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ADAPTIVE GALERKIN FRAME METHODS FOR SOLVING
OPERATOR EQUATIONS

A. ASKARI HEMMAT?!, H. JAMALI?

In this paper we use frames to construct corresponding trial spaces for an
adaptive Galerkin scheme and design an algorithm in order to give an adaptive
approximation solution to operator equations. We describe construction, prove
error estimates for the resulting scheme and then investigate computational
complexity. The adaptive Galerkin method that we analyze in this paper will
iteratively produces finite sets AjcA, jeN and the Galerkin approximations

Uy, to u of the Subspaces SAJ = Span({%}zEA,)' The error of this approximation is
O(#A’f), (for some s>0) in the energy norm, where (», ), < H, is aframe for a

separable Hilbert space H and #AJ., denotes the cardinality o f Aj-

Keywords: Hilbert spaces, frames, adaptive solution, Galerkin method, N-term
approximation.

1. Introduction

Assume that H is a separable Hilbert space with dual H", A is a countable set
of indices and ¥ =(y,),, < H Iis a frame for H This means that there exist

constants 0 < A<B < such that

AHinsZ\<f,y/ﬂ>\szHf\i, vVfeH, (1)
AeA
or equivalently (by the Riesz mapping),
2 2 2 *
A <[fef <Blff.,  vieH’, @
where f(¥)=(f(y,)),., =(< f,w,>),... Ourproblemistofind u € H, such that
Lu=f, 3)

where L:H — H™ is a symmetric, positive definite and bounded invertible linear
operator. For example, we can consider a linear differential operator in variational
form. In [2, 3], an iterative adaptive method for solving this system has been
developed by wavelet bases.
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For an index set A < A, (w,),.;1s called a frame sequence if it is a frame for

Ae

its closed span. We assume that (y/,) , - is a frame sequence with bounds A, B, for

all finite index sets A — A . The adaptive Galerkin method that we analyze in this
paper will iteratively produce finite sets A, A, jeN, and the Galerkin

approximation u, to u of the subspaces S, =span({w,}, ), With error
O(#A") (for some s > 0) in the energy norm , where # A  denotes the cardinality
of A,. Fortheframe ¥, let T:/,(A) — H be the synthesis operator

T ((Cl)}) = chl//l

AeA

andlet T":H — /,(A) (or T":H™ — ¢,(A)) be the analysis operator
T(H)=(fy,>),.
Alsolet S=TT :H —H be the frame operator  s(f)=Y"<f,y, >y, -
A

Note that T is surjective, T~ is injective, T is the adjoint of T and because of
(1) or (2) T is bounded, in fact we have
<«/B. 4)

T =[r
It was shown in [1] that, for the frame (y,),_, . Sis a positive invertible operator
satisfying Al , <S <BI, and B™I, <S™ < A"l . Also, the sequence
‘{I = (&A)leA = (S 71!/11)461\

is a frame (called the canonical dual frame) for H with bounds B™, A™. Every
f € H has the expansion

f :Z< f, &/1 >'///1:Z< fow, >'/7/1
A A
Since Ker(T)=Ran(T")" we have ¢,(A)=Ran(T") ® Ker(T). Thus the or-
thogonal projection Q of a sequence (c,), , € /,(A) onto the Ran(T") is given
by

AeA

Q(C,)1n €4,(A) = (< ;045’%, Vi >) s
thatis, Q=T ST : /,(A) — ¢,(A) . For more details see [1].
Since L is bounded invertible, (3) has a unique solution u forany f  H and
|, =lul,. ueH,
where a=b means that, there are constants d,,d,such that d,a <b <d,a. Also
the bilinear form a defined by

a(u,v) =< Lu, v>
is symmetric, positive definite and elliptic in the sense that
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a(u,v) = HVHZ:| . (5)
It follows that H is a Hilbert space with respect to the inner product a with an
equivalent energy norm % =a(., .).

2. The Equivalent 7, -Problem

Let ¥=(y,),, be a frame for H with bounds A and B, and
¥=(7,),., =(S",), be its canonical dual frame. For the infinite matrix G
defined by

G =<Ly; v;>
where <.,.> denotes the (H",H) duality product, we have the following

theorem, in which T and T~ are as defined in section 1.
Theorem 2.1. The matrix G defines a bounded linear operator form ¢,(A)to

LA with |G, <BIL

As an operator on /,(A) we have G =T LT. Also G as a map form Ran(T ")

into itself is bounded and invertible.
Proof . By definition of G, for a sequence C € 7, (A) we have

HoH™'

=<> Ly, v, >=<LY ey, w; >=<LTC,y,; >

using (4) we have : k k

lc| = Z\< LTC, v >;

< BLTC],,- <BJL[[TC;

<BIL[IC];, 0
Therefore

6] < BlL|
Let C e Ran(T "), then ¢, =< U,y , > for some U € H. Also
(GC), :;< Ly, v, ><Uwy, >

=< z< Uy, >Ly,, w; >=<LSu,y; >,
A

where S is the frame operator. This means that G maps Ran(T") into
Ran(T ") with (<u, w, >), > (< LSu, y, >),.
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Let Ve H™, since L and Sare surjective, so there exists U e H such that
LSu =v, thus Gmaps (<u, i, >), to (<v,y, >),.
Also since L and S are injective, if <LSu,y, >=<LSv,y, >, forevery 1 € A
then, because of completeness of the frame W, Lu = Lv, therefore u =V, and
<u,y, >=<v,y,>forall A € A ie.; Gisinjective.

Consider M =G| ,then the equation (3) takes the following form:

Ran(T")
There exists U € Ran(T ") such that u=TU (in terms of the canonical dual
frame W we have U = (<u, 7, >),_, ), then T'LTU =T f , that s

MU =F, (6)
where F =T " f . The solution U to (6) gives the solution U to (3).

The matrix M is symmetric and positive definite. We define its associated
bilinear form a by
alV,W)=<MvVv, W >0

with the associated norm
V[F =a(v, V), WV el,(A).

From (5) and frame condition (1), we obtain |[\/||;|[\/ Thus there exist

0(A)"
constants C,, C, such that
VI VI <V, @)
therefore
VI, <MV, <V ®)

Now from (7) and (8) we have
&
= V[ <mv

V CZ
For a tolerance & >0 and a vector V € 7,(A) let V, be the vector obtained

by replacing all but the N largest coefficients in modulus of V by zeros, for the
smallest N € N such that
"V _VN N

is called the best N -term approximation for V. Now let

C2
zz(A)S\/a"V”' )

, S &
VN
V =(v,),., €/,(A), for each n>1 let V_ be the n-th largest of the numbers
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v,| and V" = (v})7,. For each 0 < 7 < 2 we let £ (A) denote the collection of
all vectors V e ¢, (A) for which
1

N 12(A) :SUpnzl{nTV:}

is finite. This expression defines a quasi norm for £ (A). Defining

Moo =Nl +IV

then there exists a constant C_ such that

V AWy SC NV W] o)) (10)
[V _VN 05 (A) = ”V

and there exists a constant C such that

”V _VN 0,(A) < C”V

1
foreach s >0 such that 7 = (E +5)™". One can see [2,4,5] for further details on

(A

Also
sup, N°

07(A)

mA)N‘S, NeN (11)

the quasi-Banach spaces /7 (A).

3. The Galerkin Algorithm

In this section we construct an adaptive Galerkin algorithm to give an
adaptive approximation to solution U of (6), for U € /?(A) (for some s>0

and 7 = (%+ s)™). We recall that MU = F where F =T " f with this in mind

we note that our algorithm generated nested finite sets A y jeNand the

approximate Galerkin solution U A, 10 U such that
\u ~U, [ <A,

where a<b means that there exists a constant d such that a<bd. Let
S.=span{y, .y eI} for [ A. The approximate Galerkin solution U_

from S_is defined by conditions a(u.,v) =< f,v>, Ve S, that is equivalent to
MU, =PF, (12)
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where M =(m ) . and P. is the orthogonal projector from £,(A) onto

2,(T). Let RL=MU —MU_.=F —MU_ be the residual associated to I"

and O<a <1 be the fixed real number. Following [2] we introduce the
following routines at our disposal.
GALERKIN: [T]—> U,

Solve the finite system of (12) for the finite set I" and find the approximate
Galerkin solution U . to U .
GROW: [[WU,. 1> T
by taking the N largest coefficients of R in absolute value, denote by I the set
of these indices, find the smallest integer N such that
CIR[.. N*<@-a)R,

and define T =T UT,.

In order the algorithm SOLVE to meet our goal, we need some assumptions.

Assumption 1. Assume that the matrix M is S - compressible in the sense that
for each J € N there exist constants a;and S, and a matrix M | having at most

(13)

29 (A) 5 (A)

a, 2’ nonzero entries per column, such that HM -M JH < ,BJ.,

where (;) . is summable and forany s"<'s,(3,;2"),., is summable.

Proposition 3.1. The S -compressible matrix M maps ¢ (A) bonded into itself
1
for =(=+5)".
(5 +3)

Proof. See[2].
Since U,U,. € £7(A) so by Propsition.3.1. R. € £”(A). From (11) we have

Re =Re R SCIR. N7,
we may assume that C >1. This inequality and (13) give
R=R.R| ., s@a)R],,
therefore
HPFRI' 3(A) 2 a”RF 0(A) (14)
Also because of (13)

s (1_a)||RF||K2(A)
CIR|

(7(A)
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Since N is the smallest integer that satisfies (13) we have

C”RF”(:?(A) )% > (N -1).

N>
1- a)”RF ||K2(A)

Sofor N > 2,

o CRL,
<(

12(A) s C”RF”W:(A) %

) +1<2( )s.
(1_ a)”RF 7,(A) (1_ a)”Rr”[Z(A)
Hence for a constant 0,

=] _ ”RF”/J;“(A) %
#(I'-I)=N Sql(”R—) : (15)
T
Lemma 3.2. The output I of GROW satisfies
1
U -u<6u-u,| wmmaza—a%%ry.

2

l2(A)

Proof. From (9) we have
1 1

=S M, -u,)|
CZ

c?
b, vz e, -0,

1 1

2 2
=S, -, =S IRR
2 2

0,(T) Tlley(a)

1 1

C 2
>a—|R,
CZ
where the last inequality obtains from (14), therefore by (9)

3
U -0z a0 U, | (19)
2

CE
£,(A) :ac—lan U-up) A

Now because of orthogonality of the Galerkin solutions with respect to the energy
inner product,

U U = U]+ o -ue
then by (16)
U - =0 -u - fu, -u
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*(Gyy,
C

2

<JU-U [ =@ (YU U [ =|u -u e
2
hence
1
U -U:]<u-u.fa- a( ))2

Now we are ready to present our algorithm.
SOLVE [¢,M,F] > [A,,U, ]

1

(i) A, =¢, R, =F; (ii)while '|F| ()C—2>g.

(ii,1) GALERKIN: [AJ.] _)UA,“ (ii,2) GROW: [AJ. ,UAJ_] - Aj+l
(ii,3) J—> j+1. (i) A, = A UAX :UAH1
Theorem 3.3. The output UAS of the algorithm satisfies

u-u,
Proof . Using Lemma.3.2 for A and A,
HU -U, . (17)
repeartedly
u-u,| <ol (18)

for a constant K € N. Combining this with (9) we have
1

u-u,| oo ||F

L5(A)

Assumption 2. Assume that U € (7(A), 7 = (— +5) ™ and the inverse

matrices I\/I are uniformly bounded on /% (A), i.e.; there exists a constant
C,such that
<C,, JeN

illee Ay

v
Theorem 3.4. The outputs UAJ_ and AJ. in step (ii) in the algorithm SOLVE
satisfy
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u-u, <@
Proof. Since U € ¢ (A) then by Proposition.3.1 F € £?(A). Therefore
PA, F 2 (A) < ”F”e’:(/\) < ”M ”/{';(A)”U ”(,"‘,”(A)’
combining this inequality with Assumption 2 and (12) we obtain
Aillee a) — 2(A;) SCO PAJ'F 12 (A) £||M||”7(A)CO||U ”/2”(1\)’
hence
R, 2(8) : ”M”f‘f(A) U-U, ew’

Uil <ML €0z @+ CoMI ),

12(A

<M. -0+

where the second inequality takes from (10). Thus the residuals RAj are uniformly

)

bounded, that means there exists a constant g, such that RAj o <q,.
This inequality with (15) and (9) give
1 -
#A, <#A,, +0q0;|MU —UAH) ; "
e 2 -t
<HA L +00; (=) U -U, |°
-1 qlqz (\/072) Aj,
Then by (17)
1 1ot 11 1
#AJU—UMSSWAH+QMﬂJ§)SU—UMIﬂWSU—UMf)
2
1 1 1 c 2
=0°(#A,U-U, |°+aq; (Té) *),
2
iterating the procedure, we have
1 14 i1
#AU-U, | <#AU-U, [f0° +a, 26", (19)
i=1

e 2
where g, = 0,05 (Té) * . Also using (15) and (9) for A, and A, give

2

L
S<H#HA,+(Q

1 -1
#AJU-U, ”M U-U)*

R,,
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-1 1
Il
Lz (A) 12(A)

this inequality with Proposition 3.1 induce

#Aluu -U,

<gq,|MU

1
s

1
<[

)
(7(A)

hence by (19) we obtain

1 1
#A,U-U, | <#A U -U, [ +ka,
1
< ||U ?(“(A) + q3,
where K is the constant in (18). Thus
1
u-u, |<@a) - 40,
That means
u-u, [<ea)-

6. Conclusions

In this paper we have used frames instead of Riesz bases, in order to give an
adaptive algorithm for the numerical solution of an operator equation. The scheme
is based on approximated iterations of the Galerkin method. Using frames instead
of Riesz bases does not spoil the optimal convergence of the Galerkin method.
Convergence and computational complexity can be theoretically proved and
numerically verified.
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