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POINTWISE L;—FUNCTIONS ON LOCALLY COMPACT GROUPS
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Let G be a locally compact group and 1 < p < oo. This paper is mainly
concerned with introducing the concept of pointwise L;,— functions and studying
the structure of the space LZP(G), consisting of all these functions. Furthermore,
some algebraic and topological properties of LZP(G) as a Banach algebra under
pointwise multiplication are investigated.
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1. Introduction and Preliminaries

Let G be a locally compact group and A be a fixed left Haar measure on G.
For 1 < p < o0, the Lebesgue space LP(G) with respect to A is as defined in [6]. The
usual pointwise multiplication of functions will be denoted by ”-”. We introduce the
concept of pointwise L;— function as the following;

Definition 1.1. A function f € LP(G) is called a pointwise L;,—functz'on ifg.f €
LP(@G), for each g € LP(G) and

1£1 = sup{llg-fllp, g € LP(G), llgllp <1} < oo (1.1)

The set of all pointwise Lé—functions will be denoted by L;,p (G). Using some
easy calculations, one can show that L;”(G) is a vector subspace of L?(G), and the

function ||.||)¥, defined in (1.1), is a norm on L{’(G) under which it is a normed
algebra, i.e. for all f,g € L;,p(G),

lg-£ 17 < llgll A1

It should be noted that these functions are known for the case where p = 1; see [7,
Theorem 20.15]. Our main motivation for presenting Definition 1.1, stemmed from
the general definition of LZ—functions, whenever G is abelian, 1 < p < 2 and LP(G)
is considered under the convolution multiplication ” % 7, defined in [6]. Indeed, a
function f € LP(G) is said to be a L! —function if g * f exists and belongs to L*(G),
for all g € LP(G) and

£l = sup{llg * fllp, g € LP(G), llgllp < 1} < oc; (1.2)
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see [4] and [5] for more details. Note that in [4], these functions have been named
p—tempered functions. The set of all L} —functions will be denoted by LL(G). The
function [|.||}, defined in (1.2) is a norm on L!(G) and for all f,g € LL(G),

g * FIl, < Ngllpll 115

The structure of L}(G) has been characterized in a partial case. Indeed, it has been
proved that the set L! (G)™, consisting of all nonnegative-valued functions of Lt (G),
is just the set L'(G) N LP(G)*, whenever G is a unimodular and amenable locally
compact group; see [4, Lemma 2.3]. We just cite that some of the main results
related to this subject can be found in [4], [5] and [10].

In the present work, we first obtain an accurate structure for Lf;p (G), as a
normed space. In fact similar to the result [7, Theorem 20.15], we show that LI (Q)
is just the space LP(G) N L(G) and ||.|¥ is in fact the norm ||.||s restricted to
LF(@), as a subspace of L™(G). Also we prove that unless G is compact, L (G)
under ||. H;,p is never complete. Then an attempt will be made to supply this deficiency
by the introduction of the second norm on Lf,p (G), defined as the following

A= 11fllp + 11f lloo-

We shall be principally concerned with comparing three norms ||.||,, |.|[i and |||.|||
on LI (G), to show the different treatment of Li?(G), with respect to the alternative
norm. The last section is devoted to some algebraic properties of Lf,p (@). For
example, we show that the existence of an identity in L]tgp (GQ) is equivalent to the
compactness of G. Moreover, we give some results about the amenability of L;p (G)
under both norms ||. || and |||.||]. We also study L;?(G) as an abstract Segal algebra
with respect to LP(G) and also L>°(@), whenever Lif(G) is considered under all
introduced norms.

2. The structure of L(G)

In this section we characterize Li7(G) for 1 < p < oo, and show that Li?(G)
is exactly the set LP(G)N L (G). Our proof is nothing more than a modification of
the result [7, Theorem 20.15]. Then we show that |||}’ is just norm ||.]|s, restricted
to L;i,p (G). For this purpose, we make some preparations.

For each f € L*°(G), the map

¢p - LP(G) — LP(G),

defined by g — f.g is well defined by [7, Theorem 20.13], and belongs to B(LP(G)),
consisting of all bonded linear operators from LP(G) into LP(G). Moreover [|¢y| <
| flloo- It is obvious that |[¢¢|| = || f|loc, Whenever p = co. In the next lemma, we
prove this truth for each 1 < p < co. Indeed, we use similar arguments as in [9,
Example 2.5.1], to show that

& : L°(G) — B(LP(G))
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defined by f +— ¢ is an isometric linear map from L*(G) onto the subspace
O(L¥(G)) ={¢y: f € L=(G)}
of B(L*(G)).

Lemma 2.1. Let G be a locally compact group and 1 < p < oco. Then the map @ is
an isometric linear map from L*°(G) onto ®(L>*(Q)).

Proof. 1t is sufficient to show that || f|l < [|@y], for each f € L*°(G). If this is

false, then there exists a positive number € such that

[flloo > [lo¢ll + &

Thus there is a compact subset K of G with positive measure such that

[f(@)| = llosll + e,

for each x € K. However,

[0 IPACE) = [lor (xx)llp

- / | (@)xx (@) P (x)
G

> / (651 + 9 xc()dA(x)
G
= (Il + ) A,

where x i is the characteristic function of the set K. It follows that

167l = llorll +e,
a contradiction. This together with the explanations preceding the lemma imply
that
1641 = 11 lloe

as claimed. n

In fact we have a rather stronger result. If f is a complex valued measurable
function on G such that ¢y € B(LP(G)), then f € L>(G). Suppose on the contrary
that f ¢ L°°(G). Thus for each positive constant N, there is a compact subset Ky
of G with positive measure such that

[f(@)| = N,
for each x € Kp. Thus

104 IPAKN)

v

17Ol

- / F(@)xacy (@) PAA (@)
G

> NP /G X (2)dA(z)

= NPX(Ky),
which is a contradiction. It follows that f € L*°(G).
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Theorem 2.2. Let G be a locally compact group and 1 < p < oo. Then L;’,p(G') =
LP(G) N L>®(G), as two sets. Moreover, for each f € L¥(Q),

1A = 11 flloo < HIAI-
Proof. If f € LP(G) N L*°(G), then Lemma 2.1 implies that
sup{llg-fllp : lglly < 1} = llosll = [[flloo < oo (2.1)

It follows that f € L(G) and so LP(G) N L®(G) C LP(G). The reverse of the
inclusion and also the inequality

A1 = 1 flles < LA
can be easily implied by (2.1) and the explanations preceding the theorem. O

Remark 2.3. It should be noted that our results are based on the definitions of
LP—spaces, given in [6]. Now we show that (Lf(G),||.||) is a Banach algebra,
which will be used several times in this paper. By Theorem 2.2,

LP(G) = LP(G) N L™=(G).

It is not hard to see that Lf,p (G) is always an algebra under pointwise multiplication.
Suppose that (fn), is a Cauchy sequence in (LP(G),]||.||]). Thus (f,), is also a
Cauchy sequence in LP(G) and L*®°(G), and so (f,)n is convergent to f and g in
LP(G) and L*°(Q), respectively. To that end, we show that f = g, almost everywhere
on G. By the proof of [6, Theorem 12.8], there is a subsequence ( fy, )r of (fn)n such
that it is almost everywhere convergent to f. For each j,[,k € N, let

Epj={v € G:|fo,(@) = fn; (@) = [ fn, = fr;lloc}
and
By ={z € G:[fn, (@) = [[fnilloc}
and set
E=|J(E,;UE).
Ljk

By the definition of L°°(G) in [6], all the sets E;; and Ej are locally null; i.e.
ANE;NF) = XNERNF) =0, for every compact subset F' of G. It follows that £
is also a locally null set. Since for each n € N, f,, € LP(G), it follows that for all
l,j,keN,

)\(Ew‘) < o0
and

A Ek) < oo,
which implies that F is a o—finite set. Consequently A\(E) = 0, by [6, Theorem
11.32] and [6, Note 11.33]. It follows that f,, converges to g, almost everywhere on
G. Consequently f = g, almost everywhere on G. Tt follows that (LP(G), |||.|l]) is a
Banach space. Moreover inequality

IFglE <MLl (fig € LP(G))
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is immediately obtained. These observations show that Lfop (@) is a Banach algebra
under ||].][|-

It is known that L}, (G) = LP(G) if and only if G is compact. This is completely
related to an ancient conjecture, called ’LP—conjecture’ which was proved finally by
Saeki [11], in the general case. This conjecture asserts that f * g exists and belongs
to LP(G) for all f,g € LP(G) if and only if G is compact. In the next theorem some
equivalent conditions to the equality LP(G) = LiP(G) are given.

Theorem 2.4. Let G be a locally compact group and 1 < p < oco. Then the following
assertions are equivalent.

(1) Lp(G) is a Banach algebra under pointwise multiplication.

(i) LP(G) = LP(G), as two sets.

(iii) The norms |||, and |||.||| are equivalent on Lif(G).

(iv) There exists a positive constant K such that || f|lf < K||flp, for each f €
LP(G).

(v) There exists a positive constant K such that |||f||| < K| fl|p, for each f €
Ly(G).

(vi) G is discrete.

Proof. (i) = (vi). Let LP(G) be a Banach algebra under pointwise multiplication.
Toward a contradiction, suppose that G is not discrete. Thus there exists a sequence
(Oy) of disjoint relatively compact open subsets of G such that A\(O,) < n~?,
for each n € N. Indeed, we first choose a relatively compact open set O; C G
with A(O1) < 1. Then there is a relatively compact open set Oz C G\ O; with
A(Oz) < 2727, Inductively, we may find a sequence (O,,) of relatively compact open
subsets in G such that

O, CG\(O1U---UOp,_1)
and
MOy) <n™ .
Let o be a positive constant with o < (2p)~! and define the function g on G by

g(x) = n" N O0) M Px0, (x) (x€@).
n=1

It is clear that g € LP(G). But
(z)
)P — 2:
/|g | d)‘( ) - o )\ 2n2p+2pa

> 2 :n—2poc
n=1

= OQ.

It follows that g? = g.g € LP(G), which contradicts the hypothesis.
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(vi) = (7). If G is discrete then for all f,g € LP(G) we clearly have

1/p
1f-gllp, = (Z!f )Pg(x )
zeG
< | fllpllglly

< 0o,

and so (i) is obtained. Therefore (i) and (vi) are equivalent. The implications
(vi) = (v), (v) = (iv) and also (iv) = (ii7) are clear.

(iii) = (i7). Let the norms ||.||, and |||.|| be equivalent on LiP(G). By Remark
2.3, LIP(G) is always a Banach algebra under |||.|||. It follows that Li’(G) is also
complete under ||.||,. Now the result follows by the density of L;(G) in L,(G).

(i1) = (vi). Since LiP(G) is an algebra under pointwise multiplication, then
LP(G) is also an algebra under pointwise multiplication. Now the proof of (i) = (vi)
implies the discreteness of G. O

In the following theorem, some equivalent conditions to the completeness of
LF(G) under |||} are provided.

Theorem 2.5. Let G be a locally compact group and 1 < p < oco. Then the following
assertions are equivalent.

(i) LP(G) is a Banach algebra under ||.|iF.

(i) LF(G) = LOO(G), as two sets.

(iii) The norms ||.|[%¥ and |||.||| are equivalent on LiP(G).

(iv) There exists a positive constant M such that ||f|l, < M| f|}¥, for each f €
LP(G).

(v) There exists a positive constant K such that |||f]|| < K| fIIif, for each f €
LP(G).

(vi) G is compact.

Proof. (i) = (vi). Let LP(G) be a Banach algebra under ||.|[¥ and consider the
identity map

v (LPG), () = (ZP(G), [L]1P).

By Remark 2.3, L?(G) is a Banach algebra under |[||.]||. Since ¢ is continuous, then
open mapping theorem implies that ||| and |||.||| are equivalent and hence there is
a constant K > 1 such that
A< KIFI
for each f € Li?(G). By Theorem 2.2 we have
11l < (B = DAL (2.2)

Now we show that Cy(G) C LP(G). Let g € Co(G). Thus there is a sequence (gn,)nen
in Coo(G) such that

1gn — glloo — 0.
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Since g, — g € Cy(G), it follows that for each n € N, the set

A ={z € G : |gn(x) = 9(2)| > llgn — glloc}
is open and thus it is a null set; i.e. A(A4,) = 0. So A = UpenAy, is a null set, as
well. Consequently (gy,,) is almost every where convergent to g. Moreover inequality

(2.2) together with Theorem 2.2 imply that (g,)nen is also a Cauchy sequence in
LP(G). Thus there is a function h € LP(G) such that

Hgn - hHP — 0.

It follows by the proof of [6, Theorem 12.8] that there is a subsequence of h which
almost every where convergent to h. Consequently g = h almost every where on G,
which implies g € LP(G). Moreover

lgllp < (K = Dlgly = (K = 1)llglloo- (2.3)

In the sequel, we show that the inclusion Cy(G) C LP(G) implies the compactness
of G. For this purpose, consider the inclusion map

L1 Co(GQ) — LP(Q).

By Theorem 2.2 and also (2.3), ¢ is continuous. If G were non-compact then there
is a sequence (F},)nen of the compact subsets of G with positive measure such that
A(F,,) — oo. Also for each n € N, there is a relatively compact open subset U, of G
such that F;, C U,. For each n € N, let f, be a continuous function on G such that
vanishes outside U,, and

0< fulz) <1,
for each x € GG, and equals to the constant 1 on Fj,. Set

In

A(Fy,)Y/p’
Thus g, € Co(G) and ||gn||cc — 0, whereas

9n =

Tim (lgall, > 1.

which is in contradiction with the inequality (2.3). Therefore G should be compact.
(vi) = (v), (v) = (i) and (iv) = (iii) are clearly obtained from Theorem

2.2.
(i1i) = (i1). Let ||.|¥ and [||.]]| be equivalent on Lif(G). Since LF(G) is a
Banach algebra under the norm |||.]||, it follows that Lif (@) is complete under |.||%7,

as well. By Theorem 2.2, Cjyo(G) C L;;p(G)7 which implies that
Co(G) C LZP(G) C LP(G).

Now the proof of implication (i) = (vi) provides that G is compact. It follows that
L>(G) C LP(G) and again by Theorem 2.2, L’ (G) = L™(G).

(ii) = (7). It is immediately obtained from Theorem 2.2 and the fact that
L*°(G) is a Banach algebra under pointwise multiplication. O

The following result is automatically fulfilled from Theorems 2.2 and 2.4.
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Corollary 2.6. Let G be a locally compact group and 1 < p < co. Then |.||, and
|17 are equivalent on L (G) if and only if G is finite.

As an application of these results, we end this section with the examples, on
some known locally compact groups.

Ezamples. Let 1 < p < .

(1) Let Z be the additive group of integers and T be the multiplicative circle group.
Theorems 2.4 and 2.5 provide that LP(Z) = LI(Z) and LF(T) = L>(T), as
two sets.

(2) Let R be the additive group of real numbers and take G to be one of the locally
compact groups R, Rx T, R x Z or T x Z. Since these groups are non discrete
and noncompact, then LF(G) is a proper subset of LP(G) and also L>(G).

3. Some aspects of Li”(G) as a Banach algebra

Let G be a locally compact group and 1 < p < co. As some applications of the
previous results, we study amenability of Li?(G) under both introduced norms .||
and |||.|||. Furthermore, we investigate when L{P(G) is an abstract Segal algebra
with respect to LP(G) or L*°(G). We commence our discussion with a verification
on the existence of an identity in L;”(G). Since LP(G) is not generally an algebra
under pointwise multiplication, we define the concept of quasi identity for LP(G),
which is directly related to the concept of identity element. An element e € LP(G)
is called a quasi identity for LP(G) if for each f € LP(G), e.f € LP(G) and e.f = f.

Proposition 3.1. Let G be a locally compact group and 1 < p < oco. Then LP(Q)
has a quasi identity if and only if G is compact.

Proof. Let e € LP(G) be a quasi identity element for LP(G). Thus for each subset F
of G with A\(F') < oo, we have e.xp = xp. Hence for each compact subset F' of G,

ACE) < lellp,

which implies the compactness of G, by the regularity of Haar measure A\ and also
[6, Theorem 15.9]. The converse is trivial, because the constant function 1 is a quasi
identity for LP(G). O

One can follow an argument similar to Proposition 3.1 to get the following
result.

Corollary 3.2. Let G be a locally compact group and 1 < p < co. Then L;p(G) has
an identity if and only if G is compact.

Some more clarified results of our verification are simplified in the next re-
marks.

Remark 3.3. Let G be a locally compact group and 1 < p < oco.
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(i)

If p = oo, then L®°(G) = L% (G); indeed, for each f € L®(G), we have

Ifllee = 1.fllee < IFIZ
= sup [lg-flloe
lglloo<1
< [ flleo-

Thus ||f|lse = ||/ and consequently L>®(G) and L%(G) are isometrically
isomorphic.

If1 < p < o0, Corollary 3.2 implies that the existence of an identity for L;p (G

is equivalent to the compactness of G. It is also equivalent to being L;,p (G) a
Banach algebra under ||.||/¥, by Theorem 2.5.

If G is discrete and 1 < p < oo, Theorem 2.4 implies that L (G) = LP(G).
Consider the net (xr)rer of the characteristic functions on the finite subsets F'
of G, directed by upward inclusion. We claim that (xr)rer is an approximate
identity for LP(G). For the proof, let f € LP(G). Thus f equals zero, outside
of a countable subset Sy = {z,, : n € N} of G. For each € > 0, there is a
positive integer N such that

(o]
> fa)lP <e
k=N+1
Now for each finite subset F' of G containing the set Fy = {z1,--- ,zn}, we
have
o0

1f=xr-flI5 = D 1f(@n) = xp(@n) f(zn) P

=1
N

— Z |f(xn) = xF(xp) f(2n)?
n=1

o

+ Z |f(xn) - XF(xn)f(xn)‘p
n=N+1

< 3 @l

k=N+1
< P

Thus the claim is proved. Theorem 2.4 implies that for each f € LiP(G) the
inequality

If = xrpflf < EIf = xp-fllp < Ke

is also valid for some positive constant K. It follows that although in this case
LP(G) is not necessarily a Banach algebra under |.|[;”, but the net (xr)rer
is an approximate identity for (L’ (G), ||.|I).
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3.1. Amenability of L’ (G)

Let A be a Banach algebra and X be a Banach A—bimodule: A derivation D
from A into X is inner if there is £ € X such that

D(a) = a§ =&,
for each a € A. The Banach algebra A is amenable if every continuous derivation
D : A — X* is inner for all Banach A—bimodules X.

Since L>*(G) is a commutative unital C*—algebra, thus it is isometrical iso-
morphic with the space C(K), for some compact Hausdorff space K. It follows that
L*>*(G) is an amenable Banach algebra [2, Theorem 5.6.2(i)]; see also [3] for full
information about the structure of C*—algebras. Now Theorem 2.5 implies that if
G is compact, then LiP(G) is always amenable under ||. s, and also ||.|||-

Proposition 3.4. Let G be a locally compact group and 1 < p < co. Then LZP(G)
is amenable under norm |||.||| if and only if G is compact.

Proof. By the explanations given before the proposition, we proceed to prove the
?only if” part. Let Li?(G) is amenable under norm |||.|||. Thus it admits an approx-
imate identity such as (e, )aca bounded by the positive constant M [8, Proposition
1.6]. Hence for each compact subset F' of G with positive measure we have

|IxF-ea = xFll| = 0.
and so

[xF-€a = XFlp — 0.
It follows that there is ag € A such that

||XF-€a0 - XFHP <L

Consequently
I = xrlly
< 1+ leaolly
< 1+ [lfeagl]
< 14+ M.

Now the result is obtained by the regularity of Haar measure A and also [6, Theorem
15.9]. 0

3.2. L?(G) as an abstract Segal algebra

For the sake of completeness, we first repeat and review the basic definitions
of abstract Segal algebras; see [1] for more details.

Let (A, ||.]|.4) be a Banach algebra. Then (B, ||.||5) is an abstract Segal algebra
with respect to (A, ||.||.4) if:

(1) Bis a dense left ideal in A and B is a Banach algebra with respect to ||.||s.
(2) There exists M > 0 such that || f||.4 < M]|| f||5, for each f € B.
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(3) There exists C' > 0 such that ||fg|ls < C||f|l allgllB, for each f,g € B.

The following propositions can be readily verified by Theorems 2.4 and 2.5.

Proposition 3.5. Let G be a discrete group and 1 < p < oco. Then LZP(G) endowed
with ||.||§,p is an abstract Segal algebra with respect to LP(G) if and only if G is finite.

Proposition 3.6. Let G be a discrete group and 1 < p < oo. Then LZP(G) endowed
with ||].||| is always an abstract Segal algebra with respect to LP(Q).

Proposition 3.7. Let G be a locally compact and o—compact group and 1 < p < oco.
Then the following assertions are equivalent.

(i) LP(G) endowed with ||.|if is as an abstract Segal algebra with respect to
L>*(G).
(i) LIF(@) endowed with |||.||| is as an abstract Segal algebra with respect to L=(G).
(iii) G is compact.

Proof. Tt is clear from Theorem 2.5 that (i) is equivalent to (iii) and (ii) implies
(#7). It suffices to show that (ii) = (iii). Let LiP(G) endowed with |||.|[| be an
abstract Segal algebra with respect to L®(G). Tt follows that LiP(G) is dense in
L>°(G) and thus for the constant function 1 in L%°(G), there is f € Lif(G) such
that

11— flloo < 1/2.
Consequently there is a subset A of G such that

[f (@) > 1/2,

for each x € A and also G\ A is locally null. Since f € LP(G) it follows that
A(A) < co. Moreover by [7, Theorem 20.12] we have

MG\ A)=0.
Consequently A(G) < oo, which implies the compactness of G [6, Theorem 15.9]. [
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