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EVALUATION OF EFFECTIVE MECHANICAL PROPERTIES
OF COMPLEX MULTIPHASE MATERIALS WITH FINITE
ELEMENT METHOD
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Toufik KANIT*

Prediction of effective properties for multiphase composite is very important
not only to analysis and optimization of material performance, but also to new
material designs. In this paper, the effective elastic property of some complex
particulate composites is analyzed and compared with numerical results,
demonstrating the validity of the proposed approach. We propose the equivalent
morphology concept for the numerical homogenization of random composites. In this
study, this concept is extended for complex material. A home script based on Python
codes is made to automate the generating of Representative volume element with
various volume fraction.

Keywords: Representative volume element, Computational homogenization,
Finite element modeling.

1. Introduction

Heterogeneous materials are made of a mixing between inclusions phase
and matrix. As a result of a non-uniform mixing, during the dispersion of
inclusions in the matrix, we are getting microstructures with complex shape. For
example, this is the case of microstructures of Concrete, VVoronoi mosaics and the
case of microstructures of composite materials with aggregates. Several numerical
homogenization techniques, based on the notion of the Representative VVolume
Element (RVE), are used to estimate the effective linear elastic properties, of three
dimensional (3D) microstructures.

In the literature, for describing the elastic behavior of composites many
models exist [1, 2]. The prediction of the effective elastic properties of
heterogeneous materials is based on the knowledge of relations between the
microstructure and the macroscopic response.
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This has been achieved by using micromechanical models, which
considered only the matrix and reinforcement properties and their volume
fractions. The majority of analytical models and bounds do not take into account
the influence of the particle shape on the effective properties. This can only be
achieved by solving numerically the boundary value problem for a Representative
Volume Element (RVE) of material [3, 4].

Several researchers have used the finite element method (FEM) to
understand the effect of particles volume fractions on the mechanical behavior of
composites [3, 4, 5, 6].

In this paper, the effect of phase shape on the effective linear elastic
properties and on the RVE size, is investigated using FEM. A numerical
homogenization technique, based on finite element simulations was used by
applying periodic boundary conditions (PBC). Two different materials are
considered, one with complex shapes for the second phase and the second material
with spherical particle embedded into matrix. The equivalent morphology concept
is proposed here to replace the complex shape two-phase material with a simple
two-phase composite composed of spherical inclusions embedded into the matrix.

2. Computational homogenization

In this section, all elements and notations of numerical homogenization
necessary to determine the effective elastic properties, using the methodology
explained by [2] based on the FEM, are described.

2.1 Microstructures generating and elastic properties of phases

This work concerns the prediction of mechanical properties of two-phase
composite materials by 3D numerical simulation. Simulations are performed using
the finite element method coupled with a homogenization method. The generation
algorithm of complex material is developed with a Python code [7], see figure 1.
To simplify the calculations, simulations were performed for a RVE. The
algorithm generates 3D complex material for a specified volume fraction, in a
cubic region. The automated generation process will not stop until the volume
fraction is satisfied. The morphology and technique of 3D microstructures
generation is presented in this section. For each studied microstructure, many
configurations with different form of the second phase are investigated. Each
microstructure contains one population of second phase, randomly distributed in a
continuous matrix. Different elastic properties are attributed to the two phases, in
order to predict the effective elastic properties of composites. Table 1 represents
the mechanical properties of each phase used for numerical computations. ¢1 is
the volume fraction of the second phase and ¢ is the volume fraction of the matrix.
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Fig 1: Process of numerical computation.

Cases of composites used for numerical computations.

Tablel

Material Case Volume fraction for matrix and inclusions
Case 1 ¢=95%, ¢1=5%

Comp_lex Two -Phase Case 2 ©=90%, p1=10%

material
Case 3 ©=80%, ¢1=20%
Case 4 ©=70%, ¢1=30%

Elastic properties of each phase used for numerical computations.

Phase Matrix Inclusion
Young modulus [MPa ] 100 10
Poisson ratio 0.3 0.3

Table2

FE computations on volumes of different sizes extracted from the entire
volume V were performed. The main advantage of this strategy is that it allows us
to work on a sufficiently large volume for a low computational cost. Figure 2
presents an example of RVE of complex microstructure and a subdivision of this
whole microstructure into images.

In all simulation, many realizations for the same volume fraction of
material were generated to estimate the elastic properties. We note that the
number of realizations from the small volume size V1 to large one V6 decrease.
The different configurations with increasing sizes are summarized in Table 3.
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Table3
Cases of volume size used for numerical computations.
V1 V2 V3 V4 V5 V6
Volume | 50*50*50 | 80*80*80 | 100*100*100 | 150*150*150 | 200*200*200 | 250*250*250
size [px?]
Number of 30 30 10 8 5 5
realizations

sigl2 map:1.00000 _time:1

min:1.10136 max82.1606

(b)

©

Fig. 2. Example of material used in this investigation, (a) material with 30%, (b) 3D mesh, c) shear

strain.

2.2 Mesh generation and mesh density

A regular 3D finite element mesh is superimposed on the image of the
microstructure using the so-called multi-phase element technique. This technique
was developed in [2] and used for the homogenization of virtual or real images by
several authors as [4, 8, 9, 10]. As a result of convergence, a good mesh density of
quadratic 20 nodes elements and 27 integration points per one FE was adopted in
all this investigation for all simulations, see Figure 3.
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Fig. 3. Evolution of Bulk modulus as a function of the number of elements.
2.3 Boundary conditions

The homogenization theory is used for the numerical determination of
effective linear elasticity properties. A volume element of a heterogeneous
material is considered. Conditions are prescribed at its boundary in order to
estimate its overall properties. The periodic boundary conditions are to be
prescribed on individual volume element. These boundary conditions were used
with prescribed values of strain tensor € on individual volume element V . These
conditions are defined by a displacement field over the outside contour oV as:

U=é&ex+Vv VxeoV 1)

The fluctuation v is periodic. It takes the same values at two homologous
points on opposite faces of V . ¢ represents the macroscopic deformation and x
the position vector.

For the PBC, to compute macroscopic bulk and shear moduli we take:

100 010
gk:% 010 and gﬂZ% 100 (2)
0 01 000

where ¢, and ¢, are the macroscopic strain tensors used for computing k*f and

WP respectively.
We define the following "apparent bulk and shear modulus” (k?® and pP®):

1 1
K® =< g >g, ==trace< o >= =<0, + 0,, + Oy > (3
3 3

u* =< o> £, 0> (4)

where < x> is the average value X. oy, , 0,,, 044, represent the principal stresses

and o,,the shear stress.
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2.4 Hashin-Shtrikman bounds

The Hashin-Shtrikman bounds [11] are the tightest bounds possible from
range of composite moduli for a two-phase material. Specifying the volume
fraction of the constituent moduli allows the calculation of rigorous upper and
lower bounds for the elastic moduli of any composite material. The so-called
Hashin-Shtrikman bounds for the bulk, K, and shear moduli x is given by:

kS =k + 1P . (5)
(k, —k, )"+ P(kl + : ﬂlj
HS+ _ 1-P
T 2P(k, + 21) ©)
(1 - ) 2V T 218)
Sﬂl(kl + 3/‘11)

where P is the volume fraction of the inclusions, Ky and K> are the bulk modulus
of the inclusions and matrix respectively, 1 and z» are the shear modulus of the
inclusions and matrix respectively.

The upper bound is computed when (K2 > Kz and vz > vi). The lower
bound is computed by interchanging the indices in the equations.

3. Results and discussion

In this part, for the determination of the bulk and shear modulus of
heterogeneous materials, a numerical technique with RVE notion developed in [2]
is used. It consists in considering different realizations of random and complex
microstructures in order to obtain the effective properties. The RVE is the volume
that allows the estimation of the effective property with one realization.

The size of the RVE and the effective property are obtained by variation of
the volume size, see Table 3. From the obtained results, it appears that the size of
RVE depend on the size of material investigated.

Figure 4, reported the variations of effective bulk and shear modulus in
term of volume fraction for case 1. The results are compared to the HS bounds.
The variation of effective elastic properties in term of volume fraction for all the
cases of complex material are reported in Figure 5. For the low volume fraction
5% and 10% the RVE is located for small volume size compared with the other
volume fraction 20 and 30%.
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Fig 4. Variation of the bulk (a) and the shear modulus (b) with HS bounds in terms of volume size
for case 1 of complex material.
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Fig 5. Variation of the bulk (a) and the shear modulus (b) in terms of volume size for four-volume
fraction of complex material.

Tabled

RVE size from numerical computations.

Material Case RVE Size [pixel®]
Case 1 V3
_ Case 2 V3
Complex material Case 3 va
Case 4 V5

In Table 4, the size of RVE for all the cases study in this paper are reported.

4. Effect of volume fraction on effective elastic properties

Many authors have studied the effect of volume fraction on the effective
elastic properties of composite materials. In order to investigate the effect of
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volume fraction of second phase on the effective bulk and shear modulus,
different volumes fractions of material were investigated, the effective bulk and
shear modulus decrease with the increase of the volume fraction of inclusions and
converge to the effective value for the RVE volume size, see Figure 5.

5. Equivalent morphology concept

In this section, we propose to replace a complex two phase material with a
simple two-phase material. The second material is made of spherical inclusion
embedded into the matrix. We make the assumption that the volume fraction is the
same in the two configurations. The distribution of the inclusions is random. The
Python script used for generating the complex material is adapted to generate the
material with spherical particles. Two constraints were made to the distribution of
spheres:

e The spheres do not overlap with each other
e The spheres do not collide with the cell walls (cube)

The three cases of generation spheres with three types of fraction (5%,

10%, 20% and 30%) are presented in Figure 6.

(@) (b) (©

Fig 6. Generation of spherical particles for different volumes fraction, a) 5%, b) 10% and c) 20%.

The technique of generation of this microstructure containing random
sphere packings is obtained with a Python code with RSA algorithm used in [12,
13, 14, 15, 16], see Fig. 1.
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Fig 7. Variation of the bulk (a) and the shear modulus (b) in terms of volume size for composite
for four-volume fraction of with spherical inclusions.

Figure 7 present the results of effective elastic properties of spherical inclusions in
term of number of inclusions N for all the volume fractions.
The relative error between modulus of complex morphology and modulus of
morphology with spherical inclusions should be calculated as:

Relative error () = (Kcomplex-Ksphericat)/Kcomplex (7)
The relative error between modulus of complex morphology and modulus of

morphology with spherical inclusions should be calculated as:

Relative error (w = (complex-Hspherical)/ eomplex (8)
Table 5
Numerical results for Bulk modulus for complex and spherical inclusion material and the HS
bounds
Volume k [MPa] k [MPa] spherical HS- HS+ Relative Error
Fraction of complex material inclusion (%)
inclusions (%)
5 74.164 74.228 64.052 | 75.366 0.086
10 70.283 67.419 51.672 | 68.290 4
20 52.734 55.705 36.702 | 56.271 5.6
30 51.541 46.521 27.978 | 47.233 9.7
Table 6.
Numerical results for Shear modulus for complex and spherical inclusion material and the HS
bounds
Volume p [MPa] complex | p [MPa] spherical HS- HS+ Relative Error
Fraction of material inclusion (%)
inclusions (%)
5 35.138 35.220 30.917 | 35.539 0.2
10 31.968 33.244 25.640 | 32.823 4
20 26.895 27.306 18.742 | 27.922 1.5
30 22.351 30.331 14432 | 25.241 35.7
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According to the Figures 8 and 9, the curves of the effective elastic
proprieties k and x for the two morphologies converge and nearly equal. The error
between the value of k and x in the two cases are negligible for volumes fraction
5, 10 and 20%, see Table 5 and 6. For the volume fraction 30%, the origin of the
difference (9.7% for bulk modulus and 35% for the shear modulus) is the height
heterogeneity of material in the two morphologies. The error in (%) is calculated
between effective modulus of complex morphology and morphology with
spherical inclusions.

Using these results, we can deduce the concept of equivalent morphology,
which allows us to replace the original morphology of complex two-phase
material by another morphology named equivalent morphology just containing
spheres, provided the volume fraction of the second phase in original morphology
equals to the volume fraction of spherical particle one in its equivalent
morphology. These two morphologies give the same effective elastic properties
but not necessarily the same RVE.
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Fig 8. Variation of effective material properties for complex material with change in volume
fraction and comparison with different analytical results: a), Bulk modulus, b) Shear modulus.
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6. Conclusions

A 3D cell model is used to predict the effective mechanical properties of
two-phase complex material using homogenization techniques for different
volume fractions. The numerical approach is based on the finite element method.
Bulk and shear effective modulus have been calculated using a finite element
model and compared with HS bounds.

The concept of equivalent morphology, which allows us to replace the
original morphology of complex two-phase material by another morphology
named equivalent morphology just containing spheres, is proposed to reduce the
mesh time of complex microstructure and memory.

The numerical results demonstrate that the developed FE approach is very
accurate and efficient for the analysis of 3D complex material. The present work
has laid down a foundation for further applications of micro-mechanical finite
element analysis for problems, such as an investigation of stress field in order to
understand the onset and the development of inelastic behavior such as plastic
deformation and possible damage. Furthermore, the proved reliability of the
introduced FEM approach opens new possibilities to explore composites with
arbitrary geometrical types of inclusions, which cannot be covered by most other
homogenization methods.
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