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In this paper, by using the selection technique of set-valued map-
pings, under suitable conditions, we prove that the solution set of the parametric
completely generalized mixed implicit quasi-variational inclusion problem (PCG-
MIQVIP) involving set-valued mappings is nonempty closed convex, and the PCG-
MIQVIP has continuous solutions with respect to the parameters. Our results are
supplement and complement for many known results in this field.
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1. Introduction

In recent years, by utilizing novel and innovative techniques, variational in-
equalities have been extended in different directions. Many scholars have done a
lot of researches on various classes of parametric variational inclusions involving
set-valued mappings, for example [1, 2, 3, 4, 5, 6]. Their research results focus
on the existence of solutions, the closeness of the solution set, the continuity and
Lipschitz continuity of the solution set with respect to the parameter. Very recent-
ly, the sensitivity analysis of the solution mappings of variational inequalities was
performed in [7, 8]. Several quantitative semicontinuity properties of the solution
mapping to parameterized set-valued inclusions are studied in [9]. And continuous
solutions of perturbed evolution inclusions [10], iterative algorithms of variational
inclusions [11, 12, 13] are established. However, their research results do not mention
the convexity of the solution set and the existence of (Lipschitz) continuous solu-
tions. Under what circumstances do the parametric set-valued variational inclusion
problems have (Lipschitz) continuous solutions? It is still an open question.

Throughout the paper, unless otherwise stated, let H be a real Hilbert space,
Ω be a nonempty open subset of H in which the parameter λ takes values, C(H) be
the family of all nonempty compact subsets of H. Let N : H ×H ×H × Ω → H,
W : H × H × Ω → H, m, i, j : H × Ω → H and h : H → H be single-valued
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mappings. Let A,B,C,D,E, F and G : H × Ω → C(H) be set-valued mappings.
Let M : H × H × Ω → 2H be a set-valued mapping such that for each given
(f, λ) ∈ H × Ω, M(·, f, λ) : H → 2H is a h-maximal monotone mapping with
(G(H,λ) − m(H,λ)) ∩ dom M(·, f, λ) 6= ∅. The following parametric completely
generalized mixed implicit quasi-variational inclusion problem (PCGMIQVIP) is
introduced by Ding [1]:

for each (λ,w) ∈ Ω ×H, find x = x(λ) ∈ H, a = a(x, λ) ∈ A(i(x, λ), λ), b =
b(x, λ) ∈ B(x, λ), c = c(x, λ) ∈ C(x, λ), d = d(x, λ) ∈ D(x, λ), e = e(x, λ) ∈ E(x, λ),
f = f(x, λ) ∈ F (x, λ), g = g(x, λ) ∈ G(x, λ) such that

w ∈W (j(e, λ), a, λ)−N(b, c, d, λ) +M(g −m(x, λ), f, λ). (1)

For a suitable choice of the mappings, Ding [1] points out that the PCG-
MIQVIP (1) includes a number of (parametric) generalized quasi-variational in-
clusions studied by many authors as special cases [14]. In Ding [1], by applying
resolvent operator technique of h-maximal monotone mapping and the property of
fixed points of set-valued contractive mappings, the solution set of the PCGMIQVIP
(1) is proved to be nonempty and closed, the continuity and Lipschitz continuity of
the solution set with respect to the parameter are established. And the following
proposition holds.

Theorem 1.1. ([1], Theorem 3.1 and Theorem 3.3) The following statements are
equivalent:

(i) For each (λ,w) ∈ Ω ×H, (x, a, b, c, d, e, f, g) (x ∈ H) is a solution of the
PCGMIQVIP (1);

(ii) (x, a, b, c, d, e, f, g) (x ∈ H) satisfies

g = m(x, λ) +RhM(·,f,λ),ρ[h(g −m(x, λ))− ρW (j(e, λ), a, λ) + ρN(b, c, d, λ) + ρw],

where ρ > 0 is a constant, RhM(·,f,λ),ρ = (h + ρM)−1 : H → H is the resolvent

operator of the h-maximal monotone mapping M ;
(iii) The set-valued mapping Q : H × Ω→ 2H defined by

Q(x, λ) =
⋃

a∈A(i(x,λ),λ),b∈B(x,λ),c∈C(x,λ),d∈D(x,λ),e∈E(x,λ),f∈F (x,λ),g∈G(x,λ)

[x− (g −m(x, λ))

+RhM(·,f,λ),ρ(h(g −m(x, λ))− ρW (j(e, λ), a, λ) + ρN(b, c, d, λ) + ρw)]

(2)
has a fixed point x = x(λ).

By Theorem 1.1, the solution set S(λ) of the PCGMIQVIP (1) can be denoted
as

S(λ) = {u = u(λ) ∈ H|u ∈ Q(u, λ)}.
The main aim of this paper is continued to study the behavior and sensitivity

analysis of the solution set S(λ) of the PCGMIQVIP (1). We concern the following
aspects:

(1) We further discuss the convexity of the solution set S(λ).
(2)We further examine the existence of (Lipschitz) continuous solutions of the

PCGMIQVIP (1), including the minimal selection, the Chebyshev selection and the
barycentric selection.
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2. Preliminaries

In this section, we recall some concepts. And for brief, we will no longer
describe the definitions and lemmas involved in [1].

Let K be a subset of a metric space X, the closed ball and the open ball of
the radius r > 0 around K in X are denoted by

B(K, r) = {x ∈ X|d(x,K) ≤ r}

and

C(K, r) = {x ∈ X|d(x,K) < r},
respectively.

Definition 2.1. [15, 16] Let X and Y be metric spaces, F : X → 2Y be a set-valued
mapping. Then F is called to be

(1) (a) upper semi-continuous at x0 ∈ dom(F ), if for any neighbourhood V of
F (x0), there exists a neighbourhood U of x0, such that for any x ∈ U , F (x) ⊂ V .

(b) lower semi-continuous at x0 ∈ dom(F ), if for any y ∈ F (x0) and for any
{xn} ⊂ dom(F ), xn → x0, there exists yn ∈ F (xn), yn → y as n→∞.

(c) continuous at x0 ∈ dom(F ), if it is both upper semi-continuous and lower
semi-continuous at x0.

(d) continuous on dom(F ), if it is continuous at every point x ∈ dom(F ).
(2) Hausdorff lower semi-continuous at x0 ∈ dom(F ), if for any ε > 0, there

exists ρ > 0, such that

F (x0) ⊂ B(F (x), ε), ∀x ∈ B(x0, ρ).

(3) L-Lipschitz continuous, if there exists a constant L > 0 such that for any
x, y ∈ dom(F ),

F (x) ⊂ B(F (y), L‖x− y‖)
or

F (x) ⊂ C(F (y), L‖x− y‖).
(4) L-H-Lipschitz continuous, if there exists a constant L > 0 such that

H(Fx, Fy) ≤ L‖x− y‖, ∀x, y ∈ dom(F ).

(5) convex, if for any x, y ∈ dom(F ), ∀t ∈ [0, 1], there exists

tF (x) + (1− t)F (y) ⊂ F (tx+ (1− t)y).

Remark 2.1. (i) Similarly, according to Definition 2.1 (5), F : X1 ×X2 → 2X3 is
convex, if for any xi, yi ∈ Xi, i = 1, 2, ∀t ∈ [0, 1], there exists

tF (x1, x2) + (1− t)F (y1, y2) ⊂ F (tx1 + (1− t)y1, tx2 + (1− t)y2).

(ii) If F is Hausdorff lower semi-continuous, then F is lower semi-continuous.
(see [17], P17)

Definition 2.2. Let X and Y be two Banach spaces, F : X → 2Y be a set-valued
mapping with nonempty images.

(1) ([15], P355, Definition 9.1.1) A single-valued mapping f : X → Y is called
a selection of F , if for every x ∈ X, f(x) ∈ F (x). If f is also continuous, then f is
called a continuous selection of F .
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(2)([15],P360) If Y is a Hilbert space, or more generally, a reflexive strictly
convex space, and F has closed convex images, then the single-valued mapping m :
X → Y defined by

m(x)
.
= m(F (x)) = {u ∈ F (x)|‖u‖ = miny∈F (x)‖y‖}

is called the minimal selection of F .
(3) ([16], P74, Definition 1) Let Y be a Hilbert space. Assume that for any

x ∈ dom(F ), F (x) has bounded values, rc and c(F (x)) are the Chebyshev radius and
Chebyshev center of F (x), respectively. Then the single-valued mapping c : X → Y
defined by

c(x)
.
= c(F (x)) =

⋂
ρ>rc

{k|F (x) ⊂ B(k, ρ), k ∈ Y },

is called the Chebyshev selection of F .
(4) ([16], P77) Let Y = Rn, F (x) be a compact convex body, i.e., a compact

convex set with nonempty interior, mn(B1(F (x))) be the n-dimensional Lebesgue
measure of B1(F (x)). The single-valued mapping b : X → Rn defined by

b(x)
.
= b(B1(F (x))) =

1

mn(B1(F (x)))

∫
B1(F (x))

xdmn, ∀x ∈ dom(F ),

is called the barycenter selection of F .

Remark 2.2. If the solution set S(λ) of the PCGMIQVIP (1) is nonempty, u(λ)
is a selection of S(λ), then obviously, u(λ) is a solution of the PCGMIQVIP (1).

Lemma 2.1. ([16], P70, Theorem 1) Let X be a metric space and Y be a Hilbert
space, F : X → 2Y be a continuous mapping with closed convex values. Then the
mapping x→ m(F (x)) is continuous, where m(F (x)) is the minimal selection of F
.

Lemma 2.2. ([17], P47, Theorem 2.3.7) Let X be a normed space and Y be a
Hilbert space, F : X → 2Y be a mapping with bounded closed convex values. If F is
upper semi-continuous and Hausdorff lower semi-continuous, then the single-valued
mapping f(x) = c(F (x)) is continuous, where c(F (x)) is the Chebyshev selection of
F (x).

Lemma 2.3. ([16], P77, Theorem 1) Let X be a metric space, Y = Rn, F : X → 2Y

be a Lipschitz continuous mapping with compact convex values. Assume moreover
that for some R > 0, F (x) ⊂ B(0, R), for every x in X. Then the single-valued map-
ping b(x) = b(B1(F (x))) is Lipschitz continuous, where b(B1(F (x))) is the barycen-
ter selection of F (x).

Lemma 2.4. Let F : X → 2Y be a L-H-Lipschitz continuous set-valued mapping.
Then F is upper semi-continuous and Hausdorff lower semi-continuous.

Proof. Since F : X → 2Y is L-H-Lipschitz continuous, ∀x1, x2 ∈ dom(F ), we have

H(F (x1), F (x2)) = max{ sup
u∈F (x1)

d(u, F (x2)), sup
v∈F (x2)

d(F (x1), v)} ≤ L‖x1 − x2‖,

where d(u,K) = infv∈K ‖u− v‖. Then

F (x2) ⊂ B(F (x1), L‖x1 − x2‖).
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On the one hand, for ∀ε > 0, let V = C(F (x1), ε), a neighbourhood of F (x1),
we take δ = ε

L and U = {x|‖x− x1‖ < δ, x ∈ dom(F )}, then for any x ∈ U , we have

H(F (x1), F (x)) ≤ L‖x1 − x‖ < L · ε
L

= ε. (3)

This implies that

F (x) ⊂ C(F (x1), ε).

That is, F (x) ⊂ V . By Definition 2.1 (1), we conclude F (x) is upper semi-continuous
at x1. Because of the arbitrariness of x1 ∈ dom(F ), x 7→ F (x) is upper semi-
continuous on dom(F ).

On the other hand, by (3), we can obtain

F (x1) ⊂ C(F (x), ε).

That is,

F (x1) ⊂
⋂
x∈U
{C(F (x), ε)}.

By Definition 2.1 (2), F (x) is Hausdorff lower semi-continuous at x = x1. By the
arbitrariness of x1 ∈ dom(F ), x 7→ F (x) is Hausdorff lower semi-continuous on
dom(F ). �

3. Main results

In this section, we study the convexity of the solution set S(λ) and the exis-
tences of continuous solutions for the PCGMIQVIP (1).

We list the following hypotheses for convenience.
(H1) N : H ×H ×H × Ω → H, W : H ×H × Ω → H, m, i, j : H × Ω → H

and h : H → H are linear single-valued mappings.
(H2) A,B,C,D,E, F,G : H × Ω → C(H) and M : H × H × Ω → 2H are

convex set-valued mappings.
(H3) A,B,C,D,E, F andG are Lipschitz continuous in the first argument with

constants LA, LB, LC , LD, LE , LF and LG, respectively. Moreover G is δ-strongly
monotone in the first argument.

(H4) m, i and j are Lipschitz continuous in the first argument with constants
Lm, Li and Lj , respectively.

(H5) h is r-strongly monotone and Lh-Lipschitz continuous.
(H6) N is γ-relaxed Lipschitz continuous in the first argument with respect to

B and σ-pseudo-contractive in the second argument with respect to C. N is Lipschitz
continuous in the first, second and third arguments with constants LN1, LN2 and
LN3, respectively.

(H7) W is Lipschitz continuous in the first and second arguments with con-
stants LW1 and LW2, respectively.

(H8) M is a mapping such that for each given (f, λ) ∈ H × Ω, M(·, f, λ) :
H → 2H is a h-maximal monotone mapping satisfying (G(H,λ) − m(H,λ)) ∩
dom M(·, f, λ) 6= ∅.

(H9) There exists a constant µ > 0 such that

‖RhM(·,x,λ),ρ(z)−R
h
M(·,y,λ),ρ(z)‖ ≤ µ‖x− y‖, ∀(x, y, z, λ) ∈ H ×H ×H × Ω.



68 Yangqing Qiu∗, Nan Li, Liwei Liu

(H10) There exists a constant ρ > 0 such that∣∣∣∣ρ− γ − σ − rq(1− k)

p2 − q2

∣∣∣∣ <
√

[γ − σ − rq(1− k)]2 − (p2 − q2)(1− r2(1− k)2)

p2 − q2
,

or

t(ρ) =
1

r
[
√

1− 2ρ(γ − σ) + ρ2(LN1LB + LN2LC)2 + ρ(LN3LD + LW1LjLE

+ LW2LiLA)],

θ1 =k + t(ρ) < 1,

where

k =

(
1 +

1

r

)(√
1− 2δ + L2

G + Lm

)
+
LG + LM

r

√
1− 2r + L2

h + µLF < 1,

p = LN1LB + LN2LC > LN3LD + LW1LjLE + LW2LiLA = q,

γ > σ + rq(1− k) +
√

(p2 − q2)(1− r2(1− k)2).

(H11) For any x ∈ H, λ 7→ A(x, λ), λ 7→ B(x, λ), λ 7→ C(x, λ), λ 7→
D(x, λ), λ 7→ E(x, λ), λ 7→ F (x, λ), λ 7→ G(x, λ), λ 7→ h(x, λ), λ 7→ m(x, λ),
λ 7→ i(x, λ) and λ 7→ j(x, λ), are Lipschitz continuous (or continuous) with con-
stants lA, lB, lC , lD, lE , lF , lG, lh, lm, li and lj , respectively. For any a, b, c, d, f, z ∈ H,

λ 7→ N(b, c, d, λ), λ 7→ W (a, c, λ) and λ 7→ RhM(·,f,λ),ρ(z) are Lipschitz continuous

(or continuous) with constants lN , lW and lR, respectively. And suppose

θ2 =

(
1 +

Lh
r

)
(lG + lm) +

ρ

r
[LW1(LjlE + lj) + LW2(LALili + LAli + lA)

+ lW + LN1lB + LN2lc + LN3lD + lN ] + µlF + lR.

(H12) For any u ∈ dom Q(·, λ), there exists a constant R > 0 such that
Q(u, λ) ⊂ B(0, R).

Theorem 3.1. Assume that A,B,C,D,E, F,G,M,N,m, i, j, h and W are the same
as which in the PCGMIQVIP (1).

If S(λ) 6= ∅, hypotheses (H1) and (H2) hold, then for each λ ∈ Ω, the solution
set S(λ) of the PCGMIQVIP (1) is a convex set.

Proof. First, we assume that (H1) holds and for i = 1, 2, xi, ui ∈ H, f(xi) ∈ F (xi, λ),
g(xi) ∈ G(xi, λ) satisfy

xi = xi − g(xi) +m(xi, λ) +RhM(·,f(xi),λ),ρ(ui).

That is,

g(xi)−m(xi, λ) = RhM(·,f(xi),λ),ρ(ui).

Now for any t ∈ [0, 1], we prove that

t(g(x1)−m(x1, λ)) + (1− t)(g(x2)−m(x2, λ))

= RhM(·,tf(x1)+(1−t)f(x2),λ),ρ(tu1 + (1− t)u2).
(4)

As a matter of fact, let

g(x)−m(x, λ) = RhM(·,f(x),λ),ρ(u), ∀(x, u ∈ H, g(x) ∈ G(x, λ), f(x) ∈ F (x, λ)).
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Then by the definition of the resolvent operator, we have

u ∈ h(g(x)−m(x, λ)) + ρM(g(x)−m(x, λ), f(x), λ).

Therefore, by virtue of (H1) and (H2), we obtain

tu1 + (1− t)u2 ∈ h(t(g(x1)−m(x1, λ)) + (1− t)(g(x2)−m(x2, λ)))

+tρM(g(x1)−m(x1, λ), f(x1), λ)

+(1− t)ρM(g(x2)−m(x2, λ), f(x2), λ)

⊂ h(tg(x1) + (1− t)g(x2)−m(tx1 + (1− t)x2, λ))

+ρM(tg(x1) + (1− t)g(x2)−m(tx1 + (1− t)x2, λ),

tf(x1) + (1− t)f(x2), λ)

= h(·) + ρM(·, tf(x1) + (1− t)f(x2), λ)(tg(x1) + (1− t)g(x2)

−m(tx1 + (1− t)x2, λ)).

Again, by the definition of the resolvent operator, we have

tg(x1)+(1−t)g(x2)−m(tx1+(1−t)x2, λ) = RhM(·,tf(x1)+(1−t)f(x2),λ),ρ(tu1+(1−t)u2).

That is, (4) holds.
Secondly, let x1, x2 ∈ S(λ), t ∈ [0, 1], we shall establish tx1 + (1− t)x2 ∈ S(λ).

For i = 1, 2, xi ∈ Q(xi, λ), by (2), there exist ai ∈ A(i(xi, λ), λ), bi ∈ B(xi, λ),
ci ∈ C(xi, λ), di ∈ D(xi, λ), ei ∈ E(xi, λ), fi ∈ F (xi, λ) and gi ∈ G(xi, λ) such that

xi =xi − (gi −m(xi, λ)) +RhM(·,f(xi),λ),ρ[h(gi −m(xi, λ))

− ρW (j(ei, λ), ai, λ) + ρN(bi, ci, di, λ) + ρω].

By (H1) and (H2), for any t ∈ [0, 1], find λ ∈ Ω such that

ta1 + (1− t)a2 ∈ A(i(tx1 + (1− t)x2, λ), λ), (5)

tb1 + (1− t)b2 ∈ B(tx1 + (1− t)x2, λ), (6)

tc1 + (1− t)c2 ∈ C(tx1 + (1− t)x2, λ), (7)

td1 + (1− t)d2 ∈ D(tx1 + (1− t)x2, λ), (8)

te1 + (1− t)e2 ∈ E(tx1 + (1− t)x2, λ), (9)

tf1 + (1− t)f2 ∈ F (tx1 + (1− t)x2, λ), (10)

and
tg1 + (1− t)g2 ∈ G(tx1 + (1− t)x2, λ). (11)

By (H1), (4)-(11), and the definition of Q(x, λ), we have

tx1 + (1− t)x2 = tx1 + (1− t)x2 − [tg1 + (1− t)g2 −m(tx1 + (1− t)x2, λ)]

+RhM(·,tf1+(1−t)f2,λ),ρ[h(tg1 + (1− t)g2 −m(tx1 + (1− t)x2, λ))

− ρW (j(te1 + (1− t)e2, λ), ta1 + (1− t)a2, λ)

+ ρN(tb1 + (1− t)b2, tc1 + (1− t)c2, td1 + (1− t)d2, λ) + ρω]

∈ Q(tx1 + (1− t)x2, λ).

Therefore, tx1 + (1− t)x2 ∈ S(λ), and hence S(λ) is a convex set. �

Using the selection technique of set-valued mappings, we discuss the existence
of continuous solutions for the PCGMIQVIP (1).
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Theorem 3.2. Assume that A,B,C,D,E, F,G,M,N,m, i, j, h and W are the same
as which in the PCGMIQVIP (1) such that hypotheses (H1)-(H11) hold. Then

(1) For each fixed λ ∈ Ω, S(λ) is a nonempty closed convex set.
(2) The PCGMIQVIP (1) has a continuous solution x(λ) = m(S(λ)), where

m(S(λ)) is the minimal selection of S(λ).
(3) If the hypothese (H12) holds, then the PCGMIQVIP (1) has a continuous

solution x(λ) = c(S(λ)), where c(S(λ)) is the Chebyshev selection of S(λ).
(4) If H = Rn and the hypothese (H12) is satisfied, then the PCGMIQVIP (1)

has a Lipschitz continuous solution x(λ) = b(B1(S(λ))), where b(B1(S(λ))) is the
barycenter selection of S(λ).

Proof. (1) Since the hypotheses (H3)-(H10) are the same as those in Theorem 3.3
of Ding [1], S(λ) is a nonempty closed set. Again by Theorem 3.1, S(λ) is a convex
set. Therefore, S(λ) is a nonempty closed convex set.

(2) Through hypotheses (H3)-(H11) and the proof of Theorem 3.4 in Ding [1],

the mapping λ 7→ S(λ) is θ2
1−θ1 -H-Lipschitz continuous set-valued mapping from Ω

to H, i.e.,

H(S(λ), S(λ)) ≤ θ2
1− θ1

‖λ− λ‖, ∀λ, λ ∈ Ω, (12)

where θ1 and θ2 are given by (H10) and (H11), respectively.
By virtue of (12), ∀λ, λ ∈ Ω, we have

S(λ) ⊂ B
(
S(λ),

θ2
1− θ1

‖λ− λ‖
)
.

Therefore, from Theorem 3.1, λ 7→ S(λ) is Lipschitz continuous set-valued mapping
with closed convex values. By Lemma 2.1, the minimal selection m(S(λ)) of S(λ)
is continuous, and hence the PCGMIQVIP (1) has a continuous solution x(λ) =
m(S(λ)).

(3) By (12) and Lemma 2.4, the mapping λ 7→ S(λ) is upper semi-continuous
and Hausdorff lower semi-continuous. By (H12) and the conclusion of (1), λ 7→ S(λ)
is a set-valued mapping with bounded closed convex values. By Lemma 2.2, the
Chebyshev selection c(S(λ)) of S(λ) is continuous, and hence the PCGMIQVIP (1)
has a continuous solution x(λ) = c(S(λ)).

(4) By (12), (H12) and the conclusion of (1), the mapping λ 7→ S(λ) is a
Lipschitz continuous set-valued mapping with bounded closed convex values. By
Lemma 2.3, the barycenter selection b(B1(S(λ))) of S(λ) is Lipschitz continuous, and
hence the PCGMIQVIP (1) has a Lipschitz continuous solution x(λ) = b(B1(S(λ))).

�

Remark 3.1. Examples given by Aubin and Cellina [16] show that even if the map-
ping is set-valued Lipschitz continuous, its minimal selection and Chebyshev selection
are not necessarily Lipschitz continuous.

Example 3.1. Let H = Rn be a Euclidean space, Ω be a nonempty open subset of
Rn in which the parameter λ takes values, G : Rn×Ω→ 2R

n
be a set-valued mapping

with bounded closed convex values and G(θ) = θ. Given I = [0, 1], 1 < p < +∞, and

D = Bρ(θ) ⊂ Lp(I,Rn) (ρ > 0), for ∀g(x, λ) ∈ Lp(I,Rn,Ω), the set-valued mapping
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M(·, λ) : Rn → 2R
n

is defined by

M(g(x(λ), λ), λ) =

∫ λ

0
G(x(t), t)dt

=

{
u : u(λ) =

∫ λ

0
g(x(t), t)dt, g(x(t), t) ∈ G(x(t), t), g(x, t) ∈ Lp(I,Rn,Ω)

}
.

Let w = 0, W = 0, N = B = I, C = D = F = 0, m = 0 in the PCGMIQVIP
(1), then the PCGMIQVIP (1) reduces to the following integral inclusion: for each
λ ∈ Ω, find x = x(λ) ∈ Rn such that

0 ∈
∫ λ

0
G(x(t), t)dt− x(λ). (13)

If G is LG-Lipschitz continuous in the first argument, and LG ≤ p
1
p , obviously, (13)

satisfies the conditions of Theorem 3.2, then the solution set of (13) is nonempty
closed convex, and it has a continuous minimal selection, a continuous Chebyshev
selection and a Lipschitz continuous barycenter selection in D, respectively.

4. Conclusions

We continued to study the convexity of the solution set of the parametric
completely generalized mixed implicit quasi-variational inclusion problem (PCG-
MIQVIP) proposed by Ding (J. Comput. Appl. Math. 182 (2005)252-269). Further,
using the selection technique of set-valued mappings, we obtained the existence of
(Lipschitz) continuous solutions, i.e., the minimal selection, the Chebyshev selection
and the barycenter selection of the solution set are (Lipschtiz) continuous.
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