
U.P.B. Sci. Bull., Series A, Vol. 76, Iss. 3, 2014 ISSN 1223-7027

POINTWISE Lt
p−FUNCTIONS ON LOCALLY COMPACT GROUPS

Fatemeh ABTAHI1

Keywords: Abstract Segal algebra, Amenable Banach algebras, Lp−space, Lt
p−function

Let G be a locally compact group and 1 ≤ p < ∞. This paper is mainly

concerned with introducing the concept of pointwise Lt
p− functions and studying

the structure of the space Ltp
p (G), consisting of all these functions. Furthermore,

some algebraic and topological properties of Ltp
p (G) as a Banach algebra under

pointwise multiplication are investigated.
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1. Introduction and Preliminaries

Let G be a locally compact group and λ be a fixed left Haar measure on G.

For 1 ≤ p ≤ ∞, the Lebesgue space Lp(G) with respect to λ is as defined in [6]. The

usual pointwise multiplication of functions will be denoted by ”·”. We introduce the

concept of pointwise Lt
p−function as the following;

Definition 1.1. A function f ∈ Lp(G) is called a pointwise Lt
p−function if g.f ∈

Lp(G), for each g ∈ Lp(G) and

∥f∥tpp = sup{∥g.f∥p, g ∈ Lp(G), ∥g∥p ≤ 1} < ∞. (1.1)

The set of all pointwise Lt
p−functions will be denoted by Ltp

p (G). Using some

easy calculations, one can show that Ltp
p (G) is a vector subspace of Lp(G), and the

function ∥.∥tpp , defined in (1.1), is a norm on Ltp
p (G) under which it is a normed

algebra, i.e. for all f, g ∈ Ltp
p (G),

∥g.f∥tpp ≤ ∥g∥tpp ∥f∥tpp .

It should be noted that these functions are known for the case where p = 1; see [7,

Theorem 20.15]. Our main motivation for presenting Definition 1.1, stemmed from

the general definition of Lt
p−functions, whenever G is abelian, 1 ≤ p ≤ 2 and Lp(G)

is considered under the convolution multiplication ” ∗ ”, defined in [6]. Indeed, a

function f ∈ Lp(G) is said to be a Lt
p−function if g ∗ f exists and belongs to Lp(G),

for all g ∈ Lp(G) and

∥f∥tp = sup{∥g ∗ f∥p, g ∈ Lp(G), ∥g∥p ≤ 1} < ∞; (1.2)
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see [4] and [5] for more details. Note that in [4], these functions have been named

p−tempered functions. The set of all Lt
p−functions will be denoted by Lt

p(G). The

function ∥.∥tp, defined in (1.2) is a norm on Lt
p(G) and for all f, g ∈ Lt

p(G),

∥g ∗ f∥tp ≤ ∥g∥tp∥f∥tp.

The structure of Lt
p(G) has been characterized in a partial case. Indeed, it has been

proved that the set Lt
p(G)+, consisting of all nonnegative-valued functions of Lt

p(G),

is just the set L1(G) ∩ Lp(G)+, whenever G is a unimodular and amenable locally

compact group; see [4, Lemma 2.3]. We just cite that some of the main results

related to this subject can be found in [4], [5] and [10].

In the present work, we first obtain an accurate structure for Ltp
p (G), as a

normed space. In fact similar to the result [7, Theorem 20.15], we show that Ltp
p (G)

is just the space Lp(G) ∩ L∞(G) and ∥.∥tpp is in fact the norm ∥.∥∞ restricted to

Ltp
p (G), as a subspace of L∞(G). Also we prove that unless G is compact, Ltp

p (G)

under ∥.∥tpp is never complete. Then an attempt will be made to supply this deficiency

by the introduction of the second norm on Ltp
p (G), defined as the following

∥|f∥| = ∥f∥p + ∥f∥∞.

We shall be principally concerned with comparing three norms ∥.∥p, ∥.∥tpp and ∥|.∥|
on Ltp

p (G), to show the different treatment of Ltp
p (G), with respect to the alternative

norm. The last section is devoted to some algebraic properties of Ltp
p (G). For

example, we show that the existence of an identity in Ltp
p (G) is equivalent to the

compactness of G. Moreover, we give some results about the amenability of Ltp
p (G)

under both norms ∥.∥tpp and ∥|.∥|. We also study Ltp
p (G) as an abstract Segal algebra

with respect to Lp(G) and also L∞(G), whenever Ltp
p (G) is considered under all

introduced norms.

2. The structure of Ltp
p (G)

In this section we characterize Ltp
p (G) for 1 ≤ p ≤ ∞, and show that Ltp

p (G)

is exactly the set Lp(G)∩L∞(G). Our proof is nothing more than a modification of

the result [7, Theorem 20.15]. Then we show that ∥.∥tpp is just norm ∥.∥∞, restricted

to Ltp
p (G). For this purpose, we make some preparations.

For each f ∈ L∞(G), the map

ϕf : Lp(G) → Lp(G),

defined by g 7→ f.g is well defined by [7, Theorem 20.13], and belongs to B(Lp(G)),

consisting of all bonded linear operators from Lp(G) into Lp(G). Moreover ∥ϕf∥ ≤
∥f∥∞. It is obvious that ∥ϕf∥ = ∥f∥∞, whenever p = ∞. In the next lemma, we

prove this truth for each 1 ≤ p < ∞. Indeed, we use similar arguments as in [9,

Example 2.5.1], to show that

Φ : L∞(G) → B(Lp(G))
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defined by f 7→ ϕf is an isometric linear map from L∞(G) onto the subspace

Φ(L∞(G)) = {ϕf : f ∈ L∞(G)}

of B(Lp(G)).

Lemma 2.1. Let G be a locally compact group and 1 ≤ p < ∞. Then the map Φ is

an isometric linear map from L∞(G) onto Φ(L∞(G)).

Proof. It is sufficient to show that ∥f∥∞ ≤ ∥ϕf∥, for each f ∈ L∞(G). If this is

false, then there exists a positive number ε such that

∥f∥∞ > ∥ϕf∥+ ε.

Thus there is a compact subset K of G with positive measure such that

|f(x)| ≥ ∥ϕf∥+ ε,

for each x ∈ K. However,

∥ϕf∥pλ(K) ≥ ∥ϕf (χK)∥pp

=

∫
G
|f(x)χK(x)|pdλ(x)

≥
∫
G
(∥ϕf∥+ ε)p χK(x)dλ(x)

= (∥ϕf∥+ ε)p λ(K),

where χK is the characteristic function of the set K. It follows that

∥ϕf∥ ≥ ∥ϕf∥+ ε,

a contradiction. This together with the explanations preceding the lemma imply

that

∥ϕf∥ = ∥f∥∞,

as claimed. �

In fact we have a rather stronger result. If f is a complex valued measurable

function on G such that ϕf ∈ B(Lp(G)), then f ∈ L∞(G). Suppose on the contrary

that f ̸∈ L∞(G). Thus for each positive constant N , there is a compact subset KN

of G with positive measure such that

|f(x)| ≥ N,

for each x ∈ KN . Thus

∥ϕf∥pλ(KN ) ≥ ∥ϕf (χKN
)∥pp

=

∫
G
|f(x)χKN

(x)|pdλ(x)

≥ Np

∫
G
χKN

(x)dλ(x)

= Npλ(KN ),

which is a contradiction. It follows that f ∈ L∞(G).
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Theorem 2.2. Let G be a locally compact group and 1 ≤ p < ∞. Then Ltp
p (G) =

Lp(G) ∩ L∞(G), as two sets. Moreover, for each f ∈ Ltp
p (G),

∥f∥tpp = ∥f∥∞ ≤ ∥|f∥|.

Proof. If f ∈ Lp(G) ∩ L∞(G), then Lemma 2.1 implies that

sup{∥g.f∥p : ∥g∥p ≤ 1} = ∥ϕf∥ = ∥f∥∞ < ∞. (2.1)

It follows that f ∈ Ltp
p (G) and so Lp(G) ∩ L∞(G) ⊆ Ltp

p (G). The reverse of the

inclusion and also the inequality

∥f∥tpp = ∥f∥∞ ≤ ∥|f∥|

can be easily implied by (2.1) and the explanations preceding the theorem. �

Remark 2.3. It should be noted that our results are based on the definitions of

Lp−spaces, given in [6]. Now we show that (Ltp
p (G), ∥|.∥|) is a Banach algebra,

which will be used several times in this paper. By Theorem 2.2,

Ltp
p (G) = Lp(G) ∩ L∞(G).

It is not hard to see that Ltp
p (G) is always an algebra under pointwise multiplication.

Suppose that (fn)n is a Cauchy sequence in (Ltp
p (G), ∥|.∥|). Thus (fn)n is also a

Cauchy sequence in Lp(G) and L∞(G), and so (fn)n is convergent to f and g in

Lp(G) and L∞(G), respectively. To that end, we show that f = g, almost everywhere

on G. By the proof of [6, Theorem 12.8], there is a subsequence (fnk
)k of (fn)n such

that it is almost everywhere convergent to f . For each j, l, k ∈ N, let

El,j = {x ∈ G : |fnl
(x)− fnj (x)| ≥ ∥fnl

− fnj∥∞},

and

Ek = {x ∈ G : |fnk
(x)| ≥ ∥fnk

∥∞}
and set

E =
∪
l,j,k

(El,j ∪ Ek).

By the definition of L∞(G) in [6], all the sets El,j and Ek are locally null; i.e.

λ(El,j ∩ F ) = λ(Ek ∩ F ) = 0, for every compact subset F of G. It follows that E

is also a locally null set. Since for each n ∈ N, fn ∈ Lp(G), it follows that for all

l, j, k ∈ N,
λ(El,j) < ∞

and

λ(Ek) < ∞,

which implies that E is a σ−finite set. Consequently λ(E) = 0, by [6, Theorem

11.32] and [6, Note 11.33]. It follows that fnk
converges to g, almost everywhere on

G. Consequently f = g, almost everywhere on G. It follows that (Ltp
p (G), ∥|.∥|) is a

Banach space. Moreover inequality

∥|f.g∥| ≤ ∥|f∥| ∥|g∥| (f, g ∈ Ltp
p (G))
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is immediately obtained. These observations show that Ltp
p (G) is a Banach algebra

under ∥|.∥|.

It is known that Lt
p(G) = Lp(G) if and only if G is compact. This is completely

related to an ancient conjecture, called ’Lp−conjecture’ which was proved finally by

Saeki [11], in the general case. This conjecture asserts that f ∗ g exists and belongs

to Lp(G) for all f, g ∈ Lp(G) if and only if G is compact. In the next theorem some

equivalent conditions to the equality Lp(G) = Ltp
p (G) are given.

Theorem 2.4. Let G be a locally compact group and 1 ≤ p < ∞. Then the following

assertions are equivalent.

(i) Lp(G) is a Banach algebra under pointwise multiplication.

(ii) Ltp
p (G) = Lp(G), as two sets.

(iii) The norms ∥.∥p and ∥|.∥| are equivalent on Ltp
p (G).

(iv) There exists a positive constant K such that ∥f∥tpp ≤ K∥f∥p, for each f ∈
Ltp
p (G).

(v) There exists a positive constant K such that ∥|f∥| ≤ K∥f∥p, for each f ∈
Ltp
p (G).

(vi) G is discrete.

Proof. (i) ⇒ (vi). Let Lp(G) be a Banach algebra under pointwise multiplication.

Toward a contradiction, suppose that G is not discrete. Thus there exists a sequence

(On) of disjoint relatively compact open subsets of G such that λ(On) < n−2p,

for each n ∈ N. Indeed, we first choose a relatively compact open set O1 ⊆ G

with λ(O1) < 1. Then there is a relatively compact open set O2 ⊆ G \ O1 with

λ(O2) < 2−2p. Inductively, we may find a sequence (On) of relatively compact open

subsets in G such that

On ⊆ G \ (O1 ∪ · · · ∪On−1)

and

λ(On) < n−2p.

Let α be a positive constant with α ≤ (2p)−1 and define the function g on G by

g(x) =
∞∑
n=1

n−1−αλ(On)
−1/pχOn(x) (x ∈ G).

It is clear that g ∈ Lp(G). But∫
G
|g(x)g(x)|pdλ(x) =

∞∑
n=1

∫
On

dλ(x)

λ(On)2n2p+2pα

≥
∞∑
n=1

n−2pα

= ∞.

It follows that g2 = g.g ̸∈ Lp(G), which contradicts the hypothesis.
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(vi) ⇒ (i). If G is discrete then for all f, g ∈ Lp(G) we clearly have

∥f.g∥p =

(∑
x∈G

|f(x)|p|g(x)|p
)1/p

≤ ∥f∥p∥g∥p
< ∞,

and so (i) is obtained. Therefore (i) and (vi) are equivalent. The implications

(vi) ⇒ (v), (v) ⇒ (iv) and also (iv) ⇒ (iii) are clear.

(iii) ⇒ (ii). Let the norms ∥.∥p and ∥|.∥| be equivalent on Ltp
p (G). By Remark

2.3, Ltp
p (G) is always a Banach algebra under ∥|.∥|. It follows that Ltp

p (G) is also

complete under ∥.∥p. Now the result follows by the density of Ltp
p (G) in Lp(G).

(ii) ⇒ (vi). Since Ltp
p (G) is an algebra under pointwise multiplication, then

Lp(G) is also an algebra under pointwise multiplication. Now the proof of (i) ⇒ (vi)

implies the discreteness of G. �

In the following theorem, some equivalent conditions to the completeness of

Ltp
p (G) under ∥.∥tpp are provided.

Theorem 2.5. Let G be a locally compact group and 1 ≤ p < ∞. Then the following

assertions are equivalent.

(i) Ltp
p (G) is a Banach algebra under ∥.∥tpp .

(ii) Ltp
p (G) = L∞(G), as two sets.

(iii) The norms ∥.∥tpp and ∥|.∥| are equivalent on Ltp
p (G).

(iv) There exists a positive constant M such that ∥f∥p ≤ M∥f∥tpp , for each f ∈
Ltp
p (G).

(v) There exists a positive constant K such that ∥|f∥| ≤ K∥f∥tpp , for each f ∈
Ltp
p (G).

(vi) G is compact.

Proof. (i) ⇒ (vi). Let Ltp
p (G) be a Banach algebra under ∥.∥tpp and consider the

identity map

ι : (Ltp
p (G), ∥|.∥|) → (Ltp

p (G), ∥.∥tpp ).

By Remark 2.3, Ltp
p (G) is a Banach algebra under ∥|.∥|. Since ι is continuous, then

open mapping theorem implies that ∥.∥tpp and ∥|.∥| are equivalent and hence there is

a constant K > 1 such that

∥|f∥| ≤ K∥f∥tpp ,

for each f ∈ Ltp
p (G). By Theorem 2.2 we have

∥f∥p ≤ (K − 1)∥f∥tpp . (2.2)

Now we show that C0(G) ⊆ Lp(G). Let g ∈ C0(G). Thus there is a sequence (gn)n∈N
in C00(G) such that

∥gn − g∥∞ → 0.
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Since gn − g ∈ C0(G), it follows that for each n ∈ N, the set

An = {x ∈ G : |gn(x)− g(x)| > ∥gn − g∥∞}

is open and thus it is a null set; i.e. λ(An) = 0. So A = ∪n∈NAn is a null set, as

well. Consequently (gn) is almost every where convergent to g. Moreover inequality

(2.2) together with Theorem 2.2 imply that (gn)n∈N is also a Cauchy sequence in

Lp(G). Thus there is a function h ∈ Lp(G) such that

∥gn − h∥p → 0.

It follows by the proof of [6, Theorem 12.8] that there is a subsequence of h which

almost every where convergent to h. Consequently g = h almost every where on G,

which implies g ∈ Lp(G). Moreover

∥g∥p ≤ (K − 1)∥g∥tpp = (K − 1)∥g∥∞. (2.3)

In the sequel, we show that the inclusion C0(G) ⊆ Lp(G) implies the compactness

of G. For this purpose, consider the inclusion map

ι : C0(G) → Lp(G).

By Theorem 2.2 and also (2.3), ι is continuous. If G were non-compact then there

is a sequence (Fn)n∈N of the compact subsets of G with positive measure such that

λ(Fn) → ∞. Also for each n ∈ N, there is a relatively compact open subset Un of G

such that Fn ⊆ Un. For each n ∈ N, let fn be a continuous function on G such that

vanishes outside Un and

0 ≤ fn(x) ≤ 1,

for each x ∈ G, and equals to the constant 1 on Fn. Set

gn =
fn

λ(Fn)1/p
.

Thus gn ∈ C0(G) and ∥gn∥∞ → 0, whereas

lim
n→∞

∥gn∥p ≥ 1,

which is in contradiction with the inequality (2.3). Therefore G should be compact.

(vi) ⇒ (v), (v) ⇒ (iv) and (iv) ⇒ (iii) are clearly obtained from Theorem

2.2.

(iii) ⇒ (ii). Let ∥.∥tpp and ∥|.∥| be equivalent on Ltp
p (G). Since Ltp

p (G) is a

Banach algebra under the norm ∥|.∥|, it follows that Ltp
p (G) is complete under ∥.∥tpp ,

as well. By Theorem 2.2, C00(G) ⊆ Ltp
p (G), which implies that

C0(G) ⊆ Ltp
p (G) ⊆ Lp(G).

Now the proof of implication (i) ⇒ (vi) provides that G is compact. It follows that

L∞(G) ⊆ Lp(G) and again by Theorem 2.2, Ltp
p (G) = L∞(G).

(ii) ⇒ (i). It is immediately obtained from Theorem 2.2 and the fact that

L∞(G) is a Banach algebra under pointwise multiplication. �

The following result is automatically fulfilled from Theorems 2.2 and 2.4.
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Corollary 2.6. Let G be a locally compact group and 1 ≤ p < ∞. Then ∥.∥p and

∥.∥tpp are equivalent on Ltp
p (G) if and only if G is finite.

As an application of these results, we end this section with the examples, on

some known locally compact groups.

Examples. Let 1 ≤ p < ∞.

(1) Let Z be the additive group of integers and T be the multiplicative circle group.

Theorems 2.4 and 2.5 provide that Lp(Z) = Ltp
p (Z) and Ltp

p (T) = L∞(T), as
two sets.

(2) Let R be the additive group of real numbers and take G to be one of the locally

compact groups R, R×T, R×Z or T×Z. Since these groups are non discrete

and noncompact, then Ltp
p (G) is a proper subset of Lp(G) and also L∞(G).

3. Some aspects of Ltp
p (G) as a Banach algebra

Let G be a locally compact group and 1 ≤ p < ∞. As some applications of the

previous results, we study amenability of Ltp
p (G) under both introduced norms ∥.∥tpp

and ∥|.∥|. Furthermore, we investigate when Ltp
p (G) is an abstract Segal algebra

with respect to Lp(G) or L∞(G). We commence our discussion with a verification

on the existence of an identity in Ltp
p (G). Since Lp(G) is not generally an algebra

under pointwise multiplication, we define the concept of quasi identity for Lp(G),

which is directly related to the concept of identity element. An element e ∈ Lp(G)

is called a quasi identity for Lp(G) if for each f ∈ Lp(G), e.f ∈ Lp(G) and e.f = f .

Proposition 3.1. Let G be a locally compact group and 1 ≤ p < ∞. Then Lp(G)

has a quasi identity if and only if G is compact.

Proof. Let e ∈ Lp(G) be a quasi identity element for Lp(G). Thus for each subset F

of G with λ(F ) < ∞, we have e.χF = χF . Hence for each compact subset F of G,

λ(F ) ≤ ∥e∥pp,

which implies the compactness of G, by the regularity of Haar measure λ and also

[6, Theorem 15.9]. The converse is trivial, because the constant function 1 is a quasi

identity for Lp(G). �

One can follow an argument similar to Proposition 3.1 to get the following

result.

Corollary 3.2. Let G be a locally compact group and 1 ≤ p < ∞. Then Ltp
p (G) has

an identity if and only if G is compact.

Some more clarified results of our verification are simplified in the next re-

marks.

Remark 3.3. Let G be a locally compact group and 1 ≤ p ≤ ∞.
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(i) If p = ∞, then L∞(G) = Ltp
∞(G); indeed, for each f ∈ L∞(G), we have

∥f∥∞ = ∥1.f∥∞ ≤ ∥f∥tp∞
= sup

∥g∥∞≤1
∥g.f∥∞

≤ ∥f∥∞.

Thus ∥f∥∞ = ∥f∥tp∞ and consequently L∞(G) and Ltp
∞(G) are isometrically

isomorphic.

(ii) If 1 ≤ p < ∞, Corollary 3.2 implies that the existence of an identity for Ltp
p (G)

is equivalent to the compactness of G. It is also equivalent to being Ltp
p (G) a

Banach algebra under ∥.∥tpp , by Theorem 2.5.

(iii) If G is discrete and 1 ≤ p < ∞, Theorem 2.4 implies that Ltp
p (G) = Lp(G).

Consider the net (χF )F∈F of the characteristic functions on the finite subsets F

of G, directed by upward inclusion. We claim that (χF )F∈F is an approximate

identity for Lp(G). For the proof, let f ∈ Lp(G). Thus f equals zero, outside

of a countable subset Sf = {xn : n ∈ N} of G. For each ε > 0, there is a

positive integer N such that

∞∑
k=N+1

|f(xk)|p < εp.

Now for each finite subset F of G containing the set F0 = {x1, · · · , xN}, we
have

∥f − χF .f∥pp =

∞∑
n=1

|f(xn)− χF (xn)f(xn)|p

=
N∑

n=1

|f(xn)− χF (xn)f(xn)|p

+

∞∑
n=N+1

|f(xn)− χF (xn)f(xn)|p

≤
∞∑

k=N+1

|f(xk)|p

< εp.

Thus the claim is proved. Theorem 2.4 implies that for each f ∈ Ltp
p (G) the

inequality

∥f − χF .f∥tpp < K∥f − χF .f∥p < Kε

is also valid for some positive constant K. It follows that although in this case

Ltp
p (G) is not necessarily a Banach algebra under ∥.∥tpp , but the net (χF )F∈F

is an approximate identity for (Ltp
p (G), ∥.∥tpp ).
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3.1. Amenability of Ltp
p (G)

Let A be a Banach algebra and X be a Banach A−bimodule: A derivation D

from A into X is inner if there is ξ ∈ X such that

D(a) = aξ − ξ,

for each a ∈ A. The Banach algebra A is amenable if every continuous derivation

D : A → X∗ is inner for all Banach A−bimodules X.

Since L∞(G) is a commutative unital C∗−algebra, thus it is isometrical iso-

morphic with the space C(K), for some compact Hausdorff space K. It follows that

L∞(G) is an amenable Banach algebra [2, Theorem 5.6.2(i)]; see also [3] for full

information about the structure of C∗−algebras. Now Theorem 2.5 implies that if

G is compact, then Ltp
p (G) is always amenable under ∥.∥tp and also ∥|.∥|.

Proposition 3.4. Let G be a locally compact group and 1 ≤ p < ∞. Then Ltp
p (G)

is amenable under norm ∥|.∥| if and only if G is compact.

Proof. By the explanations given before the proposition, we proceed to prove the

”only if” part. Let Ltp
p (G) is amenable under norm ∥|.∥|. Thus it admits an approx-

imate identity such as (eα)α∈Λ bounded by the positive constant M [8, Proposition

1.6]. Hence for each compact subset F of G with positive measure we have

∥|χF .eα − χF ∥| → 0.

and so

∥χF .eα − χF ∥p → 0.

It follows that there is α0 ∈ Λ such that

∥χF .eα0 − χF ∥p ≤ 1.

Consequently

λ(F )1/p = ∥χF ∥p
≤ 1 + ∥eα0∥p
≤ 1 + ∥|eα0∥|
≤ 1 +M.

Now the result is obtained by the regularity of Haar measure λ and also [6, Theorem

15.9]. �

3.2. Ltp
p (G) as an abstract Segal algebra

For the sake of completeness, we first repeat and review the basic definitions

of abstract Segal algebras; see [1] for more details.

Let (A, ∥.∥A) be a Banach algebra. Then (B, ∥.∥B) is an abstract Segal algebra

with respect to (A, ∥.∥A) if:
(1) B is a dense left ideal in A and B is a Banach algebra with respect to ∥.∥B.
(2) There exists M > 0 such that ∥f∥A ≤ M∥f∥B, for each f ∈ B.
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(3) There exists C > 0 such that ∥fg∥B ≤ C∥f∥A∥g∥B, for each f, g ∈ B.

The following propositions can be readily verified by Theorems 2.4 and 2.5.

Proposition 3.5. Let G be a discrete group and 1 ≤ p < ∞. Then Ltp
p (G) endowed

with ∥.∥tpp is an abstract Segal algebra with respect to Lp(G) if and only if G is finite.

Proposition 3.6. Let G be a discrete group and 1 ≤ p < ∞. Then Ltp
p (G) endowed

with ∥|.∥| is always an abstract Segal algebra with respect to Lp(G).

Proposition 3.7. Let G be a locally compact and σ−compact group and 1 ≤ p < ∞.

Then the following assertions are equivalent.

(i) Ltp
p (G) endowed with ∥.∥tpp is as an abstract Segal algebra with respect to

L∞(G).

(ii) Ltp
p (G) endowed with ∥|.∥| is as an abstract Segal algebra with respect to L∞(G).

(iii) G is compact.

Proof. It is clear from Theorem 2.5 that (i) is equivalent to (iii) and (iii) implies

(ii). It suffices to show that (ii) ⇒ (iii). Let Ltp
p (G) endowed with ∥|.∥| be an

abstract Segal algebra with respect to L∞(G). It follows that Ltp
p (G) is dense in

L∞(G) and thus for the constant function 1 in L∞(G), there is f ∈ Ltp
p (G) such

that

∥1− f∥∞ < 1/2.

Consequently there is a subset A of G such that

|f(x)| > 1/2,

for each x ∈ A and also G \ A is locally null. Since f ∈ Lp(G) it follows that

λ(A) < ∞. Moreover by [7, Theorem 20.12] we have

λ(G \A) = 0.

Consequently λ(G) < ∞, which implies the compactness of G [6, Theorem 15.9]. �
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