

POINTWISE L_p^t -FUNCTIONS ON LOCALLY COMPACT GROUPS

Fatemeh ABTAHI¹

Keywords: Abstract Segal algebra, Amenable Banach algebras, L^p -space, L_p^t -function

Let G be a locally compact group and $1 \leq p < \infty$. This paper is mainly concerned with introducing the concept of pointwise L_p^t -functions and studying the structure of the space $L_p^{tp}(G)$, consisting of all these functions. Furthermore, some algebraic and topological properties of $L_p^{tp}(G)$ as a Banach algebra under pointwise multiplication are investigated.

MSC2010: 43A15, 43A20, 46H05

1. Introduction and Preliminaries

Let G be a locally compact group and λ be a fixed left Haar measure on G . For $1 \leq p \leq \infty$, the Lebesgue space $L^p(G)$ with respect to λ is as defined in [6]. The usual pointwise multiplication of functions will be denoted by "•". We introduce the concept of pointwise L_p^t -function as the following;

Definition 1.1. A function $f \in L^p(G)$ is called a pointwise L_p^t -function if $g.f \in L^p(G)$, for each $g \in L^p(G)$ and

$$\|f\|_p^{tp} = \sup\{\|g.f\|_p, g \in L^p(G), \|g\|_p \leq 1\} < \infty. \quad (1.1)$$

The set of all pointwise L_p^t -functions will be denoted by $L_p^{tp}(G)$. Using some easy calculations, one can show that $L_p^{tp}(G)$ is a vector subspace of $L^p(G)$, and the function $\|\cdot\|_p^{tp}$, defined in (1.1), is a norm on $L_p^{tp}(G)$ under which it is a normed algebra, i.e. for all $f, g \in L_p^{tp}(G)$,

$$\|g.f\|_p^{tp} \leq \|g\|_p^{tp} \|f\|_p^{tp}.$$

It should be noted that these functions are known for the case where $p = 1$; see [7, Theorem 20.15]. Our main motivation for presenting Definition 1.1, stemmed from the general definition of L_p^t -functions, whenever G is abelian, $1 \leq p \leq 2$ and $L^p(G)$ is considered under the convolution multiplication "•", defined in [6]. Indeed, a function $f \in L^p(G)$ is said to be a L_p^t -function if $g * f$ exists and belongs to $L^p(G)$, for all $g \in L^p(G)$ and

$$\|f\|_p^t = \sup\{\|g * f\|_p, g \in L^p(G), \|g\|_p \leq 1\} < \infty; \quad (1.2)$$

¹Department of Mathematics, University of Isfahan, Isfahan, Iran, Email: f.abtahi@sci.ui.ac.ir

see [4] and [5] for more details. Note that in [4], these functions have been named p -tempered functions. The set of all L_p^t -functions will be denoted by $L_p^t(G)$. The function $\|\cdot\|_p^t$, defined in (1.2) is a norm on $L_p^t(G)$ and for all $f, g \in L_p^t(G)$,

$$\|g * f\|_p^t \leq \|g\|_p^t \|f\|_p^t.$$

The structure of $L_p^t(G)$ has been characterized in a partial case. Indeed, it has been proved that the set $L_p^t(G)^+$, consisting of all nonnegative-valued functions of $L_p^t(G)$, is just the set $L^1(G) \cap L^p(G)^+$, whenever G is a unimodular and amenable locally compact group; see [4, Lemma 2.3]. We just cite that some of the main results related to this subject can be found in [4], [5] and [10].

In the present work, we first obtain an accurate structure for $L_p^{tp}(G)$, as a normed space. In fact similar to the result [7, Theorem 20.15], we show that $L_p^{tp}(G)$ is just the space $L^p(G) \cap L^\infty(G)$ and $\|\cdot\|_p^{tp}$ is in fact the norm $\|\cdot\|_\infty$ restricted to $L_p^{tp}(G)$, as a subspace of $L^\infty(G)$. Also we prove that unless G is compact, $L_p^{tp}(G)$ under $\|\cdot\|_p^{tp}$ is never complete. Then an attempt will be made to supply this deficiency by the introduction of the second norm on $L_p^{tp}(G)$, defined as the following

$$\|f\| = \|f\|_p + \|f\|_\infty.$$

We shall be principally concerned with comparing three norms $\|\cdot\|_p$, $\|\cdot\|_p^{tp}$ and $\|\cdot\|$ on $L_p^{tp}(G)$, to show the different treatment of $L_p^{tp}(G)$, with respect to the alternative norm. The last section is devoted to some algebraic properties of $L_p^{tp}(G)$. For example, we show that the existence of an identity in $L_p^{tp}(G)$ is equivalent to the compactness of G . Moreover, we give some results about the amenability of $L_p^{tp}(G)$ under both norms $\|\cdot\|_p^{tp}$ and $\|\cdot\|$. We also study $L_p^{tp}(G)$ as an abstract Segal algebra with respect to $L^p(G)$ and also $L^\infty(G)$, whenever $L_p^{tp}(G)$ is considered under all introduced norms.

2. The structure of $L_p^{tp}(G)$

In this section we characterize $L_p^{tp}(G)$ for $1 \leq p \leq \infty$, and show that $L_p^{tp}(G)$ is exactly the set $L^p(G) \cap L^\infty(G)$. Our proof is nothing more than a modification of the result [7, Theorem 20.15]. Then we show that $\|\cdot\|_p^{tp}$ is just norm $\|\cdot\|_\infty$, restricted to $L_p^{tp}(G)$. For this purpose, we make some preparations.

For each $f \in L^\infty(G)$, the map

$$\phi_f : L^p(G) \rightarrow L^p(G),$$

defined by $g \mapsto f.g$ is well defined by [7, Theorem 20.13], and belongs to $B(L^p(G))$, consisting of all bonded linear operators from $L^p(G)$ into $L^p(G)$. Moreover $\|\phi_f\| \leq \|f\|_\infty$. It is obvious that $\|\phi_f\| = \|f\|_\infty$, whenever $p = \infty$. In the next lemma, we prove this truth for each $1 \leq p < \infty$. Indeed, we use similar arguments as in [9, Example 2.5.1], to show that

$$\Phi : L^\infty(G) \rightarrow B(L^p(G))$$

defined by $f \mapsto \phi_f$ is an isometric linear map from $L^\infty(G)$ onto the subspace

$$\Phi(L^\infty(G)) = \{\phi_f : f \in L^\infty(G)\}$$

of $B(L^p(G))$.

Lemma 2.1. *Let G be a locally compact group and $1 \leq p < \infty$. Then the map Φ is an isometric linear map from $L^\infty(G)$ onto $\Phi(L^\infty(G))$.*

Proof. It is sufficient to show that $\|f\|_\infty \leq \|\phi_f\|$, for each $f \in L^\infty(G)$. If this is false, then there exists a positive number ε such that

$$\|f\|_\infty > \|\phi_f\| + \varepsilon.$$

Thus there is a compact subset K of G with positive measure such that

$$|f(x)| \geq \|\phi_f\| + \varepsilon,$$

for each $x \in K$. However,

$$\begin{aligned} \|\phi_f\|^p \lambda(K) &\geq \|\phi_f(\chi_K)\|_p^p \\ &= \int_G |f(x)\chi_K(x)|^p d\lambda(x) \\ &\geq \int_G (\|\phi_f\| + \varepsilon)^p \chi_K(x) d\lambda(x) \\ &= (\|\phi_f\| + \varepsilon)^p \lambda(K), \end{aligned}$$

where χ_K is the characteristic function of the set K . It follows that

$$\|\phi_f\| \geq \|\phi_f\| + \varepsilon,$$

a contradiction. This together with the explanations preceding the lemma imply that

$$\|\phi_f\| = \|f\|_\infty,$$

as claimed. \square

In fact we have a rather stronger result. If f is a complex valued measurable function on G such that $\phi_f \in B(L^p(G))$, then $f \in L^\infty(G)$. Suppose on the contrary that $f \notin L^\infty(G)$. Thus for each positive constant N , there is a compact subset K_N of G with positive measure such that

$$|f(x)| \geq N,$$

for each $x \in K_N$. Thus

$$\begin{aligned} \|\phi_f\|^p \lambda(K_N) &\geq \|\phi_f(\chi_{K_N})\|_p^p \\ &= \int_G |f(x)\chi_{K_N}(x)|^p d\lambda(x) \\ &\geq N^p \int_G \chi_{K_N}(x) d\lambda(x) \\ &= N^p \lambda(K_N), \end{aligned}$$

which is a contradiction. It follows that $f \in L^\infty(G)$.

Theorem 2.2. *Let G be a locally compact group and $1 \leq p < \infty$. Then $L_p^{tp}(G) = L^p(G) \cap L^\infty(G)$, as two sets. Moreover, for each $f \in L_p^{tp}(G)$,*

$$\|f\|_p^{tp} = \|f\|_\infty \leq \|\|f\|\|.$$

Proof. If $f \in L^p(G) \cap L^\infty(G)$, then Lemma 2.1 implies that

$$\sup\{\|g.f\|_p : \|g\|_p \leq 1\} = \|\phi_f\| = \|f\|_\infty < \infty. \quad (2.1)$$

It follows that $f \in L_p^{tp}(G)$ and so $L^p(G) \cap L^\infty(G) \subseteq L_p^{tp}(G)$. The reverse of the inclusion and also the inequality

$$\|f\|_p^{tp} = \|f\|_\infty \leq \|\|f\|\|$$

can be easily implied by (2.1) and the explanations preceding the theorem. \square

Remark 2.3. It should be noted that our results are based on the definitions of L^p -spaces, given in [6]. Now we show that $(L_p^{tp}(G), \|\|.\|\|)$ is a Banach algebra, which will be used several times in this paper. By Theorem 2.2,

$$L_p^{tp}(G) = L^p(G) \cap L^\infty(G).$$

It is not hard to see that $L_p^{tp}(G)$ is always an algebra under pointwise multiplication. Suppose that $(f_n)_n$ is a Cauchy sequence in $(L_p^{tp}(G), \|\|.\|\|)$. Thus $(f_n)_n$ is also a Cauchy sequence in $L^p(G)$ and $L^\infty(G)$, and so $(f_n)_n$ is convergent to f and g in $L^p(G)$ and $L^\infty(G)$, respectively. To that end, we show that $f = g$, almost everywhere on G . By the proof of [6, Theorem 12.8], there is a subsequence $(f_{n_k})_k$ of $(f_n)_n$ such that it is almost everywhere convergent to f . For each $j, l, k \in \mathbb{N}$, let

$$E_{l,j} = \{x \in G : |f_{n_l}(x) - f_{n_j}(x)| \geq \|f_{n_l} - f_{n_j}\|_\infty\},$$

and

$$E_k = \{x \in G : |f_{n_k}(x)| \geq \|f_{n_k}\|_\infty\}$$

and set

$$E = \bigcup_{l,j,k} (E_{l,j} \cup E_k).$$

By the definition of $L^\infty(G)$ in [6], all the sets $E_{l,j}$ and E_k are locally null; i.e. $\lambda(E_{l,j} \cap F) = \lambda(E_k \cap F) = 0$, for every compact subset F of G . It follows that E is also a locally null set. Since for each $n \in \mathbb{N}$, $f_n \in L^p(G)$, it follows that for all $l, j, k \in \mathbb{N}$,

$$\lambda(E_{l,j}) < \infty$$

and

$$\lambda(E_k) < \infty,$$

which implies that E is a σ -finite set. Consequently $\lambda(E) = 0$, by [6, Theorem 11.32] and [6, Note 11.33]. It follows that f_{n_k} converges to g , almost everywhere on G . Consequently $f = g$, almost everywhere on G . It follows that $(L_p^{tp}(G), \|\|.\|\|)$ is a Banach space. Moreover inequality

$$\|\|f.g\|\| \leq \|\|f\|\| \|\|g\|\| \quad (f, g \in L_p^{tp}(G))$$

is immediately obtained. These observations show that $L_p^{tp}(G)$ is a Banach algebra under $\|\cdot\|\|$.

It is known that $L_p^t(G) = L^p(G)$ if and only if G is compact. This is completely related to an ancient conjecture, called ' L^p -conjecture' which was proved finally by Saeki [11], in the general case. This conjecture asserts that $f * g$ exists and belongs to $L^p(G)$ for all $f, g \in L^p(G)$ if and only if G is compact. In the next theorem some equivalent conditions to the equality $L^p(G) = L_p^{tp}(G)$ are given.

Theorem 2.4. *Let G be a locally compact group and $1 \leq p < \infty$. Then the following assertions are equivalent.*

- (i) $L^p(G)$ is a Banach algebra under pointwise multiplication.
- (ii) $L_p^{tp}(G) = L^p(G)$, as two sets.
- (iii) The norms $\|\cdot\|_p$ and $\|\cdot\|\|$ are equivalent on $L_p^{tp}(G)$.
- (iv) There exists a positive constant K such that $\|f\|_p^{tp} \leq K\|f\|_p$, for each $f \in L_p^{tp}(G)$.
- (v) There exists a positive constant K such that $\|f\|\| \leq K\|f\|_p$, for each $f \in L_p^{tp}(G)$.
- (vi) G is discrete.

Proof. (i) \Rightarrow (vi). Let $L^p(G)$ be a Banach algebra under pointwise multiplication. Toward a contradiction, suppose that G is not discrete. Thus there exists a sequence (O_n) of disjoint relatively compact open subsets of G such that $\lambda(\overline{O_n}) < n^{-2p}$, for each $n \in \mathbb{N}$. Indeed, we first choose a relatively compact open set $O_1 \subseteq G$ with $\lambda(\overline{O_1}) < 1$. Then there is a relatively compact open set $O_2 \subseteq G \setminus \overline{O_1}$ with $\lambda(\overline{O_2}) < 2^{-2p}$. Inductively, we may find a sequence (O_n) of relatively compact open subsets in G such that

$$O_n \subseteq G \setminus (\overline{O_1} \cup \dots \cup \overline{O_{n-1}})$$

and

$$\lambda(\overline{O_n}) < n^{-2p}.$$

Let α be a positive constant with $\alpha \leq (2p)^{-1}$ and define the function g on G by

$$g(x) = \sum_{n=1}^{\infty} n^{-1-\alpha} \lambda(O_n)^{-1/p} \chi_{O_n}(x) \quad (x \in G).$$

It is clear that $g \in L^p(G)$. But

$$\begin{aligned} \int_G |g(x)g(x)|^p d\lambda(x) &= \sum_{n=1}^{\infty} \int_{O_n} \frac{d\lambda(x)}{\lambda(O_n)^{2p+2p\alpha}} \\ &\geq \sum_{n=1}^{\infty} n^{-2p\alpha} \\ &= \infty. \end{aligned}$$

It follows that $g^2 = g \cdot g \notin L^p(G)$, which contradicts the hypothesis.

(vi) \Rightarrow (i). If G is discrete then for all $f, g \in L^p(G)$ we clearly have

$$\begin{aligned}\|f \cdot g\|_p &= \left(\sum_{x \in G} |f(x)|^p |g(x)|^p \right)^{1/p} \\ &\leq \|f\|_p \|g\|_p \\ &< \infty,\end{aligned}$$

and so (i) is obtained. Therefore (i) and (vi) are equivalent. The implications (vi) \Rightarrow (v), (v) \Rightarrow (iv) and also (iv) \Rightarrow (iii) are clear.

(iii) \Rightarrow (ii). Let the norms $\|\cdot\|_p$ and $\|\cdot\|$ be equivalent on $L_p^{tp}(G)$. By Remark 2.3, $L_p^{tp}(G)$ is always a Banach algebra under $\|\cdot\|$. It follows that $L_p^{tp}(G)$ is also complete under $\|\cdot\|_p$. Now the result follows by the density of $L_p^{tp}(G)$ in $L_p(G)$.

(ii) \Rightarrow (vi). Since $L_p^{tp}(G)$ is an algebra under pointwise multiplication, then $L^p(G)$ is also an algebra under pointwise multiplication. Now the proof of (i) \Rightarrow (vi) implies the discreteness of G . \square

In the following theorem, some equivalent conditions to the completeness of $L_p^{tp}(G)$ under $\|\cdot\|_p^{tp}$ are provided.

Theorem 2.5. *Let G be a locally compact group and $1 \leq p < \infty$. Then the following assertions are equivalent.*

- (i) $L_p^{tp}(G)$ is a Banach algebra under $\|\cdot\|_p^{tp}$.
- (ii) $L_p^{tp}(G) = L^\infty(G)$, as two sets.
- (iii) The norms $\|\cdot\|_p^{tp}$ and $\|\cdot\|$ are equivalent on $L_p^{tp}(G)$.
- (iv) There exists a positive constant M such that $\|f\|_p \leq M\|f\|_p^{tp}$, for each $f \in L_p^{tp}(G)$.
- (v) There exists a positive constant K such that $\|f\| \leq K\|f\|_p^{tp}$, for each $f \in L_p^{tp}(G)$.
- (vi) G is compact.

Proof. (i) \Rightarrow (vi). Let $L_p^{tp}(G)$ be a Banach algebra under $\|\cdot\|_p^{tp}$ and consider the identity map

$$\iota : (L_p^{tp}(G), \|\cdot\|) \rightarrow (L_p^{tp}(G), \|\cdot\|_p^{tp}).$$

By Remark 2.3, $L_p^{tp}(G)$ is a Banach algebra under $\|\cdot\|$. Since ι is continuous, then open mapping theorem implies that $\|\cdot\|_p^{tp}$ and $\|\cdot\|$ are equivalent and hence there is a constant $K > 1$ such that

$$\|f\| \leq K\|f\|_p^{tp},$$

for each $f \in L_p^{tp}(G)$. By Theorem 2.2 we have

$$\|f\|_p \leq (K-1)\|f\|_p^{tp}. \quad (2.2)$$

Now we show that $C_0(G) \subseteq L^p(G)$. Let $g \in C_0(G)$. Thus there is a sequence $(g_n)_{n \in \mathbb{N}}$ in $C_{00}(G)$ such that

$$\|g_n - g\|_\infty \rightarrow 0.$$

Since $g_n - g \in C_0(G)$, it follows that for each $n \in \mathbb{N}$, the set

$$A_n = \{x \in G : |g_n(x) - g(x)| > \|g_n - g\|_\infty\}$$

is open and thus it is a null set; i.e. $\lambda(A_n) = 0$. So $A = \bigcup_{n \in \mathbb{N}} A_n$ is a null set, as well. Consequently (g_n) is almost every where convergent to g . Moreover inequality (2.2) together with Theorem 2.2 imply that $(g_n)_{n \in \mathbb{N}}$ is also a Cauchy sequence in $L^p(G)$. Thus there is a function $h \in L^p(G)$ such that

$$\|g_n - h\|_p \rightarrow 0.$$

It follows by the proof of [6, Theorem 12.8] that there is a subsequence of h which almost every where convergent to h . Consequently $g = h$ almost every where on G , which implies $g \in L^p(G)$. Moreover

$$\|g\|_p \leq (K - 1)\|g\|_p^{tp} = (K - 1)\|g\|_\infty. \quad (2.3)$$

In the sequel, we show that the inclusion $C_0(G) \subseteq L^p(G)$ implies the compactness of G . For this purpose, consider the inclusion map

$$\iota : C_0(G) \rightarrow L^p(G).$$

By Theorem 2.2 and also (2.3), ι is continuous. If G were non-compact then there is a sequence $(F_n)_{n \in \mathbb{N}}$ of the compact subsets of G with positive measure such that $\lambda(F_n) \rightarrow \infty$. Also for each $n \in \mathbb{N}$, there is a relatively compact open subset U_n of G such that $F_n \subseteq U_n$. For each $n \in \mathbb{N}$, let f_n be a continuous function on G such that vanishes outside U_n and

$$0 \leq f_n(x) \leq 1,$$

for each $x \in G$, and equals to the constant 1 on F_n . Set

$$g_n = \frac{f_n}{\lambda(F_n)^{1/p}}.$$

Thus $g_n \in C_0(G)$ and $\|g_n\|_\infty \rightarrow 0$, whereas

$$\lim_{n \rightarrow \infty} \|g_n\|_p \geq 1,$$

which is in contradiction with the inequality (2.3). Therefore G should be compact.

(vi) \Rightarrow (v), (v) \Rightarrow (iv) and (iv) \Rightarrow (iii) are clearly obtained from Theorem 2.2.

(iii) \Rightarrow (ii). Let $\|\cdot\|_p^{tp}$ and $\|\cdot\|$ be equivalent on $L_p^{tp}(G)$. Since $L_p^{tp}(G)$ is a Banach algebra under the norm $\|\cdot\|$, it follows that $L_p^{tp}(G)$ is complete under $\|\cdot\|_p^{tp}$, as well. By Theorem 2.2, $C_{00}(G) \subseteq L_p^{tp}(G)$, which implies that

$$C_0(G) \subseteq L_p^{tp}(G) \subseteq L^p(G).$$

Now the proof of implication (i) \Rightarrow (vi) provides that G is compact. It follows that $L^\infty(G) \subseteq L^p(G)$ and again by Theorem 2.2, $L_p^{tp}(G) = L^\infty(G)$.

(ii) \Rightarrow (i). It is immediately obtained from Theorem 2.2 and the fact that $L^\infty(G)$ is a Banach algebra under pointwise multiplication. \square

The following result is automatically fulfilled from Theorems 2.2 and 2.4.

Corollary 2.6. *Let G be a locally compact group and $1 \leq p < \infty$. Then $\|\cdot\|_p$ and $\|\cdot\|_p^{tp}$ are equivalent on $L_p^{tp}(G)$ if and only if G is finite.*

As an application of these results, we end this section with the examples, on some known locally compact groups.

Examples. Let $1 \leq p < \infty$.

- (1) Let \mathbb{Z} be the additive group of integers and \mathbb{T} be the multiplicative circle group. Theorems 2.4 and 2.5 provide that $L^p(\mathbb{Z}) = L_p^{tp}(\mathbb{Z})$ and $L_p^{tp}(\mathbb{T}) = L^\infty(\mathbb{T})$, as two sets.
- (2) Let \mathbb{R} be the additive group of real numbers and take G to be one of the locally compact groups \mathbb{R} , $\mathbb{R} \times \mathbb{T}$, $\mathbb{R} \times \mathbb{Z}$ or $\mathbb{T} \times \mathbb{Z}$. Since these groups are non discrete and noncompact, then $L_p^{tp}(G)$ is a proper subset of $L^p(G)$ and also $L^\infty(G)$.

3. Some aspects of $L_p^{tp}(G)$ as a Banach algebra

Let G be a locally compact group and $1 \leq p < \infty$. As some applications of the previous results, we study amenability of $L_p^{tp}(G)$ under both introduced norms $\|\cdot\|_p^{tp}$ and $\|\cdot\|_p$. Furthermore, we investigate when $L_p^{tp}(G)$ is an abstract Segal algebra with respect to $L^p(G)$ or $L^\infty(G)$. We commence our discussion with a verification on the existence of an identity in $L_p^{tp}(G)$. Since $L^p(G)$ is not generally an algebra under pointwise multiplication, we define the concept of quasi identity for $L^p(G)$, which is directly related to the concept of identity element. An element $e \in L^p(G)$ is called a quasi identity for $L^p(G)$ if for each $f \in L^p(G)$, $e.f \in L^p(G)$ and $e.f = f$.

Proposition 3.1. *Let G be a locally compact group and $1 \leq p < \infty$. Then $L^p(G)$ has a quasi identity if and only if G is compact.*

Proof. Let $e \in L^p(G)$ be a quasi identity element for $L^p(G)$. Thus for each subset F of G with $\lambda(F) < \infty$, we have $e.\chi_F = \chi_F$. Hence for each compact subset F of G ,

$$\lambda(F) \leq \|e\|_p^p,$$

which implies the compactness of G , by the regularity of Haar measure λ and also [6, Theorem 15.9]. The converse is trivial, because the constant function 1 is a quasi identity for $L^p(G)$. \square

One can follow an argument similar to Proposition 3.1 to get the following result.

Corollary 3.2. *Let G be a locally compact group and $1 \leq p < \infty$. Then $L_p^{tp}(G)$ has an identity if and only if G is compact.*

Some more clarified results of our verification are simplified in the next remarks.

Remark 3.3. Let G be a locally compact group and $1 \leq p \leq \infty$.

(i) If $p = \infty$, then $L^\infty(G) = L_\infty^{tp}(G)$; indeed, for each $f \in L^\infty(G)$, we have

$$\begin{aligned}\|f\|_\infty &= \|1.f\|_\infty \leq \|f\|_\infty^{tp} \\ &= \sup_{\|g\|_\infty \leq 1} \|g.f\|_\infty \\ &\leq \|f\|_\infty.\end{aligned}$$

Thus $\|f\|_\infty = \|f\|_\infty^{tp}$ and consequently $L^\infty(G)$ and $L_\infty^{tp}(G)$ are isometrically isomorphic.

(ii) If $1 \leq p < \infty$, Corollary 3.2 implies that the existence of an identity for $L_p^{tp}(G)$ is equivalent to the compactness of G . It is also equivalent to being $L_p^{tp}(G)$ a Banach algebra under $\|\cdot\|_p^{tp}$, by Theorem 2.5.

(iii) If G is discrete and $1 \leq p < \infty$, Theorem 2.4 implies that $L_p^{tp}(G) = L^p(G)$. Consider the net $(\chi_F)_{F \in \mathcal{F}}$ of the characteristic functions on the finite subsets F of G , directed by upward inclusion. We claim that $(\chi_F)_{F \in \mathcal{F}}$ is an approximate identity for $L^p(G)$. For the proof, let $f \in L^p(G)$. Thus f equals zero, outside of a countable subset $S_f = \{x_n : n \in \mathbb{N}\}$ of G . For each $\varepsilon > 0$, there is a positive integer N such that

$$\sum_{k=N+1}^{\infty} |f(x_k)|^p < \varepsilon^p.$$

Now for each finite subset F of G containing the set $F_0 = \{x_1, \dots, x_N\}$, we have

$$\begin{aligned}\|f - \chi_F.f\|_p^p &= \sum_{n=1}^{\infty} |f(x_n) - \chi_F(x_n)f(x_n)|^p \\ &= \sum_{n=1}^N |f(x_n) - \chi_F(x_n)f(x_n)|^p \\ &\quad + \sum_{n=N+1}^{\infty} |f(x_n) - \chi_F(x_n)f(x_n)|^p \\ &\leq \sum_{k=N+1}^{\infty} |f(x_k)|^p \\ &< \varepsilon^p.\end{aligned}$$

Thus the claim is proved. Theorem 2.4 implies that for each $f \in L_p^{tp}(G)$ the inequality

$$\|f - \chi_F.f\|_p^{tp} < K\|f - \chi_F.f\|_p < K\varepsilon$$

is also valid for some positive constant K . It follows that although in this case $L_p^{tp}(G)$ is not necessarily a Banach algebra under $\|\cdot\|_p^{tp}$, but the net $(\chi_F)_{F \in \mathcal{F}}$ is an approximate identity for $(L_p^{tp}(G), \|\cdot\|_p^{tp})$.

3.1. Amenability of $L_p^{tp}(G)$

Let \mathcal{A} be a Banach algebra and X be a Banach \mathcal{A} –bimodule: A derivation D from \mathcal{A} into X is inner if there is $\xi \in X$ such that

$$D(a) = a\xi - \xi,$$

for each $a \in \mathcal{A}$. The Banach algebra \mathcal{A} is amenable if every continuous derivation $D : \mathcal{A} \rightarrow X^*$ is inner for all Banach \mathcal{A} –bimodules X .

Since $L^\infty(G)$ is a commutative unital C^* –algebra, thus it is isometrical isomorphic with the space $C(K)$, for some compact Hausdorff space K . It follows that $L^\infty(G)$ is an amenable Banach algebra [2, Theorem 5.6.2(i)]; see also [3] for full information about the structure of C^* –algebras. Now Theorem 2.5 implies that if G is compact, then $L_p^{tp}(G)$ is always amenable under $\|\cdot\|_{tp}$ and also $\|\cdot\|$.

Proposition 3.4. *Let G be a locally compact group and $1 \leq p < \infty$. Then $L_p^{tp}(G)$ is amenable under norm $\|\cdot\|$ if and only if G is compact.*

Proof. By the explanations given before the proposition, we proceed to prove the "only if" part. Let $L_p^{tp}(G)$ is amenable under norm $\|\cdot\|$. Thus it admits an approximate identity such as $(e_\alpha)_{\alpha \in \Lambda}$ bounded by the positive constant M [8, Proposition 1.6]. Hence for each compact subset F of G with positive measure we have

$$\|\chi_F \cdot e_\alpha - \chi_F\| \rightarrow 0.$$

and so

$$\|\chi_F \cdot e_\alpha - \chi_F\|_p \rightarrow 0.$$

It follows that there is $\alpha_0 \in \Lambda$ such that

$$\|\chi_F \cdot e_{\alpha_0} - \chi_F\|_p \leq 1.$$

Consequently

$$\begin{aligned} \lambda(F)^{1/p} &= \|\chi_F\|_p \\ &\leq 1 + \|e_{\alpha_0}\|_p \\ &\leq 1 + \|\cdot\|_{\alpha_0} \\ &\leq 1 + M. \end{aligned}$$

Now the result is obtained by the regularity of Haar measure λ and also [6, Theorem 15.9]. \square

3.2. $L_p^{tp}(G)$ as an abstract Segal algebra

For the sake of completeness, we first repeat and review the basic definitions of abstract Segal algebras; see [1] for more details.

Let $(\mathcal{A}, \|\cdot\|_{\mathcal{A}})$ be a Banach algebra. Then $(\mathcal{B}, \|\cdot\|_{\mathcal{B}})$ is an abstract Segal algebra with respect to $(\mathcal{A}, \|\cdot\|_{\mathcal{A}})$ if:

- (1) \mathcal{B} is a dense left ideal in \mathcal{A} and \mathcal{B} is a Banach algebra with respect to $\|\cdot\|_{\mathcal{B}}$.
- (2) There exists $M > 0$ such that $\|f\|_{\mathcal{A}} \leq M\|f\|_{\mathcal{B}}$, for each $f \in \mathcal{B}$.

(3) There exists $C > 0$ such that $\|fg\|_{\mathcal{B}} \leq C\|f\|_{\mathcal{A}}\|g\|_{\mathcal{B}}$, for each $f, g \in \mathcal{B}$.

The following propositions can be readily verified by Theorems 2.4 and 2.5.

Proposition 3.5. *Let G be a discrete group and $1 \leq p < \infty$. Then $L_p^{tp}(G)$ endowed with $\|\cdot\|_p^{tp}$ is an abstract Segal algebra with respect to $L^p(G)$ if and only if G is finite.*

Proposition 3.6. *Let G be a discrete group and $1 \leq p < \infty$. Then $L_p^{tp}(G)$ endowed with $\|\cdot\|$ is always an abstract Segal algebra with respect to $L^p(G)$.*

Proposition 3.7. *Let G be a locally compact and σ -compact group and $1 \leq p < \infty$. Then the following assertions are equivalent.*

- (i) $L_p^{tp}(G)$ endowed with $\|\cdot\|_p^{tp}$ is as an abstract Segal algebra with respect to $L^\infty(G)$.
- (ii) $L_p^{tp}(G)$ endowed with $\|\cdot\|$ is as an abstract Segal algebra with respect to $L^\infty(G)$.
- (iii) G is compact.

Proof. It is clear from Theorem 2.5 that (i) is equivalent to (iii) and (iii) implies (ii). It suffices to show that (ii) \Rightarrow (iii). Let $L_p^{tp}(G)$ endowed with $\|\cdot\|$ be an abstract Segal algebra with respect to $L^\infty(G)$. It follows that $L_p^{tp}(G)$ is dense in $L^\infty(G)$ and thus for the constant function 1 in $L^\infty(G)$, there is $f \in L_p^{tp}(G)$ such that

$$\|1 - f\|_\infty < 1/2.$$

Consequently there is a subset A of G such that

$$|f(x)| > 1/2,$$

for each $x \in A$ and also $G \setminus A$ is locally null. Since $f \in L^p(G)$ it follows that $\lambda(A) < \infty$. Moreover by [7, Theorem 20.12] we have

$$\lambda(G \setminus A) = 0.$$

Consequently $\lambda(G) < \infty$, which implies the compactness of G [6, Theorem 15.9]. \square

Acknowledgments. The author would like to thank the referees of the paper for invaluable comments. This research was partially supported by the Banach algebra Center of Excellence for Mathematics, University of Isfahan.

REFERENCES

- [1] *J. T. Burnham*, Closed ideals in subalgebras of Banach algebras I, Proc. Amer. Math. Soc., **32** (1972), 551-555.
- [2] *H. G. Dales*, Banach algebras and automatic continuity, London Math. Soc. Monographs, Volume 24, Clarendon Press, Oxford, 2000.
- [3] *J. Dixmier*, Les C^* -algèbres et leur représentations, Gauthier-Villars, Paris, 1964.
- [4] *H. G. Feichtinger*, Multipliers of Banach spaces of functions on groups, Math. Z., **152** (1977), 47-58.

- [5] *J. Griffin and K. McKennon*, Multipliers and the group L^p -algebras, *Pacific J. Math.*, **49** (1973), 365-370.
- [6] Hewitt, E. and Ross, K. A., *Abstract Harmonic analysis*, 2nd edn. **I**, Springer-Verlag, New York, (1970).
- [7] *E. Hewitt and K. Stromberg*, *Real and Abstract Analysis*, Springer-Verlag, 1975.
- [8] *B. E. Johnson*, Cohomology in Banach algebras, *Memoirs of the American Mathematical Society*, **127** (1972).
- [9] *G. J. Murphy*, *C^* -algebras and operator theory*, Academic Press Inc. (Boston), 1990.
- [10] *K. McKennon*, Correction to Multipliers of type (p, p) , Multipliers of type (p, p) and multipliers of the group L^p -algebras, *Multipliers and the group L^p -algebras*, *Pacific J. Math.*, **61/2** (1975), 603-606.
- [11] *S. Saeki*, The L^p -conjecture and Young's inequality, *Illinois J. Math.*, **34** (1990), 614-627.