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DYNAMICS OF A 3-PRR PLANAR PARALLEL ROBOT

Stefan STAICU'

Lucrarea prezenta stabileste o modelare recurentd pentru cinematica §i
dinamica unui robot paralel plan 3-PRR. Trei lanfuri cinematice plane ce
conecteaza platforma mobild sunt situate in plan vertical. Cunoscind miscarea
platformei, se dezvoltd mai intdi cinematica inversa §i se determind pozitiile,
vitezele si acceleratiile robotului. In continuare, se utilizeazd principiul hicrului
mecanic virtual in cadrul problemei de dinamica inversd. Unele ecuatii matriceale
ofera expresi iiterative si grafice pentru o comparatie a puterilor necesare celor trei
sisteme de actionare concepute in doud scheme diferite: actionori de translatie §i
actionori de rotatie.

Recursive modelling for the kinematics and dynamics of known 3-PRR planar
parallel robot are established in this paper. Three identical planar legs connecting
to the moving platform are located in a vertical plane. Knowing the motion of the
platform, we develop first the inverse kinematics and determine the positions,
velocities and accelerations of the robot. Further, the principle of virtual work is
used in the inverse dynamics problem. Several matrix equations offer iterative
expressions and graphs for the power requirement comparison of each of three
actuators in two different actuation schemes: prismatic actuators and revolute
actuators.
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1. Introduction

Parallel manipulators are closed-loop mechanisms that consist of separate serial
chains connecting the fixed base to the moving platform. Compared with serial
manipulators, the followings are the potential advantages of parallel architectures:
higher kinematical precision, lighter weight and better stiffness, greater load
bearing, stabile capacity and suitable position of arrangement of actuators, but
having limited workspace and complicated singularities.

Equipped with revolute or prismatic actuators, the parallel manipulators have a
robust construction and can move bodies of large dimensions with high velocities
and accelerations [1].

Over the past decades, parallel manipulators have received more and more
attention from researches and industries. Accuracy and precision in the direction
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of the tasks are essential since the positioning errors of the tool could end in costly
damage.

Considerable efforts have been devoted to the kinematics and dynamic analysis
of fully parallel manipulators. Among these, the class of manipulators known as
Stewart-Gough platform focused great attention (Stewart [2]; Merlet [3]; Parenti-
Castelli and Di Gregorio [4]). They are used in flight simulators and more recently
for Parallel Kinematics Machines. The prototype of Delta parallel robot (Clavel
[5]; Staicu and Carp-Ciocardia [6]; Tsai and Stamper [7]) developed by Clavel at
the Federal Polytechnic Institute of Lausanne and by Tsai and Stamper at the
University of Maryland as well as the Star parallel manipulator (Hervé and
Sparacino [8]) are equipped with three motors, which train on the mobile platform
in a three-degree-of-freedom general translation motion. Angeles, Gosselin,
Gagné and Wang [9], [10], [11] analysed the kinematics, dynamics and singularity
loci of Agile Wrist spherical robot with three actuators.

N

VAo
Fig. 1 The 3-PRR planar parallel robot

Planar parallel robots are useful for manipulating an object on a plane. A
mechanism is said to be a planar robot if all the moving links in the mechanism
perform the planar motions. For a planar mechanism, the loci of all points in all
links can be drawn conveniently on a plane. In a planar linkage, the axes of all
revolute joints must be normal to the plane of motion, while the direction of
translation of a prismatic joint must be parallel to the plane of motion.



Dynamics of a 3-PRR planar parallel robot 5

Aradyfio and Qiao [12] examined the inverse kinematics solution for the three
different 3-DOF planar parallel robots. Gosselin and Angeles [13] and Pennock
and Kassner [14] each present a kinematical study of a planar parallel robot,
where a moving platform is connected to a fixed base by three links, each leg
consisting of two binary links and three parallel revolute joints. Sefrioui and
Gosselin [15] give an interesting numerical solution in the inverse and direct
kinematics of this kind of planar robot.

Fig. 2 Kinematical scheme of first leg A of the mechanism

Recently, more general approaches have been presented. Daniali et al. [16]
present a study of velocity relationships and singular conditions for general planar
parallel robots. Merlet [17] solved the forward pose kinematics problem for a
broad class of planar parallel manipulators. Williams et al. [18] analysed the
dynamics and the control of a planar three-degree-of-freedom parallel manipulator
at Ohio University, while Yang et al. [19] concentrate on the singularity analysis
of a class of 3-RRR planar parallel robots developed in its laboratory. Bonev,
Zlatanov and Gosselin [20] describe several types of singular configurations by
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studying the direct kinematics model of a 3-RPR planar parallel robot with
actuated base joints.

A recursive method is introduced in the present paper, to reduce significantly
the number of equations and computation operations by using a set of matrices for
kinematics and dynamics models of the 3-PRR planar parallel robot.

2. Kinematics analysis

Having a closed-loop structure, the planar parallel robot 3-PRR is a special
symmetrical mechanism composed of three planar kinematical chains with
identical topology, all connecting the fixed base to the moving platform (Fig. 1).
The points 4,, B,, C, define the summits of a fixed triangular base and the three

moving revolute joints 4,, B,, C,define the geometry of the moving platform.
Each leg consists of two links, with one prismatic joint and two revolute joints.
Together, the parallel mechanism consists of seven moving links, three prismatic
joints and six revolute joints. Griibler mobility equation predicts that the device
has certainly three degrees of freedom.

In a first kind of the robot (PRR) each prismatic joint is an actively controlled
prismatic cylinder. Thus, all prismatic actuators can be installed on the fixed base.
In the second configuration (PRR) we consider the moving platform as the output
link and 4, 4,, B, B, ,C,C; as the input links of three mobile revolute actuators.

For the purpose of analysis, we attach a Cartesian frame x,y,z,(7;) to the fixed
base with its origin located at triangle centre O, the z,axis perpendicular to the
base and the x, axis pointing along the direction CB,. Another mobile reference
frame x,y,z.1is attached to the moving platform. The origin of this coordinate
central system is located just at the centre G of the moving triangle (Fig. 2).

To simplify the graphical image of the kinematical scheme of the mechanism,
in the follows we will represent the intermediate reference systems by only two
axes, so as is proceed in most of robotics papers [1], [3], [9]. It is noted that the
relative translation of 7, body with 4, , , displacement or the relative rotation with

@, «, angle must be always pointing about or along the direction of z, axis.

In what follows we consider that the moving platform is initially located at a
central configuration, where the platform is not rotated with respect to the fixed
base and the mass centre G is at the origin O of fixed frame.

One of three active legs (for example leg A ) consists of a prismatic joint, which

is as well as a piston 1 of massm, linked at the x;" yz" frame, having a rectilinear

motion of displacement A /§,, velocity vy = 4 [ and accelerationy {y= A [ . Second
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element of the leg is a rigid rod 2 linked at the x;'y; z;' frame, having a relative

rotation about z; axis with the angle;,, velocity i =¢@;i and acceleration
& 4= @3 It has the length/,, mass m,and tensor of inertia J ,. Finally, a revolute
joint is introduced at a planar moving platform, which is schematised as an
equilateral triangle with edge/ = r+/3, massm,and inertia tensor J , with respect
to 4,, which rotates with the angle o/ and the angular velocity ®;, =¢s
about z{ .

At the central configuration, we also consider that all legs are symmetrically
extended and that the angles of orientation of three edges of fixed platform are
given by

T T
(=70 =T, A== (1)

Pursuing the first leg 4 in the 04,4, 4, A, way, we obtain the following matrices
of transformation [21]:

a1 :ela;’ a :a;"lezﬁlT, a;, =af, 0,, 2)
where
cosa, sina, 0 0 0 -1
al =|-sina, cosa, 0[,6,=/0 1 0
0 0 1 1 0 0
cosgo,ik_1 singo,ik_1 0 1 31 0
af,=|-sinpl,, cospli, 0], 9225 -1 43 0
0 0 1 0 0 2
k
o :Hak—_l‘+l,k—_/’ (k=1,2,3). 3)
=l

Analogous relations can be written for other two legs of the mechanism.
Three displacements A, , A% , A1, of the active links are the joint variables that

give the input vector ﬂtm =[AL A% 25,1 of the instantaneous position of the

mechanism in the first study configuration. But, in the inverse geometric problem,
we can consider that the position of the mechanism is completely given by the
coordinates x{, y¢ of the mass centre G of the moving platform and the

orientation angle ¢ of the movable frame x,yz; . The orthogonal rotation matrix

of the moving platform from x,),z, to x,y,z; reference system is
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cos¢p sing O
R=|-sing cosg O], “)
0 0 1

Further, we suppose that the position vector of G centre 7,° =[x¢ yJ 0]
and the orientation angle ¢ , which are expressed by following analytical functions

G

X =ay (=cos 70,y =y (1=cosT0), gp=¢'(-cosTn ()
can describe the general absolute motion of the moving platform.
From the rotation conditions of the moving platform
61256130 = b;gbw = 025030 =R, (6)
with, for example,
o 4
ay, =0,0,a,, (7)
we obtain the following relations between angles
A A B B C C
Po+ P =Py F P =Py F 05, =6 (®)
The six variables Ay, @51, A5y, 2, 25, @5, will be determined by several vector-
loop equations, as follows

2

—4 T =4 T =GA _

"o +Zak0rk+1,k tasn =
=1

2

_ =B T =B T =GB _

="y +Zbk0rk+l,k +byry = )
k=1
2

_=cC T =C T ~GC _ =G

AT +ch0rk+l,k tCn =,

=l

where one denoted

1
i, =|0|,ii,=|1],i,=[0|,i,=|1 0 0
0

(e
—_
(e
(e
(e

77161 = ’7081 +(+A 1g)a1Toﬁs
’7103 = ’7o§ +(+4 1?))b1To77‘3
7710C = ’705 +(+4 1%)0125[3
Fa=1,[0 —1 0]
FE=050,[3 1 0]



Dynamics of a 3-PRR planar parallel robot 9

78 =0.50,[-3 1 0]
7 =0, By =Ly, 7 =rii, (i=4,B,0).
Actually, these vector equations mean that there is only one inverse geometric
solution for the manipulator:

(10)

(I, + A, sina, + 1, sin(p}, +%+a,)=

= vl —reos(@+ T+ a)
(I, + A, ) cosa, + 1, cos(ps, +%+ai) =

; . 7
=xy — X} +rsm(¢+§+ai)

(i=4, B, C). (11)

We develop the inverse kinematics problem and determine the velocities and

accelerations of the manipulator, supposing that the planar motion of the moving

platform is known. First, we compute the linear and angular velocities of each leg
: I P = ., =G _ =G

in terms of the angular velocity a)OG = @u,and the centre’s velocityV, =7, of

the moving platform.
The motions of the component elements of each leg (for example the leg A) are
characterized by the following skew symmetric matrices

~4 ~4 T 4~ A 4
Wy =y Oy 0oy T O Uy Dy ) =Py (12)

which are associated to the absolute angular velocities given by the recursive
relations

By = Q@1 + O iy, (k=123), 0 =0. (13)
Following relations give the velocities V4 of the joints A,
vao = ak,k—lva—l,O + ak,k—IQN):—l,OFk/:’k—l + vlf,k—lﬁ3
vio,=0 (0=23). (14)
Equations of geometrical constraints (8) and (9) can be derivate with respect to
time to obtain the following matrix conditions of connectivity [22]

A=T T — A=T T~ =4 T~ T—=GA A =T T~ —=GA TG .
Vigll; Gyglly + @31 {8557y + Ayl |+ @3 Uy Gyl =u; 1y 5 (i=12)
4 4 _ g
Wy + 05 =¢. (15)
where 1 is a skew-symmetric matrix associated to unit vector u, pointing in the

positive direction of z, axis. From these equations, we obtain the relative velocities

viy, @5, @5 as functions of angular velocity of the platform and velocity of mass
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centre G . But, the conditions (15) give the complete Jacobian matrix of the
manipulator. This matrix is a fundamental element for the analysis of the robot
workspace and the particular configurations of singularities where the manipulator
becomes uncontrollable.

Rearranging, above six constraint equations (11) of the planar robot can
immediately written as follows

[x$ —x, +rsin(¢+%+a,)—(1, +A,)cosa, ]’ +

+[y§—yéo—rcos<¢+§+al—>—<ll+ﬂio>sina,-]2= (16)

2122 (l:Aa Ba C)a
where the “zero” position x;¢ =0, yJ¢ =0, ¢° =0 corresponds to the joints

variables 1 9=[0 0 0]". The derivative with respect to time of conditions
(16) leads to the matrix equation
T =D, 35 1 (17)
for the planar robot with fixed prismatic actuators.
Matrices J, ,and J,, are, respectively, the inverse and forward Jacobian of the
manipulator and can be expressed as
Jy, =diag{6,, 5, Oc,}
B B B
T, =B By By, | (18)
By, B, B,
with

5, =(xy —xg)co8a; +(yy — yo,)sine; +

+rsin(¢+%)—ll — Xy, (i=4,B,C)
Bl, =x5 — Xy +rsin(¢+%+oz,.)—(ll +A,)cosa,
ﬂép=yOG—yéo—rcos(¢+%+ai)—(ll+/1i0)sinai (19)

i i T
By, =rl(xy _'XOO)COS(¢+§+ai)+

+(y — yiy)sin(g +§+a,~>—<ll + ﬂio>cos<¢+§>].
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The three kinds of singularities of the three closed-loop kinematical chains can be
determined through the analysis of two Jacobian matrices J, ,and J,, [23], [24].

Since 4, is a passive variable in the second kind of the planar robot with mobile
revolute actuators, it should be eliminated from equations (11) as follows

1, sin(g3, + %) = (xg9 — Xg )sin e, —
~ (Yoo = Yo )cos@; — (20)
—rcos(¢+ %), (i=4,B,0).

A new matrix relation is obtained by taking the derivative of equation (20) with
respect to time

Jlr = dlag {5Ar 5Br 5Cr}
B B B

S =B B Bl 21
B B B

with
i .
6, =1, cos(p,, +g)a (i=4,B,0C)
Bl =-sina,, Bi =-cosa,, B, =rsinp+ %). (22)
Now, let us assume that the robot has successively two virtual motions

determined by the linear velocitiesvis, =1, vi. =0, v{y, =0or the angular

velocitiesw;), =1, @’ =0, o5 =0. The characteristic virtual velocities are
expressed as functions of the position of the mechanism by the general
kinematical constraints equations (15).
. . A 4 _ A o .
As for the relative accelerations € 4, ¥ 55 € 3, of the robot, the derivatives with

respect to time of the equations (15) give other following conditions of
connectivity [25]
A=T T — A-T T~ =4 T~ T=GA A =T T~ =GA _ =T=G
Violl; Qyglly + Ex01i; {5 UsF) + Ay sy ly "} + &3, U Ayglisly =, Ty —
A _A=T T~ =4 T =~ T —=GA A A—=T T~ ~ =G
— @y 1; (A3l + Ay lisUsanly "} — OypOp; AUyl —
A A=T T~ T~ —=GA .
= 205,05,U; ayisanisry”,  (i=12) (23)
A4
821 + 832 - ¢ °
If the other two kinematical chains of the robot are pursued, analogous relations
can be easily obtained.
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The following recursive relations give the angular accelerations &, and the
accelerations 7, of joints 4,
Ep = ak,k—l‘z’:lil,o + glf,k—lﬁ3 + wlik—lak,k—lal?—l,oalik—lﬁ3
5:05:0 + Ek/(l) =y (5:71,05:71,0 + Ek/il,o )alf,k—l +
+ a)lik—la)lik—li’73ﬁ3 + giik—laa + Za)lik—lak,k—lg)lf—l,oalik—li’73
?71:10 =g g |_771:1—1,o + (C‘N);—l,oaN)kA—l,o + E/il,o )Fk:“k—l _|+
+ ZVI:I,k—lak,k—lalf—l,Oalik—l1’73 + 7’:/(715‘3 , (k=1,2,3)

gn=0,70,,=0 (c=273). (24)

3. Dynamics simulation

In the context of the real-time control, neglecting the frictions forces and
considering the gravitational effects, the relevant objective of the dynamics is to
determine the input torques of forces, which must be exerted by the actuators in
order to produce a given trajectory of the effectors.

There are three methods, which could provide the same results concerning these
actuating torques or forces. The first one is using the Newton-Euler classic
procedure [26], [27], [28], the second one applies the Lagrange’s equations and
multipliers formalism [29], [30] and the third one is based on the principle of
virtual work [1], [9], [21], [31].

In the inverse dynamic problem, in the present paper one applies the principle
of virtual work in order to establish some recursive matrix relations for the powers
of the three active systems.

Three independent mechanical systems acting along the planar directionsz,
z2, zC, with the forces /! = flii,, f,5 = filiiy, .S = f$ii, or other three
electric motors Az, Bz, C,that generate the three couples of moments

miy =misiiy, mb =mbi,, mfy=myii; oriented about parallel axes can control
the motion of the moving platform.
The force of inertia of an arbitrary rigid body 7", for example,

Zind Al=4 | (4 =4 | ~a)\=c4

ko =My [7k0 + (wkowko * &€k )’”k ] (25)
and the resulting moment of the forces of inertia

— ind A~CA= A TA4=4 ~A4 T4 —4

myy =—[mr. "y + I EL + 00T @], (26)

are determined with respect to the centre of jointA4,. On the other hand, the

wrench of two vectors ]7,:‘4 andm;" evaluates the influence of the action of the
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weight m/gand of other external and internal forces applied to the same
element 7, of the manipulator, for example:
fir=981mla, ii,, m," =9.81m/'F. M a, i, (k=1,2,..,6). (27)

Knowing the position and kinematics state of each link as well as the external
forces acting on the robot, in that follow one apply the principle of virtual work
for an inverse dynamic problem. The torques of actuators or the active forces
required in a given motion of the moving platform will easily be computed using a
recursive procedure.

The fundamental principle of the virtual work states that a mechanism is under
dynamic equilibrium if and only if the virtual work developed by all external,
internal and inertia forces vanish during any general virtual displacement, which
is compatible with the constraints imposed on the mechanism. Assuming that
frictional forces at the joints are negligible, the virtual work produced by all forces
of constraint at the joints is zero. Applying the fundamental equations of the
parallel robots dynamics established by Staicu [32], the following compact matrix
relations results

flg = 7’73T {EA + a)zlvMA + a)32 MA + a)21 MB + a)ZlaM } (28)
for the force of first active fixed prismatic joint and
miy =il W E My +op MP +vE FP +ve FCOY (29)

for the torque of first active mobile revolute joint.
Two recursive relations generate the vectors
A A T A
FE =Fo +ap, Fl (30)
A A T A ~A T A
M =My +a,, , My + 15508 Fin
where one denoted
A 7ind A inA — % A
Fo==fio — ,Mko_ My, — Ny (1)
The relations (28), (29), (30) and (31) represent the inverse dynamics model of
the 3-PRR planar parallel manipulator.
As application let us consider a planar manipulator which has the following
characteristics:

X8 =-0.025m, y& =0.025m, ¢ ==

r=0.1m, I, =1=r3, l,=03m (32)
[,=02m, At=3s
m, =1kg, m, =1.5kg, m, =3kg
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Using the MATLAB software, a computer program was developed to solve the
inverse dynamics of the planar PRR parallel robot. To illustrate the algorithm, it
is assumed that for a period of three second the platform starts at rest from a
central configuration and rotates or moves along two orthogonal directions.

—— Prismatic actuatar
— Revolute actuator

(=]
@

o
)

Powerlw) First actuator

o
=

0z

i i
0 ns 1 1.5 2 25 3
Flanar parallel robot 3-PRR Rotation motion 30 degrees t(s)

Fig. 3 Powers pfé, pZA1 of first actuator

o : : : : :

Power(w) Second actuator

Fig. 4 Powers pﬁ), pfl of second actuator

Assuming that there is no external force and moment acting on the moving
platform, a comparative study of the robots in two configurations: prismatic
actuators (PRR) and revolute actuators (PRR) is based on the computation of the

power required by each actuator: pj, pl, piand ps, p2, pS during the

platform’s evolution.
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Following examples are solved to illustrate the simulation. For the first
example we consider the rotation motion of the moving platform about z, axis
with variable angular acceleration while all the other positional parameters are
held equal to zero. As can be seen from p}, p; (Fig. 3), p, p2 (Fig. 4), p, ps;

(Fig. 5) is proved to be true that for the third leg C only both actuating powers are
permanently of opposite sign.

Powerfw) Third actustor

05 i i i i i
1} ns 1 1.5 2 25 3
Planar parallel robot 3-PRR Rotation motion 30 degrees ts)

Fig. 5 Powers plc(; , p2c1 of third actuator

18 : 1 : ‘ :

(w) First actuator

Power|

0 ns 1 1.5 2 25 3
Planar parallel robot 3-PRR Rectilinear motion x=-0.05m;y=0.05m t(=)

Fig. 6 Powers p;é , pzA1 of first actuator

If the platform’s centre G moves along a rectilinear planar trajectory without
rotation of platform, the powers required by the actuators 4,, B,, C, are calculated
by the program and plotted versus time as follows: Fig. 6, Fig. 7 and Fig. 8.
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The simulation through the MATLAB program certify a permanent equality of
the total power of the three actuators in the two configurations and that one of the
major advantages of the current matrix recursive formulation is a reduced number

Powerfw) Second actuator
o = = =
= ] = o =]

&
[

b
o

1 I I
] oA 1 15 2 25 3
Planar parallel robot 3-PRR - Rectilinear motion x=-0.05rm;y=0.05rm t(s)

Fig. 7 Powers pﬁ) , pfl of second actuator

Power(w) Third actuatar
=] = =
= o ux)

o
]

o

| | i ————— |
i} 0s 1 15 2 25 3
Planat parallel robot 3-PRR Rectilinear motion x=-0.05m; y=0.05rm t(s)

=1
X

Fig. 8 Powers plc0 R pzc1 of third actuator

of additions or multiplications and consequently a smaller processing time of
numerical computation. Also, the proposed method can be applied to various
types of complex robots, when the number of components of the mechanism is
increased.
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4. Conclusions

Most of dynamical models based on the Lagrange formalism neglect the weight
of intermediate bodies and take into consideration only the active forces or
moments and the wrench of applied forces on the moving platform. The number
of relations given by this approach is equal to the total number of the position
variables and Lagrange multipliers inclusive. The commonly known Newton-
Euler method, which takes into account the free-body-diagrams of the mechanism,
leads to a large number of equations with unknowns among which are also the
connecting forces in the joints.

Within the inverse kinematics analysis some exact relations that give in real-
time the position, velocity and acceleration of each element of the parallel robot
have been established in present paper. The dynamics model takes into
consideration the masses and forces of inertia introduced by all component
elements of the parallel mechanism. The new approach based on the principle of
virtual work can eliminate all forces of internal joints and establishes a direct
determination of the time-history evolution of powers required by the actuators.
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