0611 

66 18 13 66 67 0.0047 0.0014 

67 18 13 12 68 0.7394 0.2444 

68 28 20 68 69 0.0047 0.0016 

69 28 20  

 

Table A. 2  

The Bus and Line data of BRDN network. 

Bus Data Line Data 

Bus 
P load 

[kW] 

Q Load 

[kVAr] 

From 

(Bus) 

To 

(Bus) 

R [Ω] X [Ω] 

1 0 0 1 2 0.00693 0.01155 

2 0 0 2 3 0.00459 0.00595 

3 0 0 3 4 0.01296 0.0168 

4 225 108.9725 4 5 0.0351 0.0455 

5 90 43.58899 5 6 0.01404 0.0182 

6 0 0 6 7 0.00495 0.00385 

7 0 0 7 8 0.01344 0.0168 

8 0 0 8 9 0.06705 0.05215 

9 0 0 9 10 0.00108 0.0014 

10 0 0 10 11 0.00486 0.0063 

11 225 108.9725 11 12 0.10665 0.13825 

12 0 0 12 13 0.00729 0.00945 

13 0 0 13 14 0.01188 0.0154 

14 0 0 14 15 0.03591 0.04655 

15 225 108.9725 15 16 0.01026 0.0133 

16 0 0 16 17 0.01755 0.02275 

17 0 0 17 18 0.0126 0.0098 

18 0 0 18 19 0.0351 0.0273 

19 0 0 19 20 0.09765 0.07595 

20 0 0 20 21 0.0468 0.0364 

21 0 0 21 22 0.00855 0.00665 

22 0 0 22 23 0.0072 0.0056 

23 0 0 23 24 0.01316 0.01645 

24 0 0 24 25 0.01064 0.0133 

25 0 0 25 26 0.00189 0.00315 

26 225 108.9725 26 27 0.00588 0.00735 

27 0 0 27 28 0.03612 0.04515 

28 0 0 28 29 0.01155 0.01925 

29 0 0 29 30 0.0168 0.021 

30 0 0 30 31 0.01029 0.01715 

31 0 0 31 32 0.01148 0.01435 
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32 0 0 32 33 0.01131 0.01015 

33 0 0 33 34 0.03136 0.0392 

34 0 0 34 35 0.00952 0.0119 

35 225 108.9725 35 36 0.00546 0.0091 

36 225 108.9725 36 37 0.02436 0.03045 

37 0 0 37 38 0.0108 0.0084 

38 0 0 38 39 0.04508 0.05635 

39 225 108.9725 39 40 0.02128 0.0266 

40 0 0 40 41 0.07095 0.07525 

41 225 108.9725 41 42 0.02541 0.02695 

42 0 0 42 43 0.01551 0.01645 

43 360 174.356 43 44 0.01386 0.0147 

44 360 174.356 44 45 0.02409 0.02555 

45 225 108.9725 45 46 0.03762 0.0399 

46 225 108.9725 46 47 0.01782 0.0189 

47 0 0 47 48 0.0045 0.0035 

48 360 174.356 5 49 0.00741 0.00665 

49 360 174.356 5 50 0.00621 0.00805 

50 0 0 50 51 0.00594 0.0077 

51 225 108.9725 6 52 0.06808 0.01295 

52 0 0 52 53 0.046 0.00875 

53 225 108.9725 53 54 0.01485 0.01155 

54 0 0 8 55 0.01482 0.0133 

55 0 0 55 56 0.06669 0.05985 

56 0 0 14 57 0.00486 0.0063 

57 0 0 57 58 0.02772 0.0294 

58 225 108.9725 57 59 0.0099 0.0077 

59 0 0 59 60 0.00864 0.0112 

60 0 0 16 61 0.0126 0.0098 

61 360 174.356 61 62 0.0171 0.0133 

62 0 0 17 63 0.02268 0.0294 

63 225 108.9725 19 64 0.01485 0.01155 

64 0 0 64 65 0.01258 0.00595 

65 900 435.8899 20 66 0.01215 0.00945 

66 0 0 66 67 0.00594 0.0077 

67 0 0 23 68 0.00294 0.0049 

68 225 108.9725 24 69 0.01008 0.0126 

69 225 108.9725 25 70 0.01755 0.01575 

70 0 0 70 71 0.02324 0.02905 

71 0 0 71 72 0.04347 0.05635 

72 225 108.9725 72 73 0.01485 0.01925 

73 360 174.356 73 74 0.00594 0.0077 

74 0 0 74 75 0.00891 0.01155 

75 0 0 75 76 0.00308 0.00385 

76 225 108.9725 28 77 0.00609 0.01015 
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77 225 108.9725 30 78 0.00693 0.01155 

78 225 108.9725 32 79 0.03976 0.0497 

79 567 274.6106 79 80 0.00616 0.0077 

80 0 0 80 81 0.00273 0.00455 

81 0 0 81 82 0.01848 0.0231 

82 0 0 33 83 0.01482 0.0133 

83 0 0 83 84 0.00962 0.00455 

84 90 43.58899 33 85 0.01242 0.0161 

85 0 0 85 86 0.00504 0.0084 

86 225 108.9725 85 87 0.00972 0.0126 

87 0 0 87 88 0.00567 0.00945 

88 225 108.9725 87 89 0.00297 0.00385 

89 360 174.356 89 90 0.03348 0.0434 

90 0 0 90 91 0.00399 0.00665 

91 225 108.9725 91 92 0.01998 0.0259 

92 0 0 92 93 0.00231 0.00385 

93 225 108.9725 92 94 0.00729 0.00945 

94 0 0 94 95 0.00294 0.0049 

95 0 0 95 96 0.00252 0.0042 

96 225 108.9725 96 97 0.00225 0.00175 

97 0 0 97 98 0.00336 0.0056 

98 225 108.9725 34 99 0.01782 0.0189 

99 225 108.9725 40 100 0.04095 0.03185 

100 225 108.9725  

 


